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Abstract This review gives a brief description on the

skin and its essential functions, damages or injury which

are common to the skin and the role of skin substitute to

replace the functions of the skin soon after an injury. Skin

substitutes have crucial role in the management of deep

dermal and full thickness wounds. At present, there is no

skin substitute in the market that can replace all the func-

tions of skin ‘and the research is still continuing for a better

alternative. This review is an attempt to recollect and report

the past efforts including skin grafting and recent trends

like use of bioengineered smart skin substitutes in wound

care. Incorporation functional moieties like antimicrobials

and wound healing agents are also described.

Keywords Skin substitutes � Skin grafts � Wound

healing � Angiogenesis � Smart biomaterials

Introduction

Skin is the largest organ of the body with many essential

functions that would help the survival. Since it is in direct

contact with the external environment which renders them

highly prone to damage and/or injury. The skin plays a

crucial role as a barrier against exogenous substances,

pathogens and mechanical stresses. Damages to this barrier

lead to loss of water and protein, and bacterial invasion to

the underlying tissue. Hence, a quick regeneration or repair

after an injury is necessary to avoid complications (Xiao

et al. 2002). Wide range of biomaterials has been used by

the medical practitioners to manage the chronic wounds

(Augustine et al. 2014c). The traditional forms of wound

dressings are non-resorbable gauze and/or sponge, which

are made of woven or non-woven cotton mesh, cellulose or

cellulose derivatives. The traditional approach sustained

for over 40–45 years, which was then replaced by the

advanced materials which comprise of thin films made of

polyurethane that are permeable to vapour and gases.

Examples of such film wound dressings include alginates,

polyurethane films and hydrogels (Augustine et al. 2013a).

Many attempts have been made by the researchers to

promote the regeneration of the skin. There are many

successful reports on the skin regeneration upon injury by

treating with allografts or autografts. For the past few

decades, polymeric biomaterials were developed which can

act as smart skin substitutes by performing many of the

functions of skin. Presently, nanotechnology is also taken

pleasure in advancing the skin substitute’s efficiency.

Nanocomposites of metals such as silver and zinc that are

proved to have antimicrobial activity are now incorporated

with skin substitutes. Research in this field has brought in

the use of biosynthetic materials and tissue-engineered

living skin replacements which are now being widely
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termed as ‘Skin substitutes’. In the time ahead, it is

expected that the researchers would find a better substitute

that would render the patient a scar-free skin.

Skin: structure and function

Skin is the largest external defence system which protects

the body from pathogenic invasion. Besides the defence

mechanism it is also takes part in other important func-

tions. It serves as a mechanical barrier between the inner

part of the body and the external world (Sherwood et al.

2004). The skin of an average adult body covers a surface

area of approximately 2 m2 and weighs more than 10 % of

the total body mass (Moore and Chien 1988). The skin

separates the vital organs from the external environment

and acts as a barrier against desiccation and various

external influences. It plays a crucial role in the regulation

of the body temperature and serves as a sensory organ

transmitting external environmental information, such as

pain and heat (Williams and Barry 1991; Barry 1983).

Microscopically, the skin is a multilayered organ com-

posed of many histological layers. It is generally subdi-

vided into three layers: the epidermis, the dermis and the

hypodermis. The uppermost nonviable layer of the epi-

dermis, the stratum corneum, has been demonstrated to

constitute the principal barrier to percutaneous penetration

(Blank 1969; Scheuplein and Blank 1971). The excellent

barrier properties of the stratum corneum can be ascribed to

its unique structure and composition. The viable epidermis

that lies beneath is responsible for the generation of the

stratum corneum. Dermis sits exactly adjacent to the epi-

dermis and is composed of a matrix of connective tissue,

which renders the skin its elasticity and resistance to

deformation. The blood vessels that are present in the

dermis provide the skin with nutrients and oxygen

(Schaefer et al. 1996). The hypodermis or subcutaneous fat

tissue supports the dermis and epidermis and provides

thermal isolation and mechanical protection to the body.

Wound and wound care

A wound is defined as a defect or break in the skin, formed

due to physicochemical or thermal damage or as a result of

a pathological condition. Based on the nature and repair

process of wounds, they can be classified as chronic

wounds or acute wounds (Boateng et al. 2008). Acute

wounds are tissue injuries that heal within 8–12 weeks.

The primary causes of acute wounds are mechanical inju-

ries (friction contact between skin and hard surfaces), burns

and chemical injuries. Chronic wounds heal slowly and

leave serious scars. There can be different reasons that

chronic wound does not heal as fast as acute wounds. The

most common reasons are diabetes, infections and poor

primary treatment (Boateng et al. 2008).

A wound is healthy when growth and death of microbes

in the wound is balanced by the host. If the host is unable to

keep the microbial growth in balance, the wound will face

infection. Symptoms for an infected wound are pain,

oedema, erythema, warmth and exudate. Usually wound

infections are polybacterial in origin with presence of

Staphylococcus aureus and anaerobes (Clostridium spp.,

Enterobacteriaceae, Bacteroides fragilis group and

Enterococcus spp) being the most common (Fonder et al.

2008).

Wound care has evolved much in the past century from

magical spells, incantations and potions to the use of

sophisticated wound dressings, haemostats, hyperbaric

oxygen chambers and the recent regenerative dermal sub-

stitutes. The Ebers Papyrus, circa 1500 BC, describes the

use of animal grease, lint and honey as topical treatments

for wounds. Despite the emergence of new therapies and

the evolution of wound management, there is still a

pressing need for more enhanced and efficient wound

treatments. Recently, several therapies involving the

administration of growth factors and stem cells to wound

sites are being investigated to accelerate the wound healing

process (Nie et al. 2011).

Skin substitutes

The field of skin substitutes has been accomplished with a

great deal of interest in an effort to develop the next gen-

eration of newer and better skin replacements. These

dressings are made with varied combinations of synthetic

and/or biologic substances. Skin substitutes are heteroge-

neous group of wound coverage materials that aid in

wound closure and replace the functions of the skin, either

temporarily or permanently, depending on the product

characteristics. These substances serve as alternatives to

the standard wound coverage in circumstances when

standard therapies are not desirable (Shores et al. 2007).

Skin substitutes are used to aid in wound closure, alleviate

pain and replace the function of the skin. Skin substitutes

have important roles in the treatment of deep dermal and

full thickness wounds of various aetiologies (Halim et al.

2010). Treating wounds with ‘‘skin substitutes’’ dates back

to 1880 when Joseph Gamgee described an absorbent

dressing made of cotton wool sandwiched between layers

of gauze (Ho 2002). A comprehensive list of skin substi-

tutes which are currently available in the market is given in

Table 1.

Skin substitutes can be from humans (allografts) or

animals (xenografts), or using membranes developed from

104 Prog Biomater (2014) 3:103–113

123



natural or synthetic polymers. To date, there is no ideal

skin substitute available that fulfils all the above ideal

properties. Nowadays, tissue engineering and bioengi-

neering are gearing towards the direction of creating an

optimal skin substitute.

Skin substitutes: the past and the present

The most conventional treatment that exploits the concept

of skin substitution is skin grafting (Boucard et al. 2007).

Skin grafting was practiced even at the time of Koomas, a

caste recognized for pottery and tile making in India. They

were now recognized as the pioneers of the skin grafting

technology. The ancient Indian way was simply as

pounding the skin slices obtained from a donor using a

wooden slipper until it is swollen and inflamed. Research in

this field has brought in the use of biosynthetic materials

and tissue-engineered living skin replacements which are

now being widely termed as ‘Skin substitutes’.

Three types of skin substitutes are usually referred:

those consisting only epidermal equivalents, those

encompassing dermal components from processed skin and

those possessing distinct dermal and epidermal compo-

nents, referred to as composite skins. Synthetic and natural

origin polymers are now instrumental in the new strategies

for the development of engineered tissue (Lanza et al.

2011). Recently, there is a huge influx of polymeric classes

to be applied in biomedical field. Many are devised to stay

in contact with the cells and or tissues for a long period.

Biodegradable polymers are yet another class of polymers

which are of great value in the biomedical application since

Table 1 List of currently

available skin substitutes in the

market

Substitute

type

Commercial

forms

Description Uses

Autografts Epicel� Cultured epidermal autograft Severe deep dermal, full thickness

burns

MySkinTM Cultured epidermal autograft For burns, ulcers and other non-

healing wounds

Cultured skin

substitutes

Cultured composite autograft For large burns and other congenital

skin disorders

Bioseed�-S Autologus keratinocyte fibrin

glue suspension

Treatment of chronic leg ulcers

CellSpray� Cultured epithelilal autograft

suspension

To treat superficial burns

Stratagraft� Cultured composite autograft Burns and severe skin wounds

Recell� Autologus cell therapy device To treat burns, scalds, traumatic

wounds, scars

Allografts LyphodermTM Lysate of cultured human

keratinocyte

For chronic leg ulcers

ICX-SKN Cultured dermal allograft To cover surgically excised partial

thickness burns

Alloderm� Cadaver skin with acellular

dermal matrix and intact

basement membrane

For ENT/head and neck plastic

reconstruction

Acellular

allograft

OASIS� Processed dermal xenograft For partial and full thickness wounds

and trauma wounds

Xenografts

and

biosynthetic

grafts

PermacolTM Processed dermal xenograft For temporary coverage of partial

thickness burns

Matriderm� Bovine dermal collagen and

elastin

For burns and reconstruction

Biobrane� Porcine dermal collagen bonded

to semipermeable silicone

membrane

To cover partial thickness burns and

skin graft donor sites

Integra� Two layered skin substitute

comprsisng bovine collagen

and an outer silicone layer

For surgically excised deep and full

thickness burns

EZ DermTM Porcine derived xenograft with

collagen crosslinked to an

aldehyde

For partial thickness wounds, donor

sites, and sandwich autografts and

full thickness wounds
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they degrade when the functional and original tissue

regenerates during healing. In the biomaterial market, the

most recent advance is the availability of polymeric sub-

stitutes that are incorporated with drug and antimicrobial

agents to enhance the healing or regeneration processes.

Sometimes, growth factors and other extracellular matrix

components are being immobilized in biopolymers, which

serve as an active drug delivery system.

Temporary skin substitutes

Temporary skin substitutes provide immediate physiolog-

ical conditions for the wound closure, including protection

from mechanical trauma, physical barrier to bacteria and

creation of a moist wound environment (Sheridan and

Moreno 2001).

Permanent skin substitutes

Permanent skin substitutes are used to permanently achieve

wound closure, replace the skin components and provide a

higher quality skin replacement than the thin autologous

skin graft.

Biological skin substitutes

Biological skin substitutes act temporarily like a natural

skin with the advantages of being relatively abundant in

supply. These are not very expensive. The biological skin

substitutes have a more intact and native extracellular

matrix (ECM) structure which may allow the construction

of a more natural new dermis. They also show excellent re-

epithelialisation characteristics due to the presence of a

basement membrane (Halim et al. 2010). The most widely

used biological substitute worldwide is cadaveric skin

allograft, porcine skin xenograft, amnion and cultured

epithelial autografts (CEA).

Xenograft

Xenografts from various animals have been tested and tried

over the centuries. Porcine skin allograft is the widely used

xenograft in modern practice of burn wound care. Prior to

the grafting, pig skin has been specially treated and con-

tains only the dermis layer. A pictorial representation of the

fabrication process of porcine skin xenograft is given in

Fig. 1. Xenografts are mainly used for the coverage of

partial thickness burns. The disadvantages include its risks

of rejection and infection (Halim et al. 2010).

Allografts

The cadaveric skin allograft is the most commonly used

skin substitutes in burn wound management (Halim et al.

2010). Depending on the methods of processing and stor-

age, there are two main types of cadaveric skin allografts,

cryopreserved allograft and glycerol-preserved allograft

(GPA). The GPA is more popular and commonly used in

clinical practice (Khoo et al. 2010). A pictorial represen-

tation of the fabrication process of cadaveric skin allograft

is given in Fig. 2.

Fig. 1 Steps in the production of porcine xenografts. Healthy pigs

were selected from farm and kept under observation for several weeks

(a), isolated skin after the sacrifice of healthy pigs (b), surface

morphology of the skin graft harvested from pig (c), implanted pig

xenograft in human leg burn wound (d)

Fig. 2 Steps in the production of allograft. Excision of skin from

cadaver (a), meshing of isolated cadaveric skin (b), surface

morphology of the skin graft after meshing (c), implanted autograft

in human leg burn wound (d)
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Amnion

The amnion is a thin semi-transparent tissue found in the

innermost layer of the foetal membrane. It has been used as

biological dressings for burns since 1910. Because it is

made from human placenta, amnion is one of the most

effective substitutes to be used in healing or covering

partial thickness burn wounds. Efficiency of amniotic

membrane to protect wound bed as well as to reduce

bacterial load in contaminated wounds is comparable with

that of human skin allografts. In converse, its poor

mechanical stability makes it more difficult to handle

(Quinby et al. 1982).

Amnion is used to overlay the meshed autograft in

addition to the application of petrolatum gauze (Fig. 3).

The amnion provided good protection to the underlying

meshed autograft. The non-antigenic nature, adherent

quality and cost effectiveness makes amnion a promising

biological dressing for meshed autografts (Lin et al. 1985).

Two varieties of amniotic membrane are mainly used as

skin grafts. They are in Toto which is composed of amnion

and chorion applied on deep burns, and amnion alone

which composed of epithelium and basal membrane on

superficial burns (Fisher 1973).

Cultured epithelial autografts (CEA)

Cultured epithelial autografts (CEA) are grown from

patient’s own skin. Keratinocytes can be grown in culture

to produce thin epithelial sheet grafts (Liu et al. 2010). The

autologous keratinocytes are isolated, cultured and expan-

ded into sheets over periods of 3–5 weeks. The use of

suspension keratinocytes in fibrin glue has reduced the time

for clinical use to 2 weeks (Wood et al. 2006). These grafts

can act as a permanent skin replacement for patients who

have deep dermal or full thickness burns. Example: Epi-

cel� marketed by Genzyme Corporation.

Synthetic skin substitutes

Synthetic skin substitutes are fabricated from synthesized

materials that are made on demand with specific

characteristics required in each case. They are constructed

from non-biological molecules and polymers that are not

present in human skin (van der Veen et al. 2010). These

constructs should be safe, stable, biodegradable and pro-

vide an adequate environment for the regeneration of tis-

sue. Biodegradation should preferably take place after this

period. An earlier product in this category is BiobraneTM

(Smith & Nephew, Largo, Fla), which is still used

throughout the burn community often as a temporary cover

for burn and perhaps equally as often as skin donor site

coverage. It is composed of two layers of silicone and a

nylon mesh to which collagen is bonded. Dermagraft�

(Advanced BioHealing, Westport, Conn) is a synthetic

product that can be used as temporary skin substitutes.

Dermagraft� uses either polygalactic or polyglycolic acid

meshes combined with neonatal fibroblast to enhance

wound healing. Other synthetic skin substitutes available in

the market are Integra�, Apligraft�, Matriderm�, Orcel�,

Hyalomatrix� and Renoskin�.

Biobased materials such as chitosan, collagen, pullulan,

gelatin, alginate pectin, etc. are also in the stage of in vitro

or preclinical trials to use as skin substitutes (Babu et al.

2013; Mobed-Miremadi et al. 2013).

Electrospun membranes as skin substitutes

Electrospinning is an excellent method for the fabrication

of fibres with diameters from micrometre to nanometre

scale (Li et al. 2013). Electrospinning technology, which

can easily mass-produce thin nanofibrous membranes with

good conformability, could offer a solution to the manu-

facture of skin substitutes. Electrospun nanofibers resemble

the native topographical features of the natural extracel-

lular matrix and may thus promote the cell’s natural

functions in a biomimetic fashion. Electrospun membranes

are widely used for biomedical applications like wound

dressings and tissue engineering scaffolds (Augustine et al.

2014d, f). Electrospun nanofibers have various properties

that make them suitable as skin substitute materials such as

high oxygen permeability, variable pore size, a high sur-

face area to volume ratio and morphological similarity to

the extracellular matrix (EM) (Smith et al. 2004; Zahedi

et al. 2010; Zhou et al. 2007). Various natural and synthetic

polymer/polymer blends or composites have been electro-

spun into nanofibers to generate potential wound dressing

materials. The ability to incorporate a variety of bioactive

molecules (such as antimicrobials and wound healing

agents) into the nanofibers can enhance the rate of wound

healing.

Previous works demonstrated that electrospun mem-

branes exhibited good capability of supporting fibroblast

and/or keratinocytes attachment and proliferation with

Fig. 3 Fresh amnion collected from healthy human donor (a),

application of cleaned amnion over split autografts (b)
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characteristic phenotypic shape and were guided to grow

according to the nanofiber orientation (Fang et al. 2011). A

schematic representation of the ability of electrospun

membranes to act as barrier to invading bacteria and sup-

porting fibroblast migration is shown in Fig. 4. An open

wound is highly prone to bacterial colonization. Electro-

spun membranes will act as a physical barrier to the

invading microbes and prevent the infection. We have

evaluated the microbial barrier property of electrospun

membranes with various pore spaces and demonstrated that

these materials possessing high microbial barrier property

depend on the pore spacing (Augustine et al. 2014e).

