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Abstract: The accuracy of photogrammetric reconstruction depends largely on the acquisition condi-
tions and on the quality of input photographs. This paper proposes methods of improving raster
images that increase photogrammetric reconstruction accuracy. These methods are based on modify-
ing color image histograms. Special emphasis was placed on the selection of channels of the RGB
and CIE L*a*b* color models for further improvement of the reconstruction process. A methodology
was proposed for assessing the quality of reconstruction based on premade reference models using
positional statistics. The analysis of the influence of image enhancement on reconstruction was
carried out for various types of objects. The proposed methods can significantly improve the quality
of reconstruction. The superiority of methods based on the luminance channel of the L*a*b* model
was demonstrated. Our studies indicated high efficiency of the histogram equalization method (HE),
although these results were not highly distinctive for all performed tests.

Keywords: photogrammetry; preprocessing; enhancement; point cloud; 3D reconstruction; image
processing; image histogram

1. Introduction

Until recently, photogrammetric reconstruction was available to a narrow community
of remote sensing specialists [1,2]. It has become widely available thanks to the devel-
opment of mobile applications using cameras installed in smartphones [3]. However,
reconstructions made with these applications do not provide sufficient reliability for engi-
neering applications [4]. Its potential use is building surveying, cost estimation, modeling
space for virtual and augmented reality [5–8]. Unfortunately, it is very difficult to extract
precise data allowing for sufficiently precise modeling from point clouds generated by
these technologies [9–11]. This led to a search for methods to improve reconstruction
quality and reliability [12–14]. The trust of engineers in this reconstruction is crucial [15].

Photographs are not always taken correctly. This depends on the lightning condi-
tions [16], the availability of a given property, the amount of time one can spend on
registration, the quality of the photo equipment and many other factors [17,18]. The
image file format should also be taken into account when capturing images [19]. The
quality of the photographs is especially important for the automated photogrammetric
reconstruction process [20,21]. Its impact is particularly noticeable when processing large
image datasets [22], or using the markerless method [23]. Therefore, there is a need to
correct and improve the quality of these photos. Image preprocessing is used to enhance
the quality of images [24] and it is a very significant issue from the point of view of 3D
modeling and photogrammetric reconstruction [25]. It includes many different methods
such as histogram enhancement, color balancing, denoising, deblurring or filtering [26].
Some methods have already been used to improve photo quality in the photogrammetric
reconstruction pipeline. Many of these are associated with the deblurring of images [27–29].
The literature also includes studies on the use of using polarizing filters or High Dynamic
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Range (HDR) images, [25] decolorization [30] or novel techniques for the conversion of the
color signal into a grayscale [31]. Significant research within this area has been reported by
Gaiani et al. [32]. They developed an advanced pipeline consists of color balancing, image
denoising, color-to-gray conversion and image content enrichment, including new methods
for image denoising and grayscale reduction. Another result of evaluating the impact of
image processing for photogrammetry were presented by Feng et al. [33]. Presently, neural
networks, especially the ones based on deep models, are used to improve photogrammetric
quality [29,34–36].

On the contrary to create the advanced photogrammetric pipeline [32] or use sophis-
ticated tools, such as neural networks we looked for a simple way to improve photos to
obtain the best material for photogrammetric reconstruction. We assumed that selected
methods of improving images, based on histogram operations, should give the desired
results. Our methodology is designed to work directly on photographs, as a preprocessing
step in the photogrammetric reconstruction pipeline. It can be used independently of
reconstruction software, which required testing with black-box type tool. We verified the
correctness of our method by comparing the reconstructions obtained from the prepro-
cessed materials with the most reliable geometric model at our disposal. In addition to
methods of improving image quality, finding a good way to compare the reconstruction to
a reliable model is not an obvious task.

In our previous work [37] we explored the improvement of input images for pho-
togrammetric reconstruction. Our conclusion was that reconstruction using unprocessed
photos does not always give satisfactory results. We tested several methods of image
preprocessing based on histogram analysis however, we focused only on grayscale images
in that paper. Reconstruction based on such images is correct in terms of structure, but it is
also somewhat limited as it is not possible to use colored textures. To correct this incon-
venience, we tested the following image processing methods: histogram stretching (HS),
histogram equalizing (HE), adaptive histogram equalizing (AHE) and exact histogram
matching (EHM) on color images with the use of different color spaces.

2. Materials and Methods
2.1. Research Method

Several methods of processing photographic material were selected for our study.
The processing results were used to generate photogrammetric reconstructions of pho-
tographed objects. The reconstructions were in the form of point clouds. Each recon-
struction was compared with a suitable reference model. The reference models featured a
representation of polygonal meshes. The aim of our study was to characterize individual
material processing methods in terms of their suitability for generating geometrically cor-
rect point clouds. Therefore, the selection of reliable reference models and reliable methods
for comparing reconstructions to reference models were an important element of our study.

Two real-world objects were selected as case studies. The first was a porcelain swan
figurine. The second was a large historical building. Analyses carried out on objects of
such different scales resulted in a wide range of recommendations regarding the methods
of processing photographic material that had been tested. At the same time, they required
other methods of obtaining reference models. Unfortunately, different modeling methods
give models with varying degrees of fidelity. When selecting the appropriate measures for
such different objects, the same methods of comparing the reconstruction with the models
were used. The results of these comparisons were also characterized in relation to the scale
of the object.

2.2. Photo Improvement Methods

In this paper, we focused on improving the quality of images, mainly in terms of
contrast and brightness. We did not explore the influence of other factors (such as sharp-
ness), which shall be a part of further research. We focused only on color photographs
(Figure 1), as we already published research on monochrome images [37]. Two different
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color spaces are used in the imaging processing—RGB and L*a*b*. The RGB space image
was divided into three separate channels—red, green and blue. Each channel was treated
as a single monochrome image, therefore histogram corrections were performed on each
channel separately (Figure 2), and the RGB image was recombined afterwards. In the L*a*b*
space image was also divided into three separate channels – L*, a* and b*. The L* channel
represents brightness (luminance), a* channel color position between red and green and b*
channel color position between yellow and blue. In order to preserve the original colors of
an image, modifications were introduced into the L* channel only. For this channel to be
considered a monochrome image, its values were previously transformed to the [0 1] range.

Figure 1. Example of an underexposed image.

(a) (b)

Figure 2. Histograms of RGB channels (a) and L channel of L*a*b* space (b).

As described in Algorithm 1 each image needs to be converted back into RGB space to
perform a photogrammetric reconstruction.

2.2.1. Histogram Stretching (HS)

The first image enhancement method that we used was common histogram stretching.
This process maps the intensity values of the image into new values to redistribute the
information of the histogram toward the extremes of a gray-level range. This increases the
intensity range, although some of the brightness values are not represented in the processed
image [38]. Transformed images with their histograms are presented in Figures 3 and 4.
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Algorithm 1: Histogram modification in L*a*b* space
Input: IRGB—image in RGB space

1 convert IRGB into IL∗a∗b∗
2 divide IL∗a∗b∗ into separate channels
3 leave a∗ and b∗ channels without any changes
4 transform L∗ channel to the [0 1] range
5 perform certain histogram operation on L∗ channel
6 transform back L∗ channel to the [0 100] range
7 combine IL∗a∗b∗′ from separate channels
8 convert IL∗a∗b∗′ into IRGB′

9 return IRGB′—modified image in RGB space

(a) (b)

Figure 3. Image transformed with the use of histogram stretching in RGB (a) and L*a*b* space (b).

(a) (b)

Figure 4. Histograms of RGB channels (a) and L channel of L*a*b* space (b).

2.2.2. Histogram Equalizing (HE)

The second way to improve image contrast that we tested was the histogram equaliza-
tion. This technique effectively stretches the most common intensity values—it extends the
intensity range of an image. Afterwards, intensities can be distributed better—low-contrast
areas will have higher contrast and the cumulative histogram would increase linearly [24].
Performing histogram equalization on separate RGB channels often leads to unrealistic
effects. Therefore, this operation is more suitable for images in different color spaces, such
as L*a*b* (Figure 5).

The resulting histograms are as flat as possible, without noticeable peaks. However,
it should be noticed that many intensities are not represented in obtained images. This is
represented as white gaps between the histogram bars (Figure 6).
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(a) (b)

Figure 5. Image transformed with the use of histogram equalizing in RGB (a) and L*a*b* space (b).

(a) (b)

Figure 6. Histograms of RGB channels (a) and L channel of L*a*b* space (b).

2.2.3. Adaptive Histogram Equalizing (AHE)

The third method of improving images that we tried was adaptive histogram equal-
ization. This method differs from ordinary histogram equalization in the way that the
adaptive method (AHE) calculates histograms in separate parts of the image (tiles) instead
of the entire image [39]. In each tile, a transformation function is calculated for each pixel
based on neighboring values. The classic AHE approach tends to overamplify contrast and
noise. Therefore, contrast-limited adaptive histogram equalization (CLAHE) was applied
in place of AHE. In this algorithm, the histogram is first truncated at a predefined value and
the transformation function is calculated afterwards. This situation takes place especially
in homogeneous areas [40].

After performing the equalization, an algorithm combines neighboring tiles using
bilinear interpolation to eliminate artificially induced boundaries. The resulting image
and its histogram differ significantly from the image obtained with the use of the standard
histogram equalization technique (Figures 7 and 8).
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(a) (b)

Figure 7. Image transformed with the use of adaptive histogram equalizing in RGB (a) and L*a*b*
space (b).

(a) (b)

Figure 8. Histograms of RGB channels (a) and L channel of L*a*b* space (b).

2.2.4. Exact Histogram Matching (EHM)

The last image enhancement process consists of two main stages. In the first stage,
a mean histogram of the whole set of images is calculated. This is performed by adding
histograms of each image (separately for each channel) and dividing the result by the num-
ber of images in the set. In the second step, an exact histogram matching operation [41,42]
is used to adapt the histogram of each image to match the obtained average histogram
(Figures 9 and 10).

(a) (b)

Figure 9. Image transformed with the use of exact histogram matching in RGB (a) and L*a*b* space (b).
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(a) (b)

Figure 10. Histograms of RGB channels (a) and L channel of L*a*b* space (b).

2.3. Photogrammetric Reconstruction

For photogrammetric reconstruction, we used Agisoft Metashape, which is used ex-
tensively worldwide. During the reconstruction phase, the same parameters were used for
each step to keep the test method consistent. The reconstructions were created indepen-
dently for each set of photos, i.e., the original photos and those transformed following the
algorithms described. We chose two types of objects to validate the method’s correctness
regardless of the scale of the object subjected to photogrammetric reconstruction. Compar-
isons between individual reconstructions were performed using Cloud Compare software.

Agisoft Metashape provides a built-in tool for assessing the quality of photos, but this
is based on sharpness only. For this purpose, it analyzes contrast between pixels and deter-
mines the quality factor which takes a value from 0 to 1. According to the manufacturer’s
recommendation, images with a factor lower than 0.5 should be excluded from the recon-
struction process. This criterion is not always reliable, because in the case of directional
blur, which is most common when taking pictures, sharp areas can still be detected by
algorithm, and qualify the picture as good quality [43]. There is no information about any
image preprocessing techniques implemented in Metashape, therefore it should be treated
as a black-box tool.

A DSLR camera was used in the registration of photographs for the photogrammetric
reconstruction. The sensor was not calibrated in any of the described case studies, in addi-
tion a markerless method was used. This was due to the intent to present a method that
can be used in a wide range of cases without having to meet any special requirements.

2.3.1. Reference Model of the Porcelain Figurine

The first testing datum was a little porcelain figurine, about 12 cm high. Its reference
model was acquired with the use of a 3D scanner that operates in the field of structural
light (Figure 11a). The scanner, unfortunately, was not able to reach all the covered parts
of the object. The fragments of the figurine that did not have a correct digital representa-
tion were filtered out in the process of analysis. They were also the same fragments for
which obtaining a correct representation during the photogrammetric reconstruction met
with failure.
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(a) (b)

Figure 11. Porcelain figurine models: (a) mesh acquired by the 3D scanner, (b) point cloud obtained
with the use of photogrammetric reconstruction.

2.3.2. Reference Model of the Castle in Nowy Wiśnicz

The castle in Nowy Wiśnicz is in the north-eastern part of the town, less than 400 m
from the Market Square. The origins of the castle date back to the fourteenth century,
but its present shape is from the seventeenth century. It is a typical example of a palazzo
in fortezza. Its quadrangular shape is accentuated by four corner towers. There is an
additional segment to the south. The entire layout is surrounded by bastion fortifications
in the shape of a pentagon with the longest dimension of 190 m. Together with bastions
and curtain walls, it covers approx. 19,500 m2 (Figure 12b). The height of the castle
itself, measured from the level of the courtyard inside the fortifications, is about 36 m
(Figure 12a) [44].

Obtaining a reference model of such a large object was not possible using a 3D
scanner. It was created using photogrammetric methods and verified via comparison with
a point cloud obtained using airborne LiDAR. It is a combination of several partial models
covering various parts of the castle. The individual partial models were obtained from
separate sets of photos taken to ensure high quality. The photos were taken from human
eye-level and from different heights, for which an UAV (Unmanned Aerial Vehicle) was
used. There were 2300 photos in total. Partial reconstructions of the castle’s buildings
were generated in Agisoft Metashape. They were then compiled using orthogonal versor
matrix multiplication in Cloud Compare and combined into a single point cloud and then
converted into a mesh model.

The point cloud used to validate the model represented a digital terrain and cover
model. It was obtained from the state surveying repository. In Poland, by virtue of the
law [45], the numerical terrain model and land cover data are currently available free of
charge. They can be downloaded from the governmental servers of National Geoportal [46]
as a grid of points with x, y, z coordinates, deployed at 1 m intervals. There are also LAS
standard point cloud data available [47], acquired as a part of the ISOK project (National
Land Cover IT System) [48]. As a result of this project, 98% of the territory of Poland
was scanned, with a density of between 6–12 points/m2. The point cloud is available in
the form of LAS files, where each point is represented by X, Y, Z, coordinates, RGB color
(Figure 13a) and assigned to one of four classes: ground, structure, water and vegetation
(Figure 13b) [47]. This enables the individual segmentation layers to be compared sepa-
rately [49]. These data are reliable from a geolocation point of view, but insufficient for
many engineering applications. Especially in the case of building walls, which, as elements
with a mostly vertical geometry, are very poorly covered with points, as they are recorded
via airborne LiDAR flyovers [50]. The fixed measurement interval does not provide the
coordinates of distinctive elements of building geometry (corners, ridges, tops of towers).
However, this is a feature that can be used for verification. The ISOK model points were
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used in this work for the systematic sampling of model correctness. The sparse ISOK point
cloud precisely defines the space into which the dense cloud of the reference model must fit.
After appropriate scaling and fitting of the reference model, the correctness was assessed by
comparing the sparse ISOK cloud to the dense cloud of the reference model by examining
the root mean square distance (RMS) between the superimposed structures (Figure 14).
The RMS error estimation method allows the determination of a fitting error’s statistical
values, which are expressed in spatial distance, which is well understood by engineers
potentially using such models [51].

(a) (b)

Figure 12. Polygonal models of the castle in Nowy Wiśnicz: (a) building only (4,133,352 faces), (b) the
building with fortifications (1,966,487 faces).

(a) (b)

Figure 13. ISOK point cloud: scanning colors (a); class colors (b).

Figure 14. Distance error (RMS) for reconstructed model and reference LAS ISOK: LAS ISOK to
reconstructed model—point-to-mesh mapping.
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3. Results

The subject of our research was to determine whether the preprocessing of photos
used to perform photogrammetric reconstruction affects its quality. Our research on
grayscale images has shown that uniformity of pictures in terms of brightness and contrast
can significantly improve the quality of a model obtained via reconstruction. However,
using monochrome images has the disadvantage that the resulting texture does not pre-
cisely reflect the object’s appearance. For this reason, the photographs of the objects
mentioned in the previous section were processed in color spaces in accordance with the
methods presented.

The general scheme of the tests carried out on each set of photos is as follows:

1. Photo correction using one of the methods mentioned.
2. Creation of a sparse and then dense point cloud by photogrammetric reconstruction.
3. Registration using the ICP method to match the received data sets [52].
4. Comparison of individual reconstructions using the distance calculation: recon-

structed model cloud to reference model cloud.
5. Statistical and visual analysis of the obtained results.

Classical statistical measures such as mean or standard deviation can be used when
a variable is quantitative in nature. However, when the variable is ordinal, it is better to
use positional measures such as median or interquartile range. In the case under study,
the variable is the distance of a point derived from the photogrammetric reconstruction
from the reference model obtained with the scanner. Therefore, the variable can be consid-
ered ordinal – the smaller the distance, the more correct the result. The analyzed statistical
quantities are quartiles and in the interquartile range. Subsequent quartiles provide in-
formation about how far away from the original model the 25% (Q1), 50% (Q2—median),
and 75% points (Q3) are. These values are calculated from distances given in absolute
(unsigned) quantities, so a distance of 0.10 cm is treated the same as a distance of −0.10 cm.
However, in the case at hand, this is irrelevant because the objective is to determine the
number of points that are within a given range of distances, without taking into account
whether they are outside or inside the reference model. The smaller the value of a given
quartile, the better the result because it means that a given percentage of points lies at a
closer distance to the reference model. For example, in the case of the swan figure and the
HE method in the L*a*b* space, the third quartile is 0.17 cm, which means that 75% of the
points are closer to the reference model than this value. For the same method in RGB space,
these 75% of the points are closer than 0.20 cm, which is a larger value, and therefore the
points are further away from the reference model (Table 1).

Another measure that is calculated is the interquartile range (IQR), which is one of the
values that determines dispersion. This measure is determined using a signed number and
determines the degree of diversity—the higher the interquartile range value, the greater
the variety of a feature. The value of this measure is calculated based on the difference
between the third and first quartiles: IQR = Q3 −Q1. In other words: the 50% of points
are within the interval defined by the value of IQR. A narrower interval means a higher
concentration of points in closer proximity to the reference model, so in the case under
analysis, a lower value of IQR indicates a better result.

Based on quartile values obtained, it was also possible to perform an analysis of the
length of the “tails”, i.e., the number of outlying points beyond a specific value of the
distance from the reference model. The average of the values of Q3 for all the measurements
taken was assumed to be this particular value (σ). The values obtained determined how
many points were at a significant distance from the reference model. These points can
therefore be treated as incorrectly reconstructed. Due to the different number of points
in the cloud for each reconstruction, what is important here is the value in percentage
terms—the smaller it is, the fewer points are at a significant distance from the reference
model, and thus it can be considered more accurate.
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3.1. Case Study 1—The Porcelain Figurine

The set of images used for photogrammetry reconstruction consisted of 33 pho-
tographs. Twelve of them were underexposed, and eleven of them were overexposed.
The dense clouds obtained in the figurine reconstruction process consisted of several hun-
dred thousand points. These were then reviewed for duplicates, leading to the removal
of approximately 10% of points from each cloud. The final number of obtained points is
shown in Table 1. The obtained reconstructions are quite difficult to compare in terms
of quality visually (Figure 15). However, the differences in contrast and color saturation
of the textures are well demonstrated. Particularly notable is the low contrast in the re-
construction created using the original images (Figure 15a). As described in Section 2.2,
the modification of the image in L*a*b* space involves transforming the histogram on
the luminance channel without modifying the color channels, which can easily be seen in
Figure 15f–i. On the other hand, modifying individual channels in the RGB color space
results in changes in the saturation of individual colors (Figure 15b–e) and can also lead to
errors in texture colors.

Table 1. Number of points and statistical measures for the reconstruction of the porcelain figurine.

Method Aligned Cams Points Q1 Median Q3 IQR

original 24 350,232 0.05 0.11 0.19 0.23

L*a*b*

AHE 23 365,903 0.05 0.12 0.20 0.23
EHM 23 300,097 0.05 0.10 0.19 0.19
HE 24 313,622 0.05 0.10 0.17 0.20
HS 27 338,858 0.05 0.11 0.19 0.21

RGB

AHE 23 337,649 0.05 0.11 0.19 0.21
EHM 23 280,334 0.05 0.11 0.20 0.21
HE 23 316,222 0.05 0.11 0.20 0.20
HS 27 373,312 0.05 0.12 0.22 0.23

avg: 0.20

Upon a statistical analysis of the results (presented in Table 1), one can see very similar
results for all investigated methods. The value of the first quartile in each case was 0.05 cm.
The median values also differed very little. Only values for the third quartile showed
a slightly bigger variation, where the best value was attained for the HE method in the
L*a*b* space. However, it should be noted that the differences in individual values were
minuscule and approximate the reconstruction obtained using unprocessed photograph.

The situation was slightly different when tail analysis was performed (Table 2). The σ
value for the figurine was taken as 0.2 cm. This value was exceeded by 23.40% of points
when reconstructed from images without enhancement, and only 17.84% of points when
corrected using the HE method in L*a*b* space. In general, methods operating in L*a*b*
space performed better in this case, with an average of 22.16% of points above the σ value,
compared to 25.48% for methods operating in RGB space. A similar relationship can also be
observed by analyzing the distribution of values for 2σ and 3σ. It should also be noted that
the number of points located at a distance above 2σ, i.e., above 4 mm from the reference
model, was relatively small—for the previously mentioned HE method in L*a*b* space, it
is 3.62% of the total number of points in the cloud.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 15. Dense point clouds of the porcelain figurine. Reconstructions based on photographs: (a) original; preprocessed
in the RGB space with the use of: (b) histogram stretching, (c) histogram equalizing, (d) adaptive equalizing, (e) exact
histogram matching; preprocessed in the L*a*b* space with the use of: (f) histogram stretching, (g) histogram equalizing,
(h) adaptive equalizing, (i) exact histogram matching.

The distribution of deviations is not uniform over the entire surface of the model.
The largest number is found in the ear region of the figure, as this section was the most
difficult to reconstruct for the photogrammetric reconstruction algorithms (Figure 16).
The different reconstructions were similar to each other in terms of error deviations. Vi-
sually, the largest number of points, located at distances above 3σ, was found for the HE
method in RGB space (Figure 16c), which is confirmed by the numerical values (Table 2). It
is also notable that for the method based on the EHM algorithm, the upper part of the figure
was not correctly reconstructed for both RGB and L*a*b* space processed photographs
(Figure 16e,i).
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Table 2. Tail analysis for swan figure (σ = Q3 = 0.2).

Method σ [%] 2σ [%] 3σ [%]

original 81,949 23.40 16,829 4.81 4232 1.21

L*a*b*

AHE 92,521 25.29 12,898 3.52 4756 1.30
EHM 69,061 23.01 14,381 4.79 3695 1.23
HE 55,938 17.84 11,367 3.62 3165 1.01
HS 76,199 22.49 13,910 4.10 3846 1.13

RGB

AHE 78,988 23.39 15,156 4.49 4268 1.26
EHM 69,099 24.65 13,064 4.66 4015 1.43
HE 79,759 25.22 18,559 5.87 6565 2.08
HS 106,967 28.65 26,207 7.02 4564 1.22

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 16. Dense point clouds of the porcelain figure. Distances to the model up to 3σ = 0.6 cm: (a) original; preprocessed
in the RGB space with the use of: (b) histogram stretching, (c) histogram equalizing, (d) adaptive equalizing, (e) exact
histogram matching; preprocessed in the L*a*b* space with the use of: (f) histogram stretching, (g) histogram equalizing,
(h) adaptive equalizing, (i) exact histogram matching.
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As mentioned, both original and preprocessed reconstructions are quite similar. This
may suggest that in the case of easily accessible objects of small size, repeating the acqui-
sition of a series of photographs with more attention to lighting conditions and correct
camera settings would prove a better reconstruction improvement method than source
image processing. To verify this hypothesis, an additional analysis was performed with
photographs that met the proper acquisition conditions.

Upon visual comparison of the reconstruction (Figure 17), it can be seen that the point
cloud contained more detail than the others shown in Figure 15. Numerical data also
confirmed this. The cloud consisted of 521,404 points, which was an increase of 39.7%
relative to the reconstruction with the highest number of points (retrieved using the HS
method in RGB space) and 48.9% more than the reconstruction made from the original
images. However, the number of points in the cloud itself was not conclusive, as the points
may not have been reconstructed correctly. Nevertheless, the repeated reconstruction
gained some advantage here as well. Both quartiles and IQR values were 0.01 lower on
average than the best reconstructions obtained by the histogram improvement method.
The value of IQR, which is a measure of dispersion, was also 0.05 (21.7%) lower than the
value obtained for the reconstructions made from the originally acquired images. The tail
analysis also confirmed the desirability of re-taking the image sequence. The number of
points above σ equaled 17.15%, with 23.40% for the original reconstruction and 17.84%
for the best reconstruction obtained using the HE method in L*a*b* space. The number of
points above 3σ represented only 0.46% of the total number of points, which was a decrease
by 54.5% from the best reconstruction and 61.9% from the original one.

(a) (b)

Figure 17. Improved reconstruction of the porcelain figurine: (a) RGB dense cloud, (b) absolute
distance mapping.

3.2. Case Study 2—The Castle in Nowy Wiśnicz

The castle in Nowy Wiśnicz is an object several times larger than the presented
model of the figurine. The number of images used in its reconstruction process was
about ten times greater, and the number of points of the dense cloud about 100 times
greater (about 30 million points—Table 3). The whole set of selected images used for
photogrammetric reconstruction consisted of 338 photographs, and about 20% of them
were underexposed. The first look at the resulting models allowed us to notice that
the reconstruction made with the use of original photographs were incorrectly made
(Figure 18a). In fact, this error inspired the research towards improving the quality of
the reconstruction without repeating the photographic registration process. The defects
could also be seen with the use of the AHE method in RGB space. The deviations were
more clearly visible when analyzing images where the distance from the reference model
was marked with the corresponding color (Figure 19). Similar to the reconstruction of the
porcelain figurine, differences in contrast and color saturation of the textures were also
apparent here. For reconstructions created using images processed in RGB space, color
distortion was noticeable (Figure 18c–e). On the other hand, when using the AHE method
in L*a*b* space, considerable texture brightening was visible.
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Table 3. Number of points and statistical measures for the reconstruction of the castle in
Nowy Wisnicz.

Method Aligned Cams Points Q1 Median Q3 IQR

original 338 41,833,893 11.78 47.73 87.30 75.90

L*a*b*

AHE 338 30,328,057 0.05 0.10 0.17 0.19
EHM 338 31,144,627 0.04 0.10 0.19 0.20
HE 338 28,241,790 0.05 0.10 0.17 0.19
HS 338 29,980,758 0.04 0.10 0.16 0.18

RGB

AHE 338 30,774,070 0.06 0.16 0.46 0.31
EHM 338 30,223,244 0.05 0.10 0.17 0.19
HE 338 30,163,377 0.05 0.11 0.17 0.19
HS 338 31,055,419 0.05 0.11 0.19 0.20

avg: 0.21

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 18. Dense point clouds of the castle. Reconstructions based on photographs: (a) original; preprocessed in the RGB
space with the use of: (b) histogram stretching, (c) histogram equalizing, (d) adaptive equalizing, (e) exact histogram
matching; preprocessed in the L*a*b* space with the use of: (f) histogram stretching, (g) histogram equalizing, (h) adaptive
equalizing, (i) exact histogram matching.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 19. Dense point clouds of the castle. Distances to the model up to 3σ = 0.63 m: (a) original; preprocessed in the
RGB space with the use of: (b) histogram stretching, (c) histogram equalizing, (d) adaptive equalizing, (e) exact histogram
matching; preprocessed in the L*a*b* space with the use of: (f) histogram stretching, (g) histogram equalizing, (h) adaptive
equalizing, (i) exact histogram matching.

Analysis of the statistical values strongly highlighted the defect in the original recon-
struction. The value of Q1 reached 11.78 m and IQR, which is a measure of dispersion as
high as 75.90 m (Table 3). For reconstructions based on modified images, these values were
several orders of magnitude smaller. The value of the first quartile oscillated around 5 cm,
while the third quartile for almost all reconstructions was less than 20 cm. It was larger
only in the previously mentioned AHE method in RGB space and amounted to 46 cm. This
numerically confirmed the visually observed abnormality in this reconstruction. However,
it should be noted that the Q3 value was a small fraction (about 0.4%) of the castle dimen-
sions, which demonstrates the correctness of the reconstruction since 75% of the points lied
within this dimensional deviation from the reference model. It is interesting that each of
the 338 photographs, was aligned by the software. This indicates that the reconstruction
error occurs already at the keypoint extraction stage. This observation should be deeply
investigated in subsequent studies.
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The above conclusions are also confirmed by tail analysis (Table 4). The σ value
was assumed to be 0.21 cm in this case. Almost all (89.22%) points for the reconstruction
performed from unenhanced images were above this value. The lowest and therefore best
values were achieved for the HS and HE enhancement methods in L*a*b* space—14.58%
and 14.96%, respectively. Again, methods operating in L*a*b* space tended to perform
better—on average, 16.47% of points were above the σ value, compared to 23.32% for
the methods operating in RGB space. Of course, this was affected by the aforementioned
reconstruction incorrectness for the AHE method in RGB, for which the σ value was 39.47%.
The number of significant deviations from the reference model was the smallest for the
methods operating in L*a*b* space. A deviation of more than 63 cm (3σ) was observed
for less than 1% of the points for the three methods operating in this space. Among the
methods operating in RGB, only in two cases, a deviation above 3σ was noted for about 1%
of the points, while for the AHE method in this space, it was more than 23% of the points.

Table 4. Tail analysis (σ = Q3 = 0.21) for the reconstruction of the castle in Nowy Wisnicz.

Method σ [%] 2σ [%] 3σ [%]

original 37,325,857 89.22 36,496,517 87.24 36,157,816 86.43

L*a*b*

AHE 4,706,784 15.52 759,082 2.50 254,641 0.84
EHM 6,477,239 20.80 1,889,706 6.07 736,932 2.37
HE 4,225,890 14.96 661,988 2.34 159,952 0.57
HS 4,372,294 14.58 764,709 2.55 258,619 0.86

RGB

AHE 12,145,976 39.47 8,087,475 26,28 7,209,241 23.43
EHM 4,945,613 16.36 975,302 3.23 323,573 1.07
HE 4,659,034 15.45 799,797 2.65 261,054 0.87
HS 6,829,555 21.99 2,295,160 7.39 987,314 3.18

The fragments of the reconstruction with the largest deviation from the reference
model were marked in Figure 19 in red. The reconstruction defect for the original images is
clearly visible (Figure 19a) as is the one for the AHE method in RGB (Figure 19d), where
additional elements of the castle towers and walls, positioned at the wrong angle, are
visible. In all cases, the deviations occurred within the courtyard in front of the main
entrance to the castle. In two cases, RGB HS and L*a*b* EHM, they were slightly larger
(Figure 19b,i). An indication of this was also reflected in the statistics featured in Table 4.
It is also noteworthy that a significant amount of the points that diverged the most from
the reference model were associated with vegetation that was not present on the reference.
Removing this vegetation would require manual manipulation of the reconstruction, which
the authors wanted to avoid in order not to distort the results of the comparisons. Other
inaccuracies included roof edges that were difficult to reconstruct. The least amount of
such inaccuracies was found in the HS improvement in L*a*b* space (Figure 19f).

4. Discussion and Conclusions

The research presented in this paper was intended to verify the effectiveness of image
enhancement methods for photogrammetric reconstruction. It is an extension of earlier
studies performed on grayscale reduced images, which demonstrated that modifying the
histogram of individual images can significantly improve reconstruction quality. However,
monochromatic images do not fully represent the reconstructed object correctly due to
the lack of realistic color reproduction. For this reason, we explored the performance of
image modifications using histogram enhancement methods (HS, HE, AHE, EHM) in color
spaces (RGB and L*a*b*). As demonstrated, histogram modifications affected the final
shape of the reconstruction. The clearest example of this is the case study presented in
Section 3.2, regarding the castle in Nowy Wiśnicz. Although the reconstruction based
on the original photographs was incorrect, the other reconstructions, obtained using the
modified photographs, were already accurate, which should be considered a success of
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the presented method. This is evident both from the visual side (Figure 18) and from the
statistical analyses (Tables 3 and 4). Each of the reconstructions looked slightly different,
which also proves that modifications of the source photographs impacted the final result.

Two case studies were selected so as to present the method’s application on objects
of different sizes. For a small object, the influence on the quality of the reconstruction
was more visually noticeable. Statistically, the deviations of the reconstruction from the
reference model were rather small, and it is difficult to unambiguously indicate which of
the point clouds obtained represent better quality. However, this is influenced by the fact
that the reconstruction performed based on original images was roughly correct, i.e., it
reflected the object’s original shape. The reconstruction obtained from photographs taken
with attention to appropriate lighting conditions indicates that proper image acquisition is
advantageous over image preprocessing methods. However, registration cannot always
be repeated for various reasons, such as the temporary availability of the object to be
reconstructed. In such cases, improving the quality of the photographs using appropriate
methods can give the expected results.

Architectural objects, such as the castle in Nowy Wiśnicz presented in Section 2.3.2, are
significantly more challenging in terms of obtaining the correct exposure of the collected
material. It is impossible to choose the optimal lighting by oneself, as it is directly related
to the current weather conditions. Additionally, in the case of such an object, the number
of photos that must be taken is much greater, which results in longer recording and data
post-processing times. In most situations, it is not possible to verify the correctness of
registration at the place of acquisition, e.g., by performing preliminary reconstruction.
In such cases, it is reasonable to use image preprocessing, as demonstrated in this paper.

Based on the histogram correction methods analyzed, several conclusions can be
drawn. Visual analyses of the obtained reconstructions (Figures 15 and 18) indicated the
superiority of methods that operate in L*a*b* space. In the RGB space, all the color channels
are modified, which leads to color distortions in the textures. Similarly, from a statistical
point of view, methods that operate in the L*a*b* space are more efficient. It is possible
that this is related to the aforementioned falsification of the colors of the photographs,
but such a conclusion requires further research. Our experiments did not result in any
unequivocal recommendations regarding the superiority of specific histogram methods;
however promising results were obtained using histogram equalization and histogram
stretching in L*a*b* space. This is important since these methods are well-known and
considered basic, are mathematically simple and do not require significant computation
power. However, further research in this direction is required.
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Abbreviations
The following abbreviations are used in this manuscript:

HS histogram stretching
HE histogram equalizing
AHE adaptive histogram equalizing
EHM exact histogram matching
CLAHE contrast-limited adaptive histogram equalization
UAV Unmanned Aerial Vehicle
LiDAR Light Detection and Ranging
ISOK IT System of the Country Protection
RMS Root Mean Square
ICP Iterative Closest Point
IQR interquartile range
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