
RESEARCH ARTICLE

ℓ0 Gradient Minimization Based Image
Reconstruction for Limited-Angle Computed
Tomography
Wei Yu1,3, Li Zeng2,3*

1 School of Biomedical Engineering, Hubei University of Science and Technology, Xianning, China,
2 College of Mathematics and Statistics, Chongqing University, Chongqing, China, 3 Engineering Research
Center of Industrial Computed Tomography Nondestructive Testing of the Education Ministry of China,
Chongqing University, Chongqing, China

* drlizeng@cqu.edu.cn

Abstract
In medical and industrial applications of computed tomography (CT) imaging, limited by the

scanning environment and the risk of excessive X-ray radiation exposure imposed to the

patients, reconstructing high quality CT images from limited projection data has become a

hot topic. X-ray imaging in limited scanning angular range is an effective imaging modality

to reduce the radiation dose to the patients. As the projection data available in this modality

are incomplete, limited-angle CT image reconstruction is actually an ill-posed inverse prob-

lem. To solve the problem, image reconstructed by conventional filtered back projection

(FBP) algorithm frequently results in conspicuous streak artifacts and gradual changed arti-

facts nearby edges. Image reconstruction based on total variation minimization (TVM) can

significantly reduce streak artifacts in few-view CT, but it suffers from the gradual changed

artifacts nearby edges in limited-angle CT. To suppress this kind of artifacts, we develop an

image reconstruction algorithm based on ℓ0 gradient minimization for limited-angle CT in

this paper. The ℓ0-norm of the image gradient is taken as the regularization function in the

framework of developed reconstruction model. We transformed the optimization problem

into a few optimization sub-problems and then, solved these sub-problems in the manner of

alternating iteration. Numerical experiments are performed to validate the efficiency and the

feasibility of the developed algorithm. From the statistical analysis results of the perfor-

mance evaluations peak signal-to-noise ratio (PSNR) and normalized root mean square

distance (NRMSD), it shows that there are significant statistical differences between differ-

ent algorithms from different scanning angular ranges (p<0.0001). From the experimental

results, it also indicates that the developed algorithm outperforms classical reconstruction

algorithms in suppressing the streak artifacts and the gradual changed artifacts nearby

edges simultaneously.
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Introduction
As an important nondestructive testing method, CT shows large-scale applications in many
fields such as medical diagnosis, industrial nondestructive testing, etc. In practical applications
of CT imaging, when projection data obtained are adequate and complete, the FBP algorithm,
which has been commonly utilized in commercial CT [1], can reconstruct images accurately.
However, limited by the scanning environment and the excessive radiation dose imposed to the
patients, it is desired that high quality CT images can be reconstructed from low-dose projec-
tion data [2,3,4]. To reduce the radiation dose to the patients, an effective imaging modality is
X-ray imaging in limited scanning angular range. It is possible that the effective scanning angu-
lar range doesn’t satisfy the condition of short scan [5], i.e., the effective scanning angular range
is less than 180° plus fan angle. In this case, significant streak artifacts and gradual changed arti-
facts nearby edges are present in reconstructed images by conventional FBP algorithm and con-
sequently, images are distorted [6]. In the medical domain, especially for dental CT [7,8], C-
arm tomosynthesis [9], imaging in the chest and the breast [10] etc., as X-ray ionizing radiation
is harmful to human bodies, it is in urgent need to use shorter time of exposure and fewer pro-
jection data to reconstruct approximately accurate images. Therefore, to reconstruct high-qual-
ity images using limited-angle projection data has been a research focus all along.

Recently, the iterative reconstruction algorithm shows more advantages than conventional
FBP algorithm in dealing with the reconstruction problem with incomplete projection data. As
early as 1980s, the algebraic reconstruction technique (ART) and simultaneous algebraic
reconstruction technique (SART) were utilized by some researchers to investigate CT image
reconstruction [11, 12]. While for incomplete projection data, obvious artifacts and noise are
present in reconstructed images obtained by the two algorithms.