Further, the fibres will support the cell migration towards

the centre of the wound from the periphery. All these

together contribute to the fast wound healing while using

electrospun membranes as skin substitutes.

Electrospun membranes of PCL and collagen core-

sheath nanofibrous membranes have shown good biocom-

patibility on fibroblasts (Zhang et al. 2005a, b; Zhao et al.

2007). Membranes of polymer blends were also showed

good cell attachment and proliferation. Strategies like

improving hydrophilicity by blending of hydrophilic

polymers like polyethylene glycol (PEG) with hydrophobic

polylactic acid (PLLA) nanofibers were also tried (Bhat-

tarai et al. 2006). The presence of hydrophilic nanofibers

(chitosan/PVA) in PLGA increased the absorption of cul-

ture medium during cell culture and thus promoted

fibroblast attachment, proliferation, migration and infiltra-

tion in the fibre matrix (Duan et al. 2006). A previous

report suggests that the proliferation of epidermal skin cells

was enhanced when aligned PLLA nanofibers were used

(Kurpinski et al. 2010). The relationship between fibre

density and skin tissue regeneration has been investigated

on electrospun gelatin skin substitutes. Cell migration was

limited to the upper regions of the skin substitute if the

inter-fibre distance was \5.5 lm, and the distances

between 5 and 10 lm have favoured the proliferation of the

cells deep into the scaffold (Powell and Boyce 2008).

Several electrospun nanofibrous membranes have been

tested in epidermal tissue engineering, including those

fabricated from pure natural materials or natural materials

combined with synthetic polymers (Powell and Boyce

2009; Kempf et al. 2011; Franco et al. 2011). An ideal

dressing should maintain a moist environment at the wound

interface, allow gaseous exchange, act as a barrier to

microorganisms and remove excess exudates. It should also

be non-toxic, non-allergenic, non-adherent and easily

removed without trauma; it should be made from a readily

available biomaterial that requires minimal processing,

possesses antimicrobial properties and promotes wound

healing.

Hybrid materials, which combine the merits of the nat-

ural and synthetic polymeric components, have shown

great advantages. One example of such hybrid scaffold is

Fig. 4 Schematic

representation of the role of

electrospun membranes as skin

substitutes. In an open wound,

bacteria will colonize and retard

wound healing (a), while

applying electrospun

membranes on the wound,

bacterial entry is prevented and

cells guided towards the centre

of the wound (b) and finally the

wound is healed without

complications and much

inflammatory response (c)
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the gelatin and polycaprolactone (GT/PCL) electrospun

membrane used for epidermal reconstruction (Duan et al.

2013). Dai et al. (2004) fabricated PCL/collagen compos-

ites for tissue-engineered skin substitutes and demonstrated

good cell attachment and proliferation of fibroblasts and

keratinocytes.

Electrospun cellulose acetate/gelatin membranes of

various compositions were fabricated and their perfor-

mance as a skin substitute was evaluated by Vatankhah

et al. (2014). They reported that by changing the ratio of

cellulose acetate and gelatin, the material can be used as

tissue-engineered skin substitute with high cell adhesion

properties or potential low-adherent wound dressing. Lin

et al. (2013) fabricated electrospun collagen and its blends,

collagen/polyvinyl alcohol (PVA) and collagen/chitosan/

PVA, for skin substitute applications. They found that,

compared to the skin substitute made of pure collagen, the

substitutes with PVA and chitosan showed improved

structural stability in aqueous solution, better tensile

strength and similar or better biocompatibility in vitro.

Advantages of electrospun membranes as skin

substitutes

The wound dressing materials produced by electrospinning

technology have special properties as compared to the

dressings produced by conventional methods (Zhang et al.

2005a, b). Using electrospun nanofibers as skin substitutes

has many advantages such as

Haemostasis

Electrospun membranes with small pores and high effec-

tive surface area are believed to promote haemostasis

without the usage of other haemostatic agents (Wnek et al.

2003; Zhang et al. 2005a, b).

Exudate uptake capacity

Because of the high surface area to volume ratio of elec-

trospun fibres, they have higher exudate uptake capacity

compared to a typical film dressing therefore they absorb

wound fluids more efficiently. It has been reported that the

water absorption can be between 17.9 and 213 % where a

standard film only absorbs 2.3 % water. Good absorptive

properties of a skin substitute will help to maintain a moist

environment in the wound bed (Zhang et al. 2005a, b;

Williams 2007).

Semi-permeability

The porous structure of electrospun fibermats will provide

good respiration for the cells and does not lead to wound

dehydration. This will give some control of the moist

environment. At the same time, the pores are so small that

the fibres will protect the wound from bacterial invasion

(Huang et al. 2003; Zhang et al. 2005a, b).

Conformability

Conformability of a wound coverage material to the wound

is an important issue to be considered while designing

materials intended for such applications (Queen et al.

1987). Fine fibre fabrics are easier to fit to a complicated

wound with irregular architecture compared with thicker

fibres, therefore electrospun fibermats will provide excel-

lent conformability.

Functionability

A most desirable property of the electrospun fibermats is

that they can be made bioactive by incorporating other

bioactive agents. In order to minimise the infection in

chronic wounds, it is important to control bioburden in a

state that is not problematic to the host by delivering

antimicrobial agents to the wound. A number of active

agents such as drugs or other active components can be

delivered to the wound from electrospun membranes in a

controlled manner, which could improve the wound heal-

ing (Liang et al. 2007; Zhang et al. 2005a, b).

Bioengineered smart skin substitutes

Smart materials are materials that have one or more

properties that can be significantly changed in a controlled

manner by external stimuli, such as temperature, pH, stress,

moisture, electric or magnetic fields. By layman’s view, a

smart biomaterial is just like a smart boy or girl who is able

to manage the things very well in accordance with the

circumstances. Thus, it should be able to behave in

accordance with the circumstances and manage the critical

situations without the effort of an external agent (Augus-

tine et al. 2014c). Similarly, a smart skin substitutes should

be able to manage the following strategies apart from the

essential properties like biocompatibility, barrier proper-

ties, thermal resistance, mechanical stability, etc.

• Able to absorb excess exudate whenever it is formed on

the wound bed

• Able to give optimum aeration and moisture to promote

healing

• Able to deliver wound healing agents in a controlled

manner

• Able to deliver antimicrobial agent at the time of

infection
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The first attempt in this direction is the use of synthetic

degradable gels as a way to deliver cells and/or molecules

in situ, the so-called smart matrix technology (Metcalfe and

Ferguson 2007). The smart bioengineering concept relies on

the ability of cells to sense and to adapt to their environment,

and to behave in accordance with the status of the wound.

Such smart skin substitutes may use different and multiple

mechanisms of action for acute and chronic wounds. The

success of a bioengineered skin depends on the ability of

the material to stimulate the endogenous healing process

(Falanga et al. 2002). Incorporation of active agents that can

stimulate cell migration and proliferation is a novel approach

in bioengineered skin substitutes. Vincent et al. reported that

the release of cytokines and growth factors from the cells

seeded in the bioengineered skin can accelerate the migration

and proliferation of cells from the wound edge (Falanga et al.

2002). Bioengineered skin substitutes are manufactured by

starting with a few human cells in which tissue engineers

simulate the environments that allow cells to develop into

viable tissue.

Polymer nanocomposite skin substitutes

with antimicrobial and wound healing properties

Application of nanoscience and nanotechnology in

healthcare is rapidly evolving with the exploitation of wide

range of nanomaterial with clinical relevance. Nanomate-

rials are materials of which a single unit is sized (in at least

one dimension) between 1 and 100 nanometres (Weir et al.

2008). Nanoparticles are used in biomedical applications

such as therapeutics (Kreuter and Gelperina 2008), anti-

microbial agents (Raghupathi et al. 2011), transfection

vectors (Tan et al. 2007) and fluorescent labels (Su

et al. 2008). The nanodimension of these materials results

in specific physiochemical properties that make them

extremely different from their micro- or macro-scale

counterparts.

Emergence of drug resistant microorganisms towards

the potent antibiotics has made a lot of effort towards

investigating bactericidal properties of nanoparticles

(Singh et al. 2012). Most importantly, the nanoparticles

tackle multiple biological pathways found in a broad

spectrum of microorganisms which may require many

concurrent mutations to achieve resistance against the

nanoparticle’s antimicrobial activity. Extensive studies

have demonstrated that the size and shape of nanoparticles

have direct relationship with their antimicrobial activity

(Pal et al. 2007).

Silver-containing products are most abundant in the

market due to the broad spectrum antimicrobial activity of

silver along with low toxicity towards mammalian cell

(Jones et al. 2004; Augustine et al. 2012). Recently, bio-

logical synthesis of silver nanoparticles with more bio-

compatibility was successfully demonstrated by many

researchers with the similar efficiency as chemical methods

(Augustine et al. 2013b). Silver has been used for the

treatment of microbial infections of wound since past few

decades in the form metallic silver, silver nitrate and silver

sulfadiazine (Dibrov et al. 2002). Zinc oxide stands next in

line for their advantage silver nanoparticles such as low

production cost, white appearance and UV blocking prop-

erties (Dastjerdi and Montazer 2010). The nano-zinc oxide

multilayer deposited on cotton fabrics showed excellent

antibacterial activity against S. aureus (Zhang et al. 2013).

We have reported the fabrication of electrospun polycap-

rolactone (PCL) scaffolds incorporated with ZnO nano-

particles with antimicrobial and enhanced fibroblast

proliferation (Augustine et al. 2014a). We also demon-

strated that the ZnO nanoparticle incorporated PCL-based

skin substitutes can enhance wound healing by promoting

cell adhesion, migration and proliferation (Augustine et al.

2014b).

Revascularization through skin substitutes

Rapid vascularization is essential to ensure the success of

skin substitutes. Current temporary wound dressings are

not designed to promote angiogenesis and granulation.

Limited knowledge in the physiological processes under-

lying vascularization of graft preventing the successful

development of skin substitutes with angiogenic properties

(Lindenblatt et al. 2010). Incorporation of endothelial cells

(EC) has recently demonstrated to improve vascularization

of skin substitutes which has been proven by preclinical

and clinical success (Black et al. 1998; Kearney 2001;

Supp et al. 2002; Marston 2004; Drosou et al. 2005;

Greenberg et al. 2005). Seeding of the underside of the

decellularized dermal skin substitutes containing human

neonatal foreskin keratinocytes with human umbilical vein

endothelial cells (HUVEC) prior to the transplantation

produced a successful outcome (Schechner et al. 2003).

Genetic manipulation of seeded HUVEC to constitutively

express the antiapoptotic protein Bcl-2 enhanced the vas-

cularization potential in the scaffold (Schechner et al.

2000; Enis et al. 2005).

Our pioneering work demonstrated that incorporation

of ZnO nanoparticles can enhance angiogenesis in elec-

trospun polycaprolactone membranes (Augustine et al.

2014d, f). Reactive oxygen species (ROS) generated by

ZnO nanoparticles were able to induce angiogenesis by the

upregulation of both vascular endothelial growth factor

(VEGF) and fibroblast growth factor (FGF).
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Conclusion

The history of wound care spans from prehistory to modern

medicine. As the technology evolved, methodology and

materials used in the care of both acute and chronic wounds

have attained a new pace and direction. Much success was

brought out with the introduction of skin grafts where xe-

nografts, allografts and autografts played their role skillfully

in treating wounds and traumas. Amnion is also used as a skin

graft to cover full thickness burn wounds as well as to overlay

meshed autografts. Cultured epithelial autografts and tissue-

engineered grafts were also developed as a part of the

growing interest in the field of skin regeneration upon

healing. Synthetic skin grafts made from biodegradable

polymers have increased the precise controllability of the

structure and function of the skin substitute. They provided

reduced healing time with ease of drug delivery. Use of

electrospun polymeric membranes as skin substitutes is the

recent trend; however, most of such attempts are at the stage

of in vivo or preclinical trials. Polymer nanocomposites of

metals such as silver and zinc were furnished with an aim to

provide antimicrobial aid against the potential infection

during the healing period. Incorporation of ZnO nanoparti-

cles in the skin substitutes had demonstrated to improve the

wound healing and angiogenic property of the skin substi-

tutes. It is anticipated that, in future, the advancements in

skin substitutes will be aimed to bring a massive change in

the nature of classic wound care. The future of the skin

substitutes relies on the success of the present researches

which are focusing on the fabrication of cell-free smart

polymeric matrices which can attract the cells towards the

periphery of wound bed while acting as a physical barrier to

invading microbes, delivering antimicrobials, managing

wound exudates, enhancing angiogenesis and eliminating

scar formation. Such bioengineered smart materials may

utilize nanomaterials that can stimulate cell division, cell

migration and wound healing by acting at genomic or pro-

teomic level to regulate the expression of important bio-

molecules involved in these events.
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