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Prostate cancer is the second most common cancer in men and represents a significant
healthcare burden worldwide. Therapeutic options in the metastatic castration-resistant
setting remain limited, despite advances in androgen deprivation therapy, precision
medicine and targeted therapies. In this review, we summarize the role of
immunotherapy in prostate cancer and offer perspectives on opportunities for future
development, based on current knowledge of the immunosuppressive tumor
microenvironment. Furthermore, we discuss the potential for synergistic therapeutic
strategies with modern radiotherapy, through modulat ion of the tumor
microenvironment. Emerging clinical and pre-clinical data suggest that radiation can
convert immune desert tumors into an inflamed immunological hub, potentially sensitive
to immunotherapy.

Keywords: prostate cancer, radiation therapy, immunotherapy, immune checkpoint inhibitors, tumor micro-
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INTRODUCTION

Prostate cancer (PCa) is the world’s second most common cancer in men and the fifth leading cause
of cancer death (1). Age is the major risk factor, with a median age of 67 years at diagnosis, and few
before the age of 50 (2). The majority of cases are diagnosed at the localized stage, with
approximately 20% presenting with de-novo metastatic disease (2). The introduction of prostate
specific antigen (PSA) screening has resulted in increased numbers of early diagnoses in
asymptomatic men, with incidence increasing by 40% globally since 2006 (3).

Even though radical prostatectomy, external beam radiotherapy (EBRT), and brachytherapy are
the definitive treatments for localized disease, relapse is common (4), particularly in high risk
disease [clinical T stage of at least cT2c, Gleason score of at least 8, or PSA greater than 20 ng/
ml (5)].

Much progress has been made for the treatment of patients with metastatic PCa: chemotherapy
with taxanes, next generation androgen inhibition, poly (ADP-ribose) polymerase (PARP)
inhibition and nuclear isotope-based treatments have all shown to have significant impact on
org April 2022 | Volume 13 | Article 8597851
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disease outcome. However, resistance to treatment is inevitable
and in the majority of cases the diagnosis of metastatic PCa will
be the cause of death for the patient (6).

Immunotherapy has curative potential, and immune
checkpoint inhibitors (ICI) have become central to the
treatment of several cancers (7–9). However, only a small
number of PCa patients have responded favourably to ICI,
indicating that more research is needed (10, 11). Radiation
therapy (RT) has shown to cause, in select cases, an abscopal
effect, in which radiation to a metastatic deposit causes tumor
regression outside the irradiated field. Radiotherapy-induced
systemic anti-tumor activity appears to be immunologically
mediated (12, 13), and it has been demonstrated using high-
dose hypofractionated RT schemas (>5 Gray (Gy) per fraction).
Nonetheless, confirmation of abscopal effects when RT is
administered alone has been extremely rare in clinical practice;
however, the idea of administering RT in concert with ICI has
sparked expectations that the abscopal effect may be frequently
achieved. Unfortunately, randomized clinical trials in PCa
combining hypofractionated RT with ICI have not translated
in increased survival benefits (14) renewing the interest for
continuing research in this field.

As a result of advancements in radiation technology, such as
stereotactic body radiation therapy (SBRT), large radiation doses
per fraction (>5 Gy) can be safely administered in clinical
practice and high-dose hypofractionated schemes are now
considered standard-of-care (15–17). Table 1 summarizes
current standard normo-fractionated and hypofractionated-
high dose radiation schemas used for primary and metastatic
PCa. Hypofractionated SBRT releases immunogenic tumor
associated antigens over a period of several days (18, 19),
therefore ICI should be precisely timed to coincide with the
peak of tumor antigen presentation following RT in order to
attempt clinical translation. Similarly, the immunological effects
of RT might be schedule dependent, for instance Dewan et al.
showed that in mouse models 3 fractions of 8 Gy with anti-
cytotoxic T lymphocyte antigen 4 (CTLA4) antibody were
effective in inducing an anti-tumor immune response, able to
inhibit the tumor locally and systemically, whereas 5 fractions of
6 Gy were inferior, and a single fraction of 20 Gy was ineffective
when combined with anti-CTLA4 (20). Even if all of these
treatment regimens are considered hypofractionated high-dose
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RT, it is evident that a better knowledge of the triggered immune-
biology will be required before radio-immunotherapy
combinations can be translated to the clinic.