In 1992, Rudin et al. proposed an image denoising method based on total variation (TV) of
image [13], and they showed that this method can well protect the edge during the denoising
process. Assuming that the pixel value of image at position (x,y) is labeled by ux,y, the TV of
image can be expressed as

jjujj
TV
¼

X
x;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðux;y � ux�1;yÞ2 þ ðux;y � ux;y�1Þ2

q
: ð1Þ

The TV is essentially the ℓ1-norm of the image gradient magnitude. In image domains,
images consisting of image gradient magnitudes are approximately sparse. To utilize the spar-
sity of gradient image, the TV norm can be taken as a regularization function. Furthermore, in
2006, Sidky et al. [14] adapted the TV minimization to consider the sparsity of the image gradi-
ent magnitudes, and then proposed an accurate algorithm for CT image reconstruction from
few-view and limited-angle projection data. This algorithm is called TVM based algorithm
hereafter. The TVM based algorithm can obtain accurate images from incomplete projections
especially in the sparse angular sampling over 360°. While the scanning angular range is limited
and less than 180°(such as 90° and 120°), the reconstruction results suffer from gradual
changed artifacts nearby the edges of the objects [14, 15], although it shows superiority to sup-
press streak artifacts. To further improve the quality of CT images for limited-angle tomogra-
phy, some scholars have advanced the conventional TV based image reconstruction algorithm
[16–18]. Although these methods improve the performance on reducing gradual changed arti-
facts nearby edges, however, the edge information of the objects may have a certain degree of
distortion. With the aim to make the most of previously reconstructed CT images, by means of
the constraint of TV, the reconstruction algorithms can generate better images [19,20], while
their applications are limited to some extent as the image database is often needed before
image reconstruction. Other reconstruction algorithms based on the prior knowledge of image
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coefficient sparsity in wavelet domains for limited-angle CT image reconstruction can be
found in [21–23]. In our work, we focus the regularization in the image domain just as TV reg-
ularization done. Thus, the TVM based reconstruction results are compared with our results.

In recent years, a novel regularization method based on the ℓ0-norm of image gradient has
been applied in the image smoothing [24], image segmentation [25], image super-resolution
and blur deconvolution [26], visual enhancement [27], disparity and optical flow partitioning
[28]. Different from the ℓ0-norm of image u, ||u||0, which is the number of its non-zero coeffi-
cients, the ℓ0-norm of image gradient is denoted as

jjrujj 0 ¼
X
p

#fpj j@xupj þ j@yupj 6¼ 0g; ð2Þ

where the gradient of 2D image at the pixel point p is denoted asrup = (@xup,@yup)
T, @xup and

@yup represent the differences in x direction and in y direction respectively. #{} is counting
operator, counting the number of p that satisfies |@xup|+|@yup|6¼0. As the ℓ0-norm of image gra-
dient does not count on gradient magnitude, the large gradient magnitudes will not be penal-
ized, thus the edge can be effectively retained [24].

To better preserve the edges and suppress the artifacts to limited-angle CT image recon-
struction, we developed an alternating iterative reconstruction algorithm for limited-angle CT
based on ℓ0 gradient minimization. In this paper, different from the ℓ1-norm of the image gra-
dient magnitude mentioned above, the ℓ0-norm of image gradient was taken as the regulariza-
tion function of the new optimization problem. We converted the optimization problem into a
few sub-problems, and solved these problems alternately. From the experimental results, it is
shown that by the developed algorithm the streak artifacts and gradual changed artifacts
nearby edges can be effectively reduced.

The rest of the paper is organized as follows. In section Method, our reconstruction algorithm
for limited-angle tomography is described, together with an efficient numerical scheme. More-
over, the performance evaluations are also outlined in this section. In the following section,
experimental results and discussion are presented and conclusions are given in final section.

Method
The fan-beam X-ray CT has been widely used in medical diagnosis, which will be the scanning
geometry that we focus in this paper. Fig 1 shows the scanning geometry configuration for cir-
cular and limited-angle fan-beam CT. For limited-angle tomography, in this paper, the scan-
ning angular range is limited within [0,θ], where θ is the maximum rotation angle of the X-ray
source, usually less than 180°.

As described in detail in S1 Appendix, we approximate the CT imaging model as following
discrete linear system [11]:

Au ¼ g ð3Þ
where u is the unknown object to be reconstructed, g is the measured projection data, A is the
system matrix which represents the forward projection.

In some practical CT imaging, when projection data are incomplete, the system Eq (3) is
underdetermined. To find the solution to this problem, we usually need to acquire the optimal
solution u� satisfying the optimization problem in the following form [29]:

u� ¼ min
u

FðuÞ :¼ DðuÞþl � CðuÞ: ð4Þ

where D(u) is data fidelity term; C(u) represents the regularization term; λ is the penalty
parameter.
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Under the condition that the quality of reconstructed images is ensured, the image recon-
struction algorithm based on the regularization constraint is generally employed to further
suppress noise and artifacts. In our work, the ℓ0-norm of image gradient served as the regulari-
zation constraint term. Then, we developed an image reconstruction model for limited-angle
CT:

min
u

FðuÞ :¼ 1

2
jjAu� gjj22þl �

X
p

#fpj j@xupj þ j@yupj 6¼ 0g: ð5Þ

Although the framework of our reconstruction model is similar to general optimization model
(4), the regularization term we used is different from other regularization term such as ℓ1-norm
of image gradient magnitude, i.e., TV of the image.

In the solution to the optimization problem (5), the original optimization problem was
transformed into a few sub-problems which are then calculated in the manner of alternating
iteration. The original optimization problem (5) is equivalent to the following sub-problem:

unþ1 2 argmin
z
ðz� unÞTATðAun � gÞ þ an

2
jjz� unjj22 þ l �

X
p

#fpj j@xzpj þ j@yzpj 6¼ 0g: ð6Þ

Inspired by the work of [29], as demonstrated in Preliminary section of S1 Appendix, the
equivalent form of sub-problem (6) is as follows:

ðP10Þ wn ¼ un � 1

an
rDðunÞ ¼ un � 1

an
ATðAun � gÞ ð7Þ

ðP20Þ min
z;h;v
f
XN
p¼1
ðzp � wn

pÞ2 þ l� � Cðh;vÞ þ bðð@xzp � hpÞ2 þ ð@yzp � vpÞ2Þg ð8Þ

Fig 1. Scanning geometry configuration for circular and limited-angle fan-beamCT.

doi:10.1371/journal.pone.0130793.g001
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where αn and λ� are positive parameter, A represents the forward projection, AT denoted by
the transpose of A representing the back projection, Cðh;vÞ ¼ #fpj jhpj þ jvpj 6¼ 0g, wp

n is

the component of wn in point p, β is the regularization parameter that constraints the variables
(hp,vp) close to their corresponding gradients (@xzp,@yzp), and the value of β is big enough in
the experiments.

When solving the sub-problems above, we need to compute for wn with un first, then solve
the optimization problem (8) with wn, and then let un+1 = z for next iteration. The above alter-
nating minimization algorithm computes an iterative sequence {u0,w1,u1,w2,u2,w3,u3,. . .,wn,
un,. . .}from a given initial value u0, which is tailored to the approximation solution of original
optimization problem (5).

In Eq (7), the step for computing wn is a gradient descent update with a step size of 1/(2αn)

for the problemw ¼ argmin
u
jjAu� gjj22. To solve the problem, there are many methods, such

as conjugate gradient method. As the good property of SART [30], when letting αn be the
weight for the normalization of the matrix ATA, Eq (7) becomes SART-type algorithm com-
puting for wn as follows:

wn
j ¼ un

j � g
1XM

i¼1
ai;j

XM

i¼1

ai;jXN

j¼1
ai;j

ðAiu
n � giÞ; j ¼ 1; 2; . . .;N: ð9Þ

where
XM
i¼1

ai;j > 0,
XN
j¼1

ai;j > 0, Ai is the ith row of A, γ is weighting factor. wn represents the

image reconstructed after n iterations, each component of wn is nonnegative, thus

wn
j ¼

wn
j ; wn

j � 0

0 ; wn
j < 0

; j ¼ 1; 2; . . .;N: ð10Þ
(

To solve problem (8), we adopt the alternating minimization algorithm to fix one set of vari-
ables while obtain another set of variables and use an accelerated method with the solution in
closed form [31]. The detail of how to convert the problem (8) into two sub-problems is listed
in S1 Appendix(seen the section of theoretical derivation of our algorithm). From S1 Appendix,
it shows that both of the two sub-problems have closed-form solution. Here, we just give the
solution of problem (8) as follows:

z ¼ F�1
FðwnÞ þ bðF�ð@xÞFðhÞ þ F�ð@yÞFðvÞÞ
Fð1Þ þ bðF�ð@xÞFð@xÞ þ F�ð@yÞFð@yÞÞ

� �
; ð11Þ

Where, for each pixel p,

ðhp; vpÞ ¼
ð0; 0Þ ; ð@xupÞ2 þ ð@yupÞ2 �

l�

b

ð@xup; @yupÞ ; otherwise
: ð12Þ

8><
>:

In summary, the implementation steps of ℓ0-norm gradient based image reconstruction
algorithm for limited-angle tomography are given as follows:

Input: projection data g, max number of reconstruction iterations Niter, initial image u0,
weight λ�, constants β0 = 2λ�, βmax = 105 and ratio κ.

Initialization: u0 = u0, β β0, n 0.
While stopping criteria is not met do
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step 1.With un, compute for wn in Eq (9), then non-negative constraint in Eq (10).
step 2. ℓ0 gradient minimization

initialization: z(i) wn, i 0.
repeat

with z(i), solve for hp
(i) and vp

(i) in Eq (12).
with hp

(i) and vp
(i), solve for z(i+1) with Eq (11).

β κβ, i i+1.
until β�βmax

image updating: un+1 z,
n n+1.
EndWhile
Output: final result un

In order to speed up convergence, the parameter β is multiplied by κ each time starting
from a small value β0, which is automatically adapted in iterations. From the flow chart of
Algorithm, we can easily find that the algorithm is implemented in the manner of alternating
iteration. In each iteration, there are two steps need to complete. In the first step, the wn is com-
puted as SART-type solution in Eq (9). In the second step, we obtain z(i+1) with hp

(i) and vp
(i) by

ℓ0 gradient minimization.

Performance evaluations
To evaluate the performance of the developed algorithm for limited-angle CT, peak signal-to-
noise ratio (PSNR) and normalized root mean square distance (NRMSD) were utilized as fol-
lows [32]:

PSNR ¼ 10log10
MAX2ðutrueÞ

1
Q

XQ

m¼1
ðuðmÞ � utrueðmÞÞ2

0
BBBB@

1
CCCCA ð13Þ

NRMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXQ

m¼1
ðuðmÞ � utrueðmÞÞ2

XQ

m¼1
ð�utrue � utrueðmÞÞ2

vuuuuuuut ð14Þ

where u is the image to be reconstructed, utrue is the phantom image regarded as the original
image, the max density value of the original image is denoted asMAX(utrue) and the average
value of the densities of the original image is denoted as �utrue. Q is the total number of pixels of
the image. Generally, a higher PSNR indicates that the image is of higher quality. If the image
reconstructed is close to the original image, the NRMSD will approach to zero. If there is a
large difference in some places, the NRMSD will be large. In addition, if the image recon-
structed is uniformly with the correct average density, the NRMSD will be one.

Statistical Analysis
Statistical analysis is performed on MedCalc statistical software [33]. We test the statistical sig-
nificance of the performance evaluations PSNR and NRMSD using 20 phases of the NCAT
phantom. The F-test is first performed. If the p-value of F-test is high (p>0.05), the t-test is
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performed; If the p-value is low (p<0.05), the Welch’s t test [34] is performed. For the statisti-
cal significance tests, each variable is expressed as Mean ± standard deviations.

Results and Discussion
The experiments are implemented on a 1.8GHz Intel Xeon E5-2603 CPU processor coded in
Microsoft Visual C++ 2010. We tested the developed algorithm for limited-angle tomography
using a digital NURBS based cardiac-torso (NCAT) phantom with matrix size 256×256 [35–
37]. One typical frame of the phantom is shown in Fig 2 (or S1 Fig). In the simulation experi-
ment, assuming the object is fixed, the X-ray source and the detector rotate around the rotation
axis synchronously. The simulated geometrical scanning parameters for limited-angle CT are
listed in Table 1. The scanning angular ranges investigated are limited in [0,90°] and [0,120°]
respectively. Since the sampling interval between two adjacent projection views is 1°, the num-
bers of the projection views available in above cases are 90 and 120 respectively. For noise-free
experiment, the projection data are generated by simulating the forward projection to the dis-
cretized NCAT phantom. By adding the Gaussian noise to the noise-free projection data men-
tioned above, the noisy projection data are generated for noisy experiment. The average value
and the standard deviation of the Gaussian noise are zero and 0.1% of the maximum value of
the projection data respectively.

To validate the developed algorithm, we first compare with other classical iterative recon-
struction algorithms for one typical phase of the NCAT phantom: (1) SART algorithm, which
has been proved to have more advantage than FBP algorithm when the projection data dose
not satisfy the perfect reconstruction condition; (2) TVM based algorithm, which has been
widely used for CT image reconstruction from incomplete projection data. In the experiments,
we have tested a series of parameters for TVM based algorithm and our algorithm, and choose
the parameters with the best image quality for different cases.

In the experiments, the initial image for all iterative algorithms is u0 = 0. The weight coeffi-
cient γ equals to 1.0 in SART-type iteration formula. Reconstruction parameters for TVM
based algorithm are used as follows:1) for scanning range [0,90°], NTV = 20, α = 0.2; 2) for

Fig 2. A typical phase of the NCAT phantom.

doi:10.1371/journal.pone.0130793.g002
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scanning ranges [0,120°], NTV = 20, α = 0.3. With regard to our algorithm, for scanning ranges
[0,90°] and [0,120°], λ� = 0.0001, κ = 5. For all the above iterative methods, the stopping crite-
rion is defined as reaching the maximum iteration number Niter = 1000.

Fig 3 shows the images reconstructed by different algorithms for two different scanning
ranges in limited-angle tomography. The image on the top is the original phantom. The follow-
ing rows are the results reconstructed from scanning ranges [0,90°] and [0,120°], respectively.
Images from left to right in each row present the results reconstructed by SART algorithm,
TVM based algorithm and our algorithm, respectively. As can be seen from Fig 3, with the
increase of the scanning range, the quality of the reconstructed CT images begins to improve
with different degrees. Compared to SART algorithm, the streak artifacts can be better sup-
pressed by both the TVM based algorithm and our algorithm. For limited-angle scanning
ranges [0,90°] and [0,120°], the gradual changed artifacts nearby edges appear by TVM based

Table 1. Geometrical scanning parameters for limited-angle CT.

Parameter Value

Distance between source and detector 1200mm

Distance between source and rotation axis 981mm

Sampling interval between two adjacent projection views 1°

Interval between two adjacent rays per projection view 0.0329°

Number of rays per projection view 256

Diameter of field of view 143.6222mm

Pixel size of the object 0.5632×0.5632mm2

Size of reconstruction image 256×256

doi:10.1371/journal.pone.0130793.t001

Fig 3. The tomographic results of NCAT phantom from noise-free projection dataset. The image on the
top is the original phantom. The following rows are the results reconstructed from scanning angular ranges [0,
90°] and [0, 120°], respectively. Images from left to right in each row present the results reconstructed by
SART algorithm, TVM algorithm and our algorithm, respectively. The gray scale window is set to [0, 1.0].

doi:10.1371/journal.pone.0130793.g003
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algorithm. The reconstructed images are distorted nearby the edges of the object in these cases.
However, by our algorithm, the gradual changed artifacts nearby edges can be further reduced
and the edge structure information of the object can be better preserved at the mean time.

Table 2 lists the PSNR and NRMSDmeasures of the images (as shown in Fig 3) recon-
structed by different algorithms with 1000 iterations. From Table 2, it finds that our algorithm
outperforms the TVM based algorithm and SART algorithm in terms of the PSNR and
NRMSDmeasures. Due to the good property of the regularization function which was defined
as the ℓ0-norm of the image gradient, our algorithm shows better performance than TVM
based algorithm. In addition, the experiments show that the larger the scanning ranges, the bet-
ter the image quality.

In practical applications, the projection data usually contains measurement noise. For the
experiments with noisy projection data, reconstruction parameters for TVM based algorithm
are used as follows: 1) for scanning range[0,90°], NTV = 10, α = 0.28; 2) for scanning ranges
[0,120°], NTV = 20, α = 0.3. With regard to our algorithm, the reconstruction parameters used
for scanning ranges [0,90°] and [0,120°] are as follows: λ� = 0.0016, κ = 7. The stopping crite-
rion for all the above iterative methods is defined as reaching the maximum iteration number
1000. Fig 4 gives the reconstructed images similar to Fig 3 but from a noisy projection dataset.
It can be found that the SART algorithm is vulnerable to noise. For scanning ranges[0,90°] and
[0,120°], the TVM based algorithm and our algorithm cause fewer artifacts than SART algo-
rithm, while our algorithm recovers even more edge structure information than TVM based
algorithm. From Fig 4, it can be seen that by TVM based algorithm, the streak artifacts can be
eliminated, while the gradual changed artifacts caused by limited angular scanning still heavily
distorted the edge of the objects. And it also illustrates that the reconstructed images by our
algorithm have superior visual quality with less gradual changed artifacts nearby edges. Table 3
lists the PSNR and NRMSD measures of the images shown in Fig 4. From Table 3, it shows
that the images by our algorithm has better performance than TVM based algorithm and
SART algorithm with PSNR and NRMSD.

To further confirm this observation, we have compared root-mean-square error (RMSE)
curves of NCAT phantom reconstructions by different algorithms for one typical phase of the
NCAT phantom, shown in Fig 5. The graphs on top row and bottom row present the RMSE
curves of the results reconstructed from noise-free projection dataset and noisy projection

Table 2. Evaluations of the results reconstructed by different algorithms from noise-free projections shown in Fig 3.

Method [0, 90°] [0, 120°]

PSNR NRMSD PSNR NRMSD

SART 22.5713 0.2596 24.6687 0.2039

TVM 27.0514 0.1550 37.7364 0.0453

Our algorithm 34.6383 0.0647 40.2834 0.0338

doi:10.1371/journal.pone.0130793.t002

Table 3. Evaluations of the results reconstructed by different algorithms from noisy projections shown in Fig 4.

Method [0, 90°] [0, 120°]

PSNR NRMSD PSNR NRMSD

SART 18.3931 0.4200 18.3028 0.4244

TVM 25.0899 0.1943 32.2828 0.0849

Our algorithm 27.2007 0.1524 35.9096 0.0559

doi:10.1371/journal.pone.0130793.t003
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dataset respectively. The graphs from left to right in each row present the RMSE curves of the
results reconstructed from scanning ranges [0,90°] and [0,120°], respectively. Our algorithm
achieves the minimum of RMSE faster than the other two algorithms. Furthermore, it steadily
converges to a low-noisy solution. It demonstrates that we can also get good images when ter-
minating the iteration at earlier stage according to the principle of the minimum of RMSE with
small number of iterations. As can be seen from Fig 5, when the scanning range is [0,120°],

Fig 4. The tomographic results of NCAT phantom from noisy projection dataset. The image on the top
is the original phantom. The following rows are the results reconstructed from scanning angular ranges [0,
90°] and [0, 120°], respectively. Images from left to right in each row present the results reconstructed by
SART algorithm, TVM algorithm and our algorithm, respectively. The gray scale window is set to [0, 1.0].

doi:10.1371/journal.pone.0130793.g004

Fig 5. RMSE curves of NCAT phantom reconstructions by SART algorithm, TVM algorithm and our
algorithm for one typical phase of the NCAT phantom. The graphs on top row and bottom row present the
RMSE curves of the results reconstructed from noise-free projection dataset and noisy projection dataset
respectively. The graphs from left to right in each row present the RMSE curves of the results reconstructed
from scanning angular ranges [0, 90°] and [0, 120°], respectively.

doi:10.1371/journal.pone.0130793.g005
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dozens of iterations are enough for both TVM based algorithm and our algorithm to obtain
high quality CT images.

To further assess the performance evaluations of image quality reconstructed by different
algorithms, we performed the tests of statistical significance using 20 phases of the NCAT
phantom. The statistical analysis results of the images, which are reconstructed from scanning
angular range [0,90°] and [0,120°] between different algorithms with 1000 iterations from
noise-free projections, are summarized in Tables 4 and 5, respectively. There are significant dif-
ferences in the values of PSNR and NRMSD between any two algorithms (p< 0.0001). From
both the Table 4 and Table 5, the values of PSNR by our algorithm are much higher than that
of TVM and SART, while the values of NRMSD by our algorithm are much lower than that of
TVM and SART. For the experiments that the images reconstructed from noisy projections,
the statistical analysis results are summarized in Tables 6 and 7 with different scanning angular
ranges. From the Tables 6 and 7, the values of PSNR and NRMSD of our algorithm and TVM
based algorithm have significant statistical difference from that of SART (p< 0.0001). From
Table 6, there are significant statistical differences between our algorithm and TVM based

Table 4. Summary of statistical analysis results of performance evaluations of the images reconstructed from scanning angular range [0, 90°]
between different algorithms (with 1000 iterations from noise-free projections for 20 phases of the NCAT phantom).

Item Method pF-value p-value

SART(A) TVM(B) Our algorithm(C) A vs. B A vs. C B vs. C A vs. B A vs. C B vs. C

PSNR 22.8106±0.2356 26.2754±0.6789 34.9005±1.9652 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001

NRMSD 0.2517±0.005809 0.1693±0.01254 0.06409±0.01483 0.002 <0.001 0.472 <0.0001 <0.0001 <0.0001

pF-value: p-value of F-test.

p-value: If the pF-value is high (p>0.05), the t-test is performed; If the pF-value is low (p<0.05), the Welch’s t test is performed.

doi:10.1371/journal.pone.0130793.t004

Table 5. Summary of statistical analysis results of performance evaluations of the images reconstructed from scanning angular range [0, 120°]
between different algorithms (with 1000 iterations from noise-free projections for 20 phases of the NCAT phantom).

Item Method pF-value p-value

SART(A) TVM(B) Our algorithm(C) A vs. B A vs. C B vs. C A vs. B A vs. C B vs. C

PSNR 26.0269±0.5832 35.1035±2.5646 47.8884±4.9335 <0.001 <0.001 0.006 <0.0001 <0.0001 <0.0001

NRMSD 0.1741±0.01207 0.06366±0.01906 0.01682±0.01337 0.054 0.662 0.131 <0.0001 <0.0001 <0.0001

pF-value: p-value of F-test.

p-value: If the pF-value is high (p>0.05), the t-test is performed; If the pF-value is low (p<0.05), the Welch’s t test is performed.

doi:10.1371/journal.pone.0130793.t005

Table 6. Summary of statistical analysis results of performance evaluations of the images reconstructed from scanning angular range [0, 90°]
between different algorithms (with 1000 iterations from noisy projections for 20 phases of the NCAT phantom).

Item Method pF-value p-value

SART(A) TVM(B) Our algorithm(C) A vs. B A vs. C B vs. C A vs. B A vs. C B vs. C

PSNR 18.2747±0.3531 24.7533±0.6350 26.9256±2.5368 0.014 <0.001 <0.001 <0.0001 < 0.0001 0.0013

NRMSD 0.4245±0.01742 0.2016±0.01415 0.1632±0.05083 0.373 <0.001 <0.001 <0.0001 < 0.0001 0.0036

pF-value: p-value of F-test.

p-value: If the pF-value is high (p>0.05), the t-test is performed; If the pF-value is low (p<0.05), the Welch’s t test is performed.

doi:10.1371/journal.pone.0130793.t006
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algorithm in PSNR (p = 0.0013< 0.05) and NRMSD (p = 0.0036< 0.05). From Table 7, there
are significant statistical differences between our algorithm and TVM based algorithm in
PSNR (p = 0.0001< 0.05) and NRMSD (p = 0.0002< 0.05). The values of PSNR and NRMSD
shown in the Tables 6 and 7 illustrate that our algorithm has better performance than that of
TVM based algorithm and SART algorithm.

In order to further demonstrate the effectiveness of our algorithm, we carry out additional
simulation study using the Shepp-Logan phantom. Fig 6 demonstrates the reconstruction
results for different scanning angular range by different iterative reconstruction algorithms.
From the results demonstrated, it shows that our algorithm has better performance on suppress
the gradual changed artifacts nearby edges for limited-angle CT. To further evaluate the perfor-
mance, the 1D profiles of the images reconstructed by different algorithms are shown in Fig 7.
From the profiles, it is indicated that the profiles of our algorithm show better agreement with
the original than that of SART and TVM.

Table 7. Summary of statistical analysis results of performance evaluations of the images reconstructed from scanning angular range [0, 120°]
between different algorithms (with 1000 iterations from noisy projections for 20 phases of the NCAT phantom).

Item Method pF-value p-value

SART(A) TVM(B) Our algorithm(C) A vs. B A vs. C B vs. C A vs. B A vs. C B vs. C

PSNR 18.6296±0.6064 31.1136±1.3193 33.6815±2.2625 0.001 <0.001 0.023 <0.0001 < 0.0001 0.0001

NRMSD 0.4081±0.02933 0.09776±0.01499 0.07438±0.02074 0.005 0.140 0.166 <0.0001 < 0.0001 0.0002

pF-value: p-value of F-test.

p-value: If the pF-value is high (p>0.05), the t-test is performed; If the pF-value is low (p<0.05), the Welch’s t test is performed.

doi:10.1371/journal.pone.0130793.t007

Fig 6. Similar as Fig 3, but the tomographic results of Shepp—Logan phantom.

doi:10.1371/journal.pone.0130793.g006
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Conclusion
To solve the problem in limited-angle CT image reconstruction, we developed an effective
image reconstruction optimization model based on ℓ0 gradient minimization. The original
optimization problem was transformed into a few sub-problems and then, alternating iteration
was adopted to calculate this model. In the solution to each sub-problem, features of each sub-
problem were fully utilized to generate an effective solution. In this algorithm, the ℓ0-norm of
image gradient was taken as the regularization term to constrain image sparsity. Compared
with reconstruction algorithm based on TVM in which the ℓ1-norm of gradient magnitude acts
as the regularization term, our reconstruction algorithm presented in this paper showed more
advantages for limited-angle tomography. It was found that from the experiments in limited
CT scanning ranges, our reconstruction algorithm caused fewer artifacts in images and could
recover edge structure information more effectively. This research investigated the limited-
angle image reconstruction problem only in fan-beam CT scanning. In the future, we will
investigate the ℓ0 gradient minimization based CT image reconstruction algorithm for other
applications.
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