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Abstract: Ionic substituted calcium phosphate coatings (iCP) have been prepared by the electrochemical
pulse current deposition technique with an alternate pulse on and off time of 5 ms onto a titanium alloy
substrate. The elemental distribution and morphology of the deposited layers have been extensively
studied by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and transmission
electron microscopy (TEM). The crystallinity and phase structure of iCPs have been investigated by
X-ray diffraction (XRD). The corrosion characteristics and biodegradability of coatings have been
determined by electrochemical measurements, recording potentiodynamic curves in a physiological
solution over a long-term immersion period. The cell viability tests confirmed that the iCP coating
was biocompatible, while the corrosion tests proved its biodegradable characteristic. In our paper,
we compare the morphological, chemical, and biological characteristics of silver and zinc substituted
calcium phosphate layers deposited by the electrochemical method.
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1. Introduction

In orthopaedic surgeries, the medical implant materials are key issues. In past decades, intensive
research have been conducted to improve the implants’ surface that are in contact with human
tissues [1]. The development of an appropriate implant design is to try to promote bone cell growth
especially at the early stage of implantation. The surface of implant is the first that interacts with the
human tissue; therefore, modifications of the surface are necessary to increase the biocompatible and
osteoconductive characteristics of different medical materials [2,3].

Other crucial problems that might occur after implantation are the implant-related bacterial
infections because they are difficult to treat [4]. As a consequence, implant removal, constructive
surgeries, and long-term antibiotic treatment are needed without considering any adverse side
effects [5–9]. In order to resolve these problems, metals and elements which possess an antimicrobial
property, as well as the ability to promote new bone formation can be incorporated into the calcium
phosphate phases. These elemental substitutions might modify the crystal structure and induce some
changes in the characteristics of materials, such as phase stability, reactivity, surface characteristics,
and they might change the bioactivity and biocompatibility [10].

Abundant numbers of the reports can be found in the scientific literature dealing with the
preparation of calcium phosphate and ionic doped CP coatings onto metallic implant surfaces. We can
distinguish physical methods (pulsed laser deposition, chemical vapour deposition, physical vapour
deposition, plasma spraying) and chemical methods (sol–gel technique, hydrothermal, chemical
precipitation, electrodeposition). At present, the most extensively used method to prepare layers
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is the plasma spraying [11–13]. This method can provide well adherent, homogeneous, and
crystalline coatings which are efficient and steady. However, this technique requires expensive
equipment, maintenance, high temperature, and it is so called the line-of-sight technique. On the
contrary, electrochemical deposition is a versatile technique that has been used widely in biomedical
applications [14–16]. Using the electrochemical process to prepare coatings is more cost effective
compared to the above mentioned physical deposition methods and the processing temperature is
significantly lower. The properties of the layers can be easily adjusted, a relatively homogenous layer
can be achieved on complex-shaped, three-dimensional materials (non-line-of-sight technique) and a
high purity of deposits with an optimum particle size can be obtained [17–19]. The electrochemical
deposition can be performed by the direct and pulse current. Applying the pulse current over the
direct current also enables the improvement of properties and structures of coatings by adjusting
the appropriate deposition parameters [20,21]. The short current pulses prefer nuclei generation to
growth, thus coatings with a smaller grain size can be deposited which can change the corrosion
properties of samples [22]. The coatings’ morphology, and, as a consequence, their chemical and
biological properties can be also altered by co-deposition of calcium phosphates with other metallic
ions or ceramics [23–25]. The incorporation of different elements into CP coatings can be performed by
electrochemical co-deposition from electrolytes containing the substituting elements in appropriate
concentrations [26,27]. Several studies have discussed the advantage of Zn substitution for Ca
in hydroxyapatite [28,29]. A trace amount of Zn, around 0.012–0.250 wt% in the human bone,
can stimulate new bone formation and also inhibits osteoclastic bone resorption [30,31]. Another
recent review discusses that the zinc content is beneficial for osteoclastogenesis [32]. The higher Zn
content of coating exhibits an antimicrobial property and hence prevents and minimizes the bacterial
adherence [33,34]. On the other hand, Zn deficiency might cause prolonged bone healing and even
osteoporosis [35]. Sutha et al. [36] prepared Zn incorporated hydroxyapatite (HAp) coatings on
a stainless steel substrate via the spin coating method and studied their antimicrobial properties.
Enhanced antimicrobial characteristic of Zn-HAp coating was revealed with a Zn concentration of
over 6 mol%. Silver ions are also broad-spectrum antibiotics. The preparation and application of silver
substituted calcium phosphate coatings are exceptionally widespread and investigated with regard to
its antibacterial properties [37–43]. However, a proper silver concentration has to be chosen to adjust
the biocompatibility and antibacterial characteristics. Lu et al. [41] carried out biocompatibility tests
by the Alamar Blue assay on osteoblast cells grown on different samples. They have found that pure
HAp layers possessed the highest proliferation rate, followed by 0.5 and 1 HAp/Ag after 3 days of
cell culture. Kumar et al. [44] recently developed electroactive mesoporous silver-doped bio-ceramics
(MBCs) for medical use. These ceramics were synthetized via the sol-gel method. The conductive
MBCs with a silver-content had better antibacterial effect and also improved the cell proliferation rate.
The cell viability studies have also proven that there was no noticeable cytotoxic response for 2, 5, 7.5,
and 10 mol% Ag-containing MBCs. While Lenis et al. [45] prepared a multi-layered, antibacterial silver
containing calcium phosphate coatings onto Ti6Al4V alloy with radio frequency magnetron sputtering,
in which the silver content was 4.2 at%. They found that the bacterial growth inhibition at low silver
concentration on P. aeruginosa and S. aureus strains was efficient. In addition, the biocompatibility tests
showed that there was no toxic effect of the silver-CaP samples on Saos-2 osteoblast cells.

Although ionic substituted calcium phosphate coatings have been widely studied so far, the effects
of these substitutions on the morphology of CP crystals and the elemental distribution of these elements
within the coatings have not yet been fully investigated. Moreover, the number of reports on the
co-deposition of calcium ion with different bioactive ions by the pulse current is still limited. The time
of current impulses applied in our work is in the millisecond range which is followed by a relaxation
time. Our study is also important to confirm that the ionic substitution influences the biodegradable
properties of layers in physiological solutions.

In this paper, we aim to present and compare the morphology characteristics of ionic substituted
CP coatings that were co-deposited onto commercially available titanium alloy (Ti6Al4V) by the pulse



Materials 2020, 13, 4690 3 of 15

current in a millisecond range. The biodegradability of these coatings is investigated through corrosion
measurements, while their cytotoxicity has been tested by cell viability tests.

2. Materials and Methods

2.1. Sample Preparation by Pulse Current Deposition

In the electrodeposition process, the base electrolyte was 0.49 M Ca(NO3)2·4H2O, 0.29 M NH4H2PO4,
and 10 mL/L H2O2 (30%) (VWR International Ltd. Reag. Ph. Eur.). For the electrodeposition of ionic
substituted calcium phosphate layers, 10−3 M AgNO3 and 10−2 M ZnNO3 (VWR International Ltd.
AnalaR Normapur) chemicals were also added to the base electrolyte. The pH of the electrolyte varied
between 4.0 and 4.5. The deposition process was done in a two-electrode cell at 70 ◦C, for 10 min using the
IGTV-4i/6t type pulse current generator (BUTE, Budapest, Hungary). The anode was a platinum sheet and
the cathode was the metallic implant disc (titanium alloy, Ti6Al4V discs with 19 mm in diameter, and 1 mm
in thickness, Protetim LtD., Hódmezővásárhely, Hungary). The deposition parameters: ton: 5 ms, toff: 5 ms,
and current density: 400 mAcm−2.

2.2. Morphological and Structural Characterization

The morphological characteristics of the layers have been studied by SEM–EDX (Hitachi SU8230,
Jeol 8230, Hitachi Group, Tokyo, Japan) and TEM (FEI Tecnai TF2, Thermo Fisher Scientific, Hillsboro,
OR, USA).

The crystal structures of the samples have been investigated by X-ray diffraction. XRD diffractograms
have been recorded at room temperature by Bruker AXSD8 Discover diffractometer (Cu Kα radiation
source) equipped with Göbel mirror and GADDS 2D detector system (Bruker, Wien, Austria). The operation
parameters of equipment were 40 kV and 40 mA. The diffraction patterns have been collected over a 2θ
range from 10◦ to 80◦ with an 1◦/min step by flat plane geometry. The Diffrac.Eva V5.2 software was used
to evaluate the XRD patterns and to determine the crystallite phases.

2.3. Corrosion Measurements

Potentiodynamic polarization measurements have been performed by Zahner IM6e potentiostat/
galvanostat (Zahner, Kronach Germany) in order to test the corrosion characteristic and biodegradability
of coatings. In all corrosion measurements, a three-electrode cell was used, where the working electrode
was a metallic implant disc with and without coatings, the reference electrode was Ag/AgCl/KClsat.
electrode, and the counter electrode was the platinum net. The potentiodynamic polarization curves
were recorded with a 1 mV/s scanning rate in the conventional Ringer’s solution: NaCl: 9.00 g/L,
NaHCO3: 0.20 g/L, KCl: 0.43 g/L, CaCl2: 0.24 g/L, pH: 7.95. The pH was adjusted with 1 M HCl and
1 M NaOH solutions.

2.4. Cytotoxicity Measurements

For cell viability measurements, the investigated samples were put in a 24-well microtiter plate
(MTP). One milliliter of cell suspension (MG-63 Cell Line human, Merck KGaA, Darmstadt, Germany,
10,000 cells/mL) was seeded onto the surface of each sample. The same quantity of cells in a growth
medium was applied as the control with no samples. The culture medium was removed from
the 24-well culture plate after 7 and 14 days of cultivation, the cells were washed using a sterile
phosphate-buffered saline (PBS). Then, 1 mL of DMEM (Dulbecco’s Modified Eagle Medium, containing
a 1% WST-8 tetrazolium salt (2,3,5-triphenyl-2H-tetrazolium chloride) reagent was added to each well
and was incubated for 3.5 h. During the incubation time, the viable cells turned the WST-8 reagent
into a water soluble, yellow formazan dye. Spectrophotometric measurements were executed after
incubation on the coloured products. The specific absorbance of formazan dye (at 450 nm) in the MTP
was obtained with an ELISA plate reader (PHomo Autobio Anthos Mykrosystem GMbh, Friesoythe,
Germany). Absorbance values are presented by the mean value and standard deviation of six replicates
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of each sample type and were normalized to MG-63 cells growth on a well plate (control = 100%).
The absorbance values directly refer to the amount of live cells.

3. Results and Discussion

3.1. Morphological Characterization

3.1.1. Silver-Added Calcium Phosphate Coating

Figure 1 shows the morphology and surface characteristics of silver-doped calcium phosphate
coating. The silver-containing calcium phosphate layer consists of particles in different, non-uniform
shapes. It contains disoriented, small, needle-like, larger plate-like, and also spheroid grains in
various sizes.
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Figure 1. SEM image of silver-containing calcium phosphate (CP) coating. (a) Magnification: 20.0 k,
working voltage: 2.0 kV, working distance: 4.1 mm (b) magnification: 5.0 k, working voltage: 10 kV,
working distance: 15.1 mm, and the corresponding map sum EDX spectrum (inset) and (c) elemental
mapping of silver-containing CP coating: Overlay map; O (Kα1 line); Ca ((Kα1 line); P (Kα1 line); C
(Kα1_2 line); Ag (Lα1 line).

The silver particles (white spots in Figure 1a) are 100–150 nm in size and they tend to agglomerate
into larger flakes (Figure 1b). The elemental mapping reveals the presence of silver, calcium, phosphor,
and carbon elements. The carbon signal proves the presence of a carbonated calcium phosphate phase.
It is also visible that the distribution of silver element is not homogeneous.
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3.1.2. Zinc-Added Calcium Phosphate Coating

The zinc-containing calcium phosphate coating consists of large, plate-like agglomerates and
blocks in micrometre size (Figure 2). According to the EDX analyses, the zinc content of layer varies
between 5–40 at% depending on the site of investigation. This can indicate that different phases are
present in the coating, consisting of Ca-rich phosphates and Zn-rich phosphates in different ratios at
the different sites of the sample.
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Figure 2. SEM image of zinc-containing CP coating. (a) Magnification: 5.0 k, working voltage: 2.0 kV,
working distance: 4.1 mm, and the corresponding map sum EDX spectrum (inset) and (b) elemental
mapping of zinc-containing CP coating.

The elemental map on Zn-containing CP shows that the distribution of zinc element within
the layer is more homogeneous than in the case of silver co-deposition. During the electrochemical
deposition process, the zinc ions migrate toward the cathode along with the calcium ions and form
deposits of different Ca–Zn phosphate phases. According to Prado da Silva [46], the hydrothermal
deposition method allows Monetite (CaHPO4) and Parascholzite (CaZn2(PO4)2(H2O)2) precipitation
onto metallic substrates and produces zinc apatite coatings. They reported that Monetite, brushite,
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and Parascholzite crystals were grown within the oxide layer on the surface of substrate and zinc
addition to the solution impeded in the nucleation and growth processes. They associated this
phenomenon to the lower affinity of zinc for oxygen compared to calcium, owing to the lower zinc
electronegativity difference, which increased the energy barrier for grain nucleation and growth.

3.1.3. Silver- and Zinc-Added Calcium Phosphate Coating

As Figure 3 demonstrates, this layer also contains particles in a wide variety of shapes and sizes.
It comprises grains with a mixture of heterogeneous, small, needle-like particles in nanometre size and
larger, thin, plate-like, and rod-shaped particles in micrometre size. The size of silver particles in this case
are similarly between 100 and 150 nm, and they tend to agglomerate. It can also be observed that when
silver and zinc particles were added into the layer, they were co-deposited onto the implant surface along
with different calcium phosphate phases. Iqbal et al. [47] co-substituted the hydroxyapatite particles with
silver and zinc via the microwave-assisted wet precipitation method and investigated the purity of phases,
the morphology, elemental composition, and the particle size of samples, as well as their antibacterial
effects against Staphylococcus aureus and Escherichia coli. In their experiments, the Zn concentration
changed between 2 and 4 wt%, while the silver content was 0.3 wt%. According to the SEM measurements,
the zinc and silver addition changed the morphology of the HAp particles. The nanoparticles were round
shaped with a diameter of around 102 nm and they tended to agglomerate. The Ag and Zn doped samples
showed superior antibacterial properties compared to the pure hydroxyapatite. While Guo et al. [24]
prepared hydroxyapatite co-deposited with nano-sized silver and zinc oxide particles with a two-step
liquid chemical reduction technique. They used calcium hydroxide and phosphoric acid as precursors
for HAp synthesis. Zinc nitrate was the precursor for ZnO particles and the silver ammonia solution to
generate silver nanoparticles. The morphological study revealed that most of the HAp nanoparticles were
in a rod-shaped form with a diameter of around 40 nm and the spherical-shaped silver nanoparticles,
with an average size of 6 nm, were on the surface of HAp nanoparticles. The average size of plate-like
ZnO nanoparticles was 23.5 nm.
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3.2. Transmission Electron Microscopy Study

TEM and EDX investigations of silver- and zinc-doped iCP powders, prepared by pulse current
co-deposition, are presented in Figure 4. The TEM–EDX measurements have been performed to further
examine the form and distribution of different grains in the silver- and zinc-added calcium phosphate
sample. Figure 4 reveals that the silver and zinc particles were incorporated in the calcium phosphate
crystals. The zinc and silver signal became dominant on different sites of the sample, which indicate
the presence of these particles along with the calcium phosphate crystals. It is also visible that the
silver particles are in the form of larger grains in size around 50–100 nm.
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Syukkalova et al. [48] synthesized calcium phosphate nanoparticles with a novel hydrothermal
method and investigated the morphological parameters of the samples. In their work, they used
different kinds of surfactants, such as PVP, SDS, and calcium stearate to study their effect on the
morphological parameters of nanoparticles. They found that the addition of surfactants to the solutions
did not cause any significant change in the phase composition, however, they greatly affected the
formation processes of the nanoparticles, as well as the sizes and shapes of the grains. The size of
particles derived from TEM measurements varied between 10 and 34 nm in thickness and 50–140 nm
in length depending on the type of surfactant.

3.3. XRD Measurements on Ionic Substituted Calcium Phosphate Coatings

XRD patterns of iCP layers are demonstrated in Figure 5. Patterns were recorded on Ag and/or
Zn added CP layers. The characteristic peaks can be distinguished as a mixture of calcium phosphate
phases such as hydroxyapatite (HAp, Ca5(PO4)3(OH), JCPDS76-0694) and Monetite (DCP, CaHPO4,
JCPDS89-5969). The characteristic peaks of HAp component are at d = 2.814 Å and d = 2.719 Å, while the
DCP component’s main peaks appear at d = 3.349 Å and d = 2.726 Å. In the case of Ag-added calcium
phosphate phases, the most intensive peak of Ag (111) are found on the spectra (Ag, JCPDS89-3722) at
d = 2.358 Å. In this case, the silver grains are present in a metallic form in the layer. The XRD patterns
of Zn and Ag/Zn substituted calcium phosphate layer show that the Zn particles are present in two
main phases: Metallic Zn (Zn, JCPDS87-0713) and CaZn2(PO4)2(H2O)2 (Parascholzite, JCPDS86-2372).
The reflection of the main peak of metallic Zn is at d = 2.091 Å and for Parascholzite is at d = 4.156 Å.
The ratio of different phases, calculated by the Diffrac.eva software V5.2, was as follows in the silver
and zinc substituted CP coating: HAp:DCP:Parascholite:Ag = 39.7:20.1:36.8:3.4. In the Ag and Zn
substituted calcium phosphate coating, the metallic zinc was not detectable, which can imply the
favoured formation of calcium zinc phosphate hydrate phase at low Zn ion concentrations in the
electrolyte during deposition. This result is in agreement with other research works [29,46] where the
Zn incorporation in the form of Parascholzite is proved by XRD measurements in which its main peaks
can also be found, in addition to Monetite’s and Brushite’s (CaHPO4 and CaHPO4·2H2O).
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Figure 5. XRD spectra recorded on silver- and zinc-added calcium phosphate powder.
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Ren et al. [28] reported line shifting to higher 2Θ values owing to the substitution of larger sized
Ca2+ (100 pm) ions with smaller sized Zn2+ (74 pm) ions.

3.4. Corrosion Measurement on Ionic Substituted Calcium Phosphate Coatings

Potentiodynamic polarization measurements have been performed to compare the degradation
characteristic of titanium substrate, of pure CP and of iCP coatings in Ringer’s solution (Figure 6).
The polarization scan rate was 1 mV s−1. The potentiodynamic curves were evaluated to attain the
corrosion parameters.
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Figure 6. Polarization curves recorded on different samples after 5 days of immersion. (a) Time-dependence
of potentiodynamic polarization curves recorded on Ag and Zn substituted CP coating, (b) as well as the
jcorr. (red line) and Ecorr. (blue line) values derived from potentiodynamic curves (c). The curves were
recorded in conventional Ringer’s solution at 37 ◦C with a potential scan rate of 1 mv s−1.

It is visible that the titanium substrate and the CP coating have the lowest corrosion currents
(0.2–0.4 µAcm−2) [49] and the highest corrosion resistance, while the highest corrosion rate and lowest
corrosion resistance belong to the silver and zinc substituted CP layer. The uncoated substrate and the
CP sample have a nobler corrosion potential than that of ionic substituted CP coatings (Figure 6a).
The Ecorr values of Ag and Zn substituted CP coating decreased significantly in the early stage
of immersion then reached a quasi-steady-state value after 10–15 days of immersion (Figure 6b,c).
This phenomenon confirms the gradual passivation of the surface. Supposedly, the reason for this
passivation is the corrosion products formed during immersion that can penetrate into the pores of the
coating, hence inhibiting the dissolution processes.

The corrosion currents of silver and zinc substituted CP gradually increase over time from 1 to
5 µAcm−2 (Figure 6c), which can prove the biodegradable characteristic of iCP coating. The highest
jcorr values were obtained in the case of Ag and Zn substituted CP layer indicating that the rate of the
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dissolution processes was higher than in the case of pure CP and uncoated implant. The iCP coating
exhibited the greatest tendency towards corrosion. In a recent work, Jaiswal et al. [50] studied the
effect of shape and size of bioactive hydroxyapatite on the mechanical and biodegradation properties
of the magnesium-based composite. The HAp layer increased the corrosion resistance of magnesium
alloy substrate and the measured corrosion currents were 0.06–0.09 mAcm−2 and were dependent on
the morphology of the HAp coating. While Kwok et al. [51] studied the corrosion properties of HAp
coating prepared by electrophoretic deposition onto a Ti6Al4V substrate. According to their results,
the measured corrosion currents in Hanks’ solution varied between 0.4 and 0.9 µAcm−2, depending
on the morphology of the HAp powder. There are also research works on studying the corrosion
characteristic of ionic doped CP coatings [34,52–60]. Iqbal et al. [34] reported the biodegradability
properties of zinc-doped hydroxyapatite−zeolite/polycaprolactone composite coating, prepared by dip
coating onto a magnesium substrate. The measured corrosion currents in their case changed between
10 and 25 µAcm−2 in Kokubo’s SBF solution. According to their measurements, the higher Zn content
in HAp increased the corrosion resistance of the samples. Gopi et al. [52] prepared Sr, Mg, and Zn
doped calcium phosphate coatings on an HELCDEB-treated titanium by the pulse current deposition
method. In their case, the samples with a surface treatment exhibited higher Ecorr and jcorr values than
the untreated titanium sample. The jcorr values varied between 0.4 and 0.22 µAcm−2. In other research
work, Zhong et al. [53] reported that the corrosion currents of electrophoretically deposited HAp and
zinc substituted HAp coating with a 5 wt% Zn content to be 1.45 and 0.58 µAcm−2, respectively in
the SBF solution. They concluded that the Zn-HAp composite coating possessed better corrosion
resistance than the HAp composite coating.

3.5. Cell Viability Measurements

Figure 7 shows the viability percentages of cells (MG-63 osteoblast cell line) seeded on the
substrate material and different CP coatings compared to the control sample. Along with the substrate,
four different types of coatings were investigated: (1) Pure CP (2) silver-added CP, where the silver
concentration within the coating was relatively high (between 3–10 at%), (3) Ag- and Zn-added
CP coating, where the percentages of doping elements were around 40 at%, according to the XRD
measurements; (4) trace-element doped CP coating, in which the concentration of all doping elements
was below 5 at% in total.

It is visible that in all culture periods the trace element doped CP possessed the highest cell
viability percentages after 7 days (above 89%), while after 2 weeks they increased to around 95%
compared to the positive control. The cell viability percentages were 84% and 89% after 7 days and
2 weeks of culture for the CP sample, respectively. We obtained similar values (71% and 73%) for
the Ag/Zn-CP sample, where the silver concentration was very low. However, in the case of silver
doped sample, we measured relatively low cell viability values (35% and 27%) owing to the high silver
content. In the case of titanium substrate without a coating, the cell viability was 72% at the 7th day
and it decreased to 65% at the 14th day. After 2 weeks of culture in a DMEM medium, the difference
between the cell viability on CP and on trace element doped CP samples become more significantly
higher than those for the uncoated substrate, revealing the good biocompatible characteristic of this
coating. It is also visible that the trace element substitution improved the biocompatibility of the
sample. In addition, it is well known that hydroxyapatite layers can promote the attachment and
growth of osteoblastic cells due to their excellent hydrophilic characteristic [61,62].

Numerous aspects exist that can affect the viability and metabolic activity of MG 63 cells, such as
the composition, morphology, and structure of layers. Several research works have proven that
the excessive silver content in the layer can provide good antimicrobial properties to the layers,
but, parallelly, it also has a negative effect on the viability and metabolism of cells and can also cause
mitochondrial dysfunction [63–65]. However, on the contrary, Thrivikraman et al. [64] claimed in their
review that the addition of 10% Ag into Ag-HAp composites provided an antibacterial effect against
E. coli, without deteriorating the in vitro cytocompatibility of the HAp. There are also research works
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studying the biological response of zinc incorporation into HAp phases [66–68]. Ortiz et al. [66] reported
that the cell viability percentages of human osteoblast cells seeded on Zn-HAp layers were around
80% in comparison with the control group and they also measured the enhanced cell proliferation
rate compared to the HAp coating. They also claimed that the cells responded better to the Zn-HAp
coating thus confirming their biocompatibility and ability to support cell proliferation. It is also proven
that the Zn addition (around 9 at%) has a beneficial effect on promoting bone growth when used as a
bioactive coating on implant materials [68].Materials 2020, 13, x 11 of 16 
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Positive control: MG-63 cells were grown in well plates with no samples. Results are demonstrated by
the mean value and standard deviation of six replicates of each sample and were normalized to MG-63
cells growth on a well plate (control = 100%).

4. Conclusions

The effects of ionic substitution on the morphology, structure, and thus the biocompatibility
properties of calcium phosphate coatings have been studied. The silver-containing calcium
phosphate layer contained particles in different, non-uniform shapes: Disoriented small needle-like,
larger plate-like, and also spheroid grains in various sizes. The zinc-containing calcium phosphate
coating consisted of large, plate-like agglomerates, and blocks in micrometre size. The silver and zinc
substituted layer also contained particles in a wide variety of shapes and sizes. The size of silver
particles was between 100 and 150 nm, and they tended to agglomerate. The Zn particles were present
in two main structures: Metallic Zn and Parascholzite. The corrosion measurements revealed that the
corrosion currents gradually increased over time, which could prove the biodegradable characteristic
of the iCP coating. The highest jcorr values were obtained in the case of silver and zinc doped CP
coating. The cell viability measurements might indicate that the concentrations of doping elements
have an effect on the biocompatibility of coatings, therefore, choosing the appropriate concentrations
and ratios of doping elements is essential for biomedical applications.
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