A handful of papers have studied the use of low dose
radiotherapy (LDRT): doses between 0.5-2 Gy. LDRT can
potentially cause dramatic remodeling of the tumor
microenvironment (TME) by upregulating cytokines and
chemokines, increasing immune cell infiltration, and
normalizing tumor vasculature (21, 22). These events, taken
together, stimulate anti-tumor T cell responses. Recent
translational research has supported this biology, with
increased CD4+, CD8+ T cell, as well as T effector-memory
signatures, localized to tumor islets in a PCa patient undergoing
LDRT and combinatorial immunotherapy (22).

We summarize the state of immunotherapy in PCa and offer
perspectives on short-term opportunities for future development
of immunotherapy in PCa based on current knowledge of the
immunosuppressive TME. Furthermore, we discuss how RT
could improve treatment responses to immunotherapy.

Immunotherapy in Prostate Cancer
In recent years, immunotherapy and adoptive T cell therapy has
resulted in paradigm shifts in the therapeutic landscape across
multiple tumors owing primarily from the development of
antibodies targeting immune-checkpoints such as CTLA4,
programmed death receptor 1 (PD1) and its ligand (PD-L1),
and the development of commercially available chimeric
antigen-receptor (CAR-T) cells in haematological malignancies
(7–9, 23, 24). These remarkable results have not been replicated
in the context of PCa. Except in patients with microsatellite
instability, ICI has failed to demonstrate meaningful clinical
benefits (25). Approximately 3% of PCa patients harbor a
mutation in one of the four mismatch repair genes. This small
subgroup has shown long-term responses to ICI (25).

Initial basket trials of the PD1 inhibitors, nivolumab and
pembrolizumab, included metastatic castration resistant prostate
cancer (mCRPC) patients, but efficacy in this tumor type was
minimal (11, 26). In one of the basket trials, pembrolizumab had a
response rate of 17% in selected PD-L1 positive patients (26). This
enriched group accounted for only 14% of all screened patients.
Keynote-199, a Phase II study compared pembrolizumab
monotherapy to placebo in 258 mCRPC patients who had
TABLE 1 | Radiation schemas currently used for primary and metastatic PCa.

Prostate-directed RT (15) Number of fractions Dose per fraction in Gy

Standard RT for primary PCa 39 2
Moderate hypofractionation for primary PCa 20 3
Ultra hypofractionation for primary PCa 5 7.25
Metastasis-directed RT (16, 17)
Palliative RT 1 8

10 3
5 4

Ablative RT 3 18
5 11
8 7.5
5 7
April 2022 | Vo
RT, radiation therapy; Gy, Gray; PCa, Prostate cancer.
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progressed after docetaxel. PD-L1 expression was used to stratify
the cohorts. In the PD-L1 positive and PD-L1 negative cohorts,
response rates were 5% and 3%, respectively (27). A recent phase
III trial (IMbassador250) of atezolizumab, an inhibitor of PD-L1,
in combination with enzalutamide was stopped early due to
futility (28).

Single agent ipilimumab did not improve overall survival
(OS) versus placebo in a phase III clinical trial of minimally
symptomatic chemotherapy-naïve mCRPC patients (29). Neo-
adjuvant ipilimumab stimulated an influx of T cells in prostate
tumors (30). However, despite evidence of T cell recruitment and
trafficking, clinical responses to ipilimumab were rare, which
eludes to a profoundly immunosuppressive TME, which impedes
the anti-tumor T cell response (31).

Further efforts with dual ICI resulted in the Checkmate 650
phase II trial (32), which was motivated by evidence of PD-L1
upregulation following neo-adjuvant administration of
ipilimumab and androgen deprivation therapy (ADT) (33).
Patients received ipilimumab 3mg/kg and nivolumab 1mg/kg
every three weeks for four cycles, followed by nivolumab as a
single agent until unacceptable toxicity or progression. Patients
were stratified based on prior exposure to chemotherapy, with
overall response rates of 25% and 10%, respectively (32).
Interestingly, four patients, two in each cohort, had a complete
response. Patients whose tumors expressed PD-L1 ≥1% had
better outcomes (36.4% versus 12.1%). These slightly higher
response rates came at the expense of increased toxicity, with
higher rates of grade 3-4 adverse events (42-53%) and treatment-
related deaths (4.4%).

Immune checkpoint blockade has subsequently been
combined with chemotherapy. The cohort B of the Keynote-
365 evaluated the efficacy of pembrolizumab in combination
with docetaxel and prednisone, following progression on first-
line androgen biosynthesis inhibitors (34). PSA responses were
seen in 34% and the overall response rate was 23%, in those with
measurable disease. Toxicity was however significant, with 44.2%
developing grade 3-4 adverse effects, including five deaths due
to toxicity.

Beyond PD-L1 expression and microsatellite instability,
efforts are being made to identify predictive biomarkers for
ICI. An exploratory analysis of the Checkmate 650 trial
revealed that patients with high tumor mutational burden
(TMB) and errors in DNA damage repair (DDR) had better
outcomes. Patients with a TMB above or below the median (74.5
mutations/patient) had an objective response rate of 50.0% (95%
CI 26.0-74.0) and 5.3% (95% CI 0.1-26.0), respectively, and an
OS of 19 versus 10.1 months (32). The overall response rates in
patients with DDR defects increased from 23.1% to 36.4% (32).
The presence of CD8+ tumor-infiltrating lymphocytes (TILs)
and interferon gamma (IFNg) response signatures have been
shown to be predictive biomarkers for ipilimumab response in
mCRPC (35). Additional predictive biomarkers for ICI activity
include lactate dehydrogenase and C reactive protein levels (36),
early rise in lymphocytes and eosinophils (37), and inactivation
of CDK12 (38).
Frontiers in Immunology | www.frontiersin.org 3
Vaccine-based therapies have shown activity in the treatment
of PCa. Sipuleucel-T is a first-in-class adoptive cell-based vaccine
approved by the Federal Drug Administration (FDA) for
metastatic PCa (39). This autologous vaccine modifies patient’s
dendritic cells (DC) ex-vivo, resulting in the expression of a
recombinant fusion protein of prostatic acid phosphatase (PAP),
a prostate-cancer specific antigen, with granulocyte macrophage
colony-stimulating factor (GM-CSF), an immune stimulatory
protein. The engineered autologous antigen-presenting cells are
then re-administered to patients, without preconditioning
chemotherapy. Sipuleucel-T has been evaluated in the
neoadjuvant setting before radical prostatectomy. Prostatectomy
specimens contained a 3-fold increase in activated T-cells
following administration of Sipuleucel-T (40). In the metastatic
setting, a Phase III trial of mildly symptomatic PCa patients,
without visceral metastases, demonstrated a four-month
improvement in OS versus placebo, without a progression free
survival (PFS) or symptomatic benefit (41). Interestingly OS was
substantially longer in the African American versus Caucasian
PSA-matched subgroups at 35.3 versus 25.8 months, which may
probably highlight the importance of HLA polymorphisms in
antigen-presentation and immune activation.

Adoptive T cell therapy is currently being explored in PCa,
following the major advances seen with CAR-T cell therapy in
haematological malignancies (23, 24). CAR-T cells targeting
prostate-specific antigens such as PSA, prostate-specific
membrane antigen (PSMA), and prostate stem cell antigen
(PSCA) are currently under clinical development (42). Multiple
next-generation PSMA CAR-T cells with additional
immunomodulatory ligands to dampen immunosuppressive
signals, such as transforming growth factor beta (TGFb) or
PD1 decoy receptors are under development (43–45). Kloss
et al. have shown cellular persistence and efficacy in a PCa
mouse model with their PSMA-directed CAR-T, with co-
expression of a TGFb receptor (44). Another PSMA-targeted
CAR-T product, with a dominant negative TGFb receptor, has
been evaluated in a first-in-human Phase I trial of ten mCRPC
patients (45). The results confirmed safety, T cell expansion, and
tumor-site trafficking; a decline in PSA was seen in 6 patients
(median decline -33.2%, range -11.6% to -98.3%) (45).

An Immunosuppressive Tumor
Microenvironment
Prostate cancer is an immunologically ‘cold’ tumor (32, 46).
Histopathological evaluation shows an ‘immune-desert’, defined
as the absence of lymphocytes, or ‘immune-excluded’ phenotype,
where T cells remain trapped in the stroma without penetrating
the intraepithelial tumor islets (47).

For those few patients with TILs infiltrating the TME, the T
lymphocytes express mostly an exhausted and terminally
differentiated phenotype (48, 49). In this exhausted phenotype,
there is upregulation of negative checkpoints including PD1/PD-
L1 (50, 51), CTLA4, lymphocyte activation gene 3 (LAG3), T cell
immunoglobulin and mucin domain 3 (TIM3) and V-domain Ig
suppressor of T cell activation (VISTA) (33, 48). They display
April 2022 | Volume 13 | Article 859785

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mulvey et al. Overcoming Immune Resistance Prostate Cancer
low variability of the T cell receptor (TCR), due to reduced clonal
differentiation of the TCR beta variable chain, which results in a
restricted repertoire of peptide recognition and binding
(51) (Figure 1A).

While the presence of intraepithelial CD8 TILs has been
associated with improved survival in many solid tumors (52),
this association is less defined in PCa. One study reported lower
Frontiers in Immunology | www.frontiersin.org 4
biochemical progression-free survival (bPFS) rates following
radical prostatectomy in those with high intraepithelial TILs
(p<0.37) (53). Another study of 51 men with advanced PCa with
nodal metastases demonstrated a correlation between CD8+ TILs
and poorer clinical prognosis (54). Guan et al. recently
performed single cell RNA sequencing (scRNAseq) to
characterize the TILs from eight mCRPC patients, progressing
A B

D

E F

C

FIGURE 1 | Mechanisms of immunosuppression in the prostate cancer TME. (A) The TILs present are functionally exhausted, expressing a terminally differentiated
phenotype. High PD1/PD-L1 signalling leads to a clonally restricted TCR repertoire. (B) The abundant Tregs produce immunosuppressive cytokines (IL10, TGFb,
IL35), reduce IL2 concentrations through binding with CD25, and have direct cytolytic effects over T cells through granzyme and perforin secretion. (C) The
immunosuppressive secretome of TAMs inhibit immune effector cells function and migration. Androgen receptor signalling via TREM plays a crucial role in production
of immunosuppressive cytokines. (D) MDSC modulate metabolic pathways through the production of nitrate oxide and reactive oxygen species, which induce T cell
anergy and apoptosis. CD8 T cell function is inhibited through the production of IL10, TGFb, and the reduction in arginine and tryptophan concentrations. IL23
promotes androgen resistance and tumorigenesis. (E) CAFs reduce cell trafficking and migration through the production of a stromal extra-cellular matrix barrier.
Tumor promoting CAFs inhibit immune effector cell function through the production of an immunosuppressive secretome. (F) Structurally and functionally aberrant
tumor neo-vasculature impedes effector cells trafficking and migration. VEGF induces downregulation of vascular adhesion molecules to impede cellular anchorage
and extravasation.
April 2022 | Volume 13 | Article 859785
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on enzalutamide prior to pembrolizumab treatment (55).
Surprisingly, the number of CD8 T cells did not distinguish
pembrolizumab responders from non-responders. Unsupervised
clustering analysis demonstrated that CD8 T cell expression of
inhibitory genes, and genes associated with cytotoxicity
correlated with response to ICI (55), highlighting that an
understanding of the functional state of TILs is crucial. In
addition, this study identified a negative correlation between
androgen receptor signalling and response to ICI. The scientists
demonstrated that the combination of androgen receptor
inhibition with pembrolizumab induced T cell activation and
increased T cell polyfunctionality in their mouse model (55),
supporting the potential for combinatorial ADT and ICI.
However, this therapeutic approach has been evaluated in
metastatic PCa patients in the IMbassador250 trial, of
enzalutamide and atezolizumab, which was not shown to be
clinically efficacious (28). The translational research performed
in the IMbassador250 trial showed that the few patients with
longer PFS treated with enzalutamide and atezolizumab had
higher numbers of CD8+ T cell and genomic signatures linked to
an immune reactive phenotype (IFN signalling, chemokines
mediating T cell activation and recruitment [C-X-C motif
ligand (CXCL) 9], and genes involving antigen presentation
[antigen peptide transporter 1 (TAP1)] (28).

The TILs in PCa are unable to be reinvigorated with ICI,
likely due to their exhausted and terminally-differentiated state,
and due to the high immunological pressure dictated by an
immunosuppressive TME which includes regulatory T cells
(Tregs) (56–58), tumor-associated macrophages (TAMs),
myeloid-derived suppressor cells (MDSC), and cancer-
associated fibroblasts (CAFs) (31), and they deserve to be
described here (Figure 1).

Regulatory T cells (Tregs) are potent suppressors of
inflammation and anti-tumor immune responses. Tregs in the
PCa TME constitutively express the interleukin 2 (IL2) receptor,
CD25, the gene Forkhead box protein P3 (Foxp3), along with the
immune checkpoints CTLA4, inducible T cell co-stimulator
(ICOS), LAG3, TIM3, OX40, and 4-1BB (59) (Figure 1B).
The high expression of CD25 sequesters IL2 from the TME.
This impedes effector T cell activation, which requires IL2 as the
third activation signal. In addition, Tregs exert their
immunosuppressive function via the production of the potent
immunosuppressive cytokines: interleukin 10 (IL10), TGFb, and
interleukin 35 (IL35) (59). Furthermore, Tregs can have direct
cytotoxic effects on effector cells through the production of
granzyme (Grz) and perforin (Prf) (59, 60). They alter the
TME metabolic profile through the expression of CD39 and
CD73, which increases extra-cellular adenosine concentrations
and in turn inhibits effector T cell activation and proliferation
(60). Their immunosuppressive activity is not limited to effector
T cells. Tregs thwart the activity of DC through the
downregulation of the crucial co-stimulatory molecule, B7,
after interaction with CTLA4, and the loss of MHC class II
after binding with LAG3 (60). Tregs also steer macrophages to a
pro-tumoral M2-like phenotype (61), and potentiate MDSC
proliferation (60) (Figure 1B).
Frontiers in Immunology | www.frontiersin.org 5
Miller et al. demonstrated higher levels of intra-tumoral
Tregs in PCa compared to normal prostatic tissue, in addition
to increased peripheral blood Treg concentrations (56). The
intra-tumoral Treg population plays a key role in tumorigenesis
in early PCa, and several studies have identified CD4+CD25+

TIL concentration as a prognostic biomarker (62, 63). The
analysis of 1778 PCa specimens obtained upon radical
prostatectomy revealed up to 103 Tregs per 0.6 mm tissue,
with the highest Treg numbers correlated with higher rates of
PSA-recurrence (p=0.0151) (62). Furthermore, a higher
number of intra-tumoral Treg cells was associated with a
more advanced tumor stage (p=0.0355) and higher Ki67
labelling index (p<0.0001) (62).

Tumor-associated macrophages are a dynamic and versatile
cellular group whose functions include phagocytosis and
antigen presentation, in addition to regulating TME
homeostasis (64). They exist across a polarised spectrum,
with the M1-like phenotype secreting pro-inflammatory
cytokines and chemokines, and the M2-like phenotype
mediating immunosuppression via the production of
IL10, TGFb , prostaglandin E2 (PGE2) and matr ix
metalloproteinase-7 (MMP7) (65). Hypoxia-induced lactate,
a product of tumoral anaerobic metabolism, is a key inducer of
the M2-like phenotype (66). The dynamic TAM phenotype is
also regulated via the C-X-C chemokine receptor type 2
(CXCR2) axis. Inhibition of CXCR2 induced a pro-
inflammatory TAM phenotype and prevented PCa growth in
Phosphastase and Tensin Homolog deleted on Chromosome
10 (PTEN)-deficient mice (67).

TAMs impair effective T cell migration and infiltration
through the stromal tissue promoting the immune-excluded or
desert phenotype (68). Being of myeloid origin, TAMs play a role
in amino acid metabolism, along with MDSC. They express the
enzymes arginase-1 and 2 that degrade arginine, necessary for T
cell activation and proliferation (69) (Figure 1C).

The presence of TAMs is a predictive biomarker for
biochemical relapse after radical prostatectomy in localised
PCa (70, 71). The M2-like phenotype (CD163+) correlate with
more aggressive tumors with higher Gleason score, higher
metastases rates and lower cancer-specific survival in a 234
patient Swedish cohort (72). While the M1-like phenotype
(CD204+) TAMs are associated with a lower T stage in 135
patients from a Japanese cohort (73).

Emerging evidence identifies the importance of the macrophage
cell surface receptor Triggering Receptor Expressed on Myeloid
cells (TREM) in PCa tumorigenesis. Androgen receptor signalling
in TAMs produces anti-inflammatory cytokines, which is mediated
by TREM1 (74). Indeed transcriptomic analysis of 491 localised
PCa revealed shorter disease-free survival (DFS) in men with high
TREM1 expression compared to low (p=0.0042) (74). TREM2
expression has also recently been shown to be inversely correlated
to prognosis in multiple cancers. Targeting of TREM2 with
monoclonal antibodies reduced tumor growth and increased
response to anti-PD1 blockade in a pre-clinical model (75) and
could offer potential for combinatorial treatments in
PCa (Figure 1C).
April 2022 | Volume 13 | Article 859785
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Another cellular hallmark of the TME are the MDSC. This
heterogeneous group of immature myeloid cells with strong
immunosuppressive capacity are classified into two major
groups: granulocytic or polymorphonuclear (PMN)-MDSC
(CD11b+ CD14-CD15+ or CD11b+CD14-CD66b+) and
monocytic MDSC (CD11b+CD14+HLA-DRlow/-CD15-) (76,
77). PMN-MDSC share morphological and phenotypic
characteristics of neutrophils, whereas monocytic MDSC are
similar to monocytes. Comprehensive transcriptome and cell
profile analyses identified MDSCs as a prominent TME
population in PCa tumors with PTEN/Smad4 deficiency (78).
MDSCs manipulate cellular metabolic pathways through the
production of nitric oxide (NO), reactive oxygen species (ROS)
and peroxynitrite (PNT), which inhibits effector T cell
proliferation and induces T cell apoptosis (76). Feng et al.
identified a crucial protein of the T-cell receptor signaling
pathway, named lymphocyte-specific protein tyrosine kinase
(LCK), which is nitrated by MDSC in a mCRPC mouse model,
impairing T-cell function and mediating resistance to ICI (79).
The enzyme arginase-1 metabolizes L-arginine to L-ornithine
and urea. Myeloid cell arginase-mediated L-arginine depletion
profoundly suppresses T cell immune responses and this has
emerged as a fundamental mechanism of tumor-associated
immunosuppression (77). MDSC-induced indoleamine 2,3-
dioxygenase (IDO) decreases tryptophan concentrations in the
TME (77) IDO converts tryptophan to kynurenine, depleting
tryptophan concentrations which are required for T cell
proliferation, and eventually results in T cells stagnating in G0
phase (76). IDO activity is increased in the PCa TME compared
to benign inflammatory states, such as benign prostatic
hyperplasia, and is a predictive biomarker for relapse after
radical prostatectomy (80).

Adenosine levels are increased through the cell surface
expression of CD39, which cleaves adenosine triphosphate
(ATP) to adenosine monophosphate (AMP), and CD73,
which in turn converts AMP to adenosine. This free extra-
cellular adenosine inhibits effector T cells and favours Treg
immunosuppressive activity via the adenosine receptors 2A and
2B (76). The major anti-inflammatory cytokines produced by
MDSC are IL10 and TGFb which are also highly immune
suppressive (76). Furthermore Calcinotto et al. recently
demonstrated the key role of interleukin 23 (IL23) secreting
MDSCs in androgen resistance and tumor progression in
castration resistant mice (81). The administration of an
anti-IL23 alone or with enzalutamide was highly effective in
reversing the resistance to castration and increased mice
OS (81).

Myeloid-derived suppressor cells also have direct cellular
inhibition of natural killer (NK) cells via membrane bound
TGFb (82), in addition to inhibition of DC and B cells (76).
MDSC recruitment to the TME is mediated by tumor-derived
pro-inflammatory signals. Toll-like receptor 9 (TLR9)
expression by PCa cel ls , which appears central to
tumorigenesis, stimulates recruitment of PMN-MDSCs via
the proteins S100A8 and S100A9, and upregulates the
transcription factor STAT3 which in turn inhibits CD8 T cell
anti-tumor activity (83). This chemotactic pathway can be
Frontiers in Immunology | www.frontiersin.org 6
counterbalanced through direct inhibition of the STAT3
transcription factor (83). Chemokines responsible for MDSC
recruitment include CXCL5 (78), and interleukin 8 (IL8), which
also induces castration-resistance and tumorigenesis (84).
Inhibition of IL8 in addition to ICI delayed castration
resistance and increased CD8+ T cell infiltration in PCa
murine models (84). Furthermore direct inhibition of MDSC
via the multikinase inhibitor, cabozantinib, has demonstrated
anti-tumor efficacy in mCRPC mouse models, when combined
with anti-CTLA4 and anti-PD1 monoclonal antibodies
(85) (Figure 1D).

The last key cellular group are CAFs. They are the most
abundant cell in the peri-tumoral stroma (31). Their main
function is the production of the extra-cellular matrix, which
acts as a physical barrier, impeding trafficking and infiltration of
immune-effector cells (86). In addition to providing structure, the
stroma plays an essential role in tumor metabolism and waste
removal (87). CAFs exhibit cellular plasticity, responding to TME-
induced pressures, with epigenetic modulation resulting in cellular
heterogeneity along a spectrum between tumor-promoting and
tumor-restraining phenotypes (86). One study identified three
different CAF subpopulations after transcriptomic analysis of 13
prostate tumors (88). They generate an immunosuppressivemilieu
through the production of cytokines, such as interleukin 6 (IL6)
(89), growth factors such as vascular endothelial growth factor
(VEGF) and platelet-derived growth factor (PDGF), chemokines
such as CXCL12, as well as matrix metalloproteinases, TGFb and
PGE2 (86) (Figure 1E).

In addition, PCa tumorigenesis and castrate resistance is
promoted via signalling through cholesterol and steroid
biosynthesis pathways (90). Through contact-dependant and
paracrine-mediated cross-talk with tumor cells, CAFs promote
metastases through epithelial to mesenchymal transition of
malignant cells and the polarisation of TAMs to the M2-like
phenotype (91) (Figure 1E).

Angiogenesis is a fundamental process to tumor growth and
the establishment of an immunosuppressive TME. Cancer neo-
vasculature is structurally and functionally aberrant, which
produces a hypoxic environment with low pH and high
interstitial fluid pressure due to altered lymphatic drainage (87).
Angiogenesis is predominantly mediated via the VEGF family,
composed of VEGF-A, -B, -C, -D and placental growth factor,
which act on the three VEGF receptors (VEGFR) 1-3 (92).
Catecholeaminergic signalling pathways (93), as well as PGE2
(94) are also implicated in immune suppression. Hypoxia is the
main stimulus for VEGF production by tumor cells and other
TME cellular components, including CAFs, TAMs, and MDSC
(95). Myeloid-derived monocytes expressing Tie-2 have recently
been shown to play a crucial role because the ligand for Tie-2, so-
called angiopoeitein-2 (Ang-2), is produced by angiogenic tumor
vessels and is a chemoattractant for Tie-2 expressing monocytes.
Hypoxia upregulates Tie-2 expression on monocytes and, together
with Ang-2, downregulates monocyte anti-tumoral functions (96).
VEGF mediates an immunosuppressive effect through various
mechanisms. Firstly, effector T cell trafficking and infiltration into
the TME is reduced due to the abnormal tumor vasculature, which
reduces T cell tumor penetration. Furthermore, VEGF induces
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down-regulation of adhesion molecules on vascular endothelial
cells, such as intercellular adhesion molecule (ICAM)1/2 and
vascular cell adhesion molecule (VCAM)1 (97), needed for
lymphocyte’s vascular wall migration. Secondly, binding of
VEGF to its receptor (VEGFR) modulates the interconnected
TME cellular members. This triggers STAT3 signalling in
MDSC, recruitment of Tregs and inhibition of CD8+ T cells and
DC (98). High stromal expression of VEGF receptor 2 in
prostatectomy specimen is a predictive biomarker for relapse (99).

Finally, the vasculature of solid tumors expresses Fas ligand,
which is a death receptor (Fas-L, also called CD95L). VEGF-A,
IL-10, and PGE2 all work in concert to increase Fas-L expression
in endothelial cells, allowing endothelial cells to kill CD8+ T cells
while leaving Tregs unaffected (100). Paracrine tumor processes
can thus create a tumor endothelial barrier to T lymphocytes
(100) (Figure 1F).

In addition to the immunosuppressive cellular interplay of
the TME, tumor intrinsic factors also contribute to the cold
tumor phenotype. Because of the low frequency of somatic
mutations, the number of immunogenic neo-antigens has also
been described to be relatively low (101). Genomic mutations in
the tumor suppressor gene PTEN), present in 49% of mCRPC
patients (102), leads to activation of the phosphatidylinositol 3-
kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR)
pathway and is strongly associated with an aggressive
phenotype and adverse oncological outcomes (103). Loss of
PTEN function impedes effector T cell trafficking, inhibits
autophagy, and promotes resistance to immunotherapy (104).
The therapeutic potential of this axis has been evaluated with
everolimus, an mTOR inhibitor, which failed to improve
survival in addition to carboplatin for patients with mCRPC
in the post-docetaxel setting (105). This therapeutic approach
deserves further investigation considering recent evidence of
improved efficacy of checkpoint inhibitors when combined
with a selective PI3Kb inhibitor in melanoma murine
models (104).

The downregulation of MHC class I on tumor cells reduces
antigen presentation and facilitates cancer immune editing (106).
Prostatic acid phosphatase, present in malignant prostate cells
and normal prostatic epithelium (107), increases extra-cellular
adenosine concentrations, which inhibits effector T cell and DC
function, and stimulates T regs, CAFs and MDSCs (31).

This profoundly immunosuppressive and interconnected
TME underpins the poor clinical results of ICI. These
adaptations highlight the complex cellular and metabolic
signalling pathways that immunotherapies need to overcome
to achieve an anti-tumor immune response. Thus, innovative
immunotherapy strategies are needed to obtain clinically
meaningful patient outcomes.
RE-PROGRAMMING A COLD TME WITH
COMBINATORIAL THERAPIES

Various strategies for inflaming the cold TME have been
proposed to enhance response to immunotherapies in
Frontiers in Immunology | www.frontiersin.org 7
immune-excluded and “cold” non-inflamed tumors. Methods
include increasing local inflammation by inducing DNA damage
through RT, chemotherapy, targeted therapies, or ablative
therapies with heat or cold (radiofrequency ablation,
microwave ablation or cryoablation), as reviewed in
(108) (Figure 2).

The use of chemotherapy in combination with ICI has improved
response rates and OS in many tumor types (109–111), and several
studies are currently underway combining docetaxel chemotherapy
and ICI in metastatic castration sensitive and resistant PCa
(NCT03879122, NCT03834506, NCT04100018).

The combination of PARP inhibitors with ICI is currently
being explored, after improved survival was demonstrated in
mCRPC patients harbouring mutations in Breast Cancer genes
(BRCA)1/2 (112). There is scientific rational that PARP inhibitors
are immunogenic. They induce genomic catastrophe in
homologous recombination deficient tumors. The resulting
cytosolic DNA fragment debris triggers IFNg production via
activation of the stimulator of interferon gene (STING) pathway
(113, 114). A phase I/II trial evaluated the combination of
durvalumab, an anti-PD-L1 monoclonal antibody, with olaparib
in seventeen mCRPC patients (115). Nine (53%) had a PSA
response, with a radiological response rate seen in four (44%).
Similarly, pembrolizumab and olaparib were investigated in the
KEYNOTE-365 cohort A phase II trial. This trial enrolled 41
docetaxel-pretreated mCRPC patients to receive pembrolizumab
200mg i.v. every three weeks and Olaparib 400 or 300 mg capsules
twice a day (116). Confirmed PSA response rate was 9% in 82
patients with a baseline PSA assessment. Median time to PSA
progression was 3.7 months (95% CI, 2.8-4.4) (116). Due to the
activity observed with the combination, subsequent phase III trials
were designed and are currently ongoing: pembrolizumab and
olaparib versus a second androgen biosynthesis inhibitor
(KEYLYNK-010 NCT03834519), and nivolumab with rucaparib,
docetaxel or enzalutamide (NCT03338790).

Innovative strategies with new immune stimulatory agents
are also being evaluated, such as STING-agonists in combination
with ICI (NCT03956680, NCT03843359), and Toll-like receptors
(TLR) agonists (TLR3: NCT02643303).

Modulation of the tumor neo-vasculature is another potential
therapeutic avenue. Inhibition of VEGF, and cell adhesion
molecules such as ICAM1, increases endothelial translocation
and trafficking of effector T cells into the excluded or deserted
TME (108). Therapeutic successes have been seen with the
combinatorial approach of anti-angiogenesis agents and ICI in
other tumor types (117–119), which awaits to be reproduced in
PCa (120).

Additional innovative strategies under investigation include
targeting metabolic pathways in MDSC, M2-like TAMs, and
Tregs, as well as augmenting the presence and function of tumor-
specific effector lymphocytes (108).

The first attempts to target MDSCs were made with a drug
called tasquinimod. This small drug molecule inhibits the protein
S100A9, which plays a key role in the recruitment of PMN-
MDSC (83, 121). In a phase II clinical trial 201 mCRPC patients
were randomized to tasquinimod or placebo, allowing for
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crossover from the placebo arm (122). A prolongation of both
the PFS and OS was seen in patients receiving tasquinimod, with
hazard ratios of 0.52 (95% CI 0.35-0.78, p=0.001) and 0.64 (95%
CI 0.42-0.97, p=0.034), respectively (122). A subsequent phase III
trial of chemotherapy-naïve mCRPC patients randomized
patients to tasquinimod or placebo, with evidence of improved
PFS (HR 0.64, 95% CI 0.54-0.75, p<0.001) but not OS (HR 1.10,
95% CI 0.94-1.28, p=0.25) (123). Despite these discouraging
results, trials should now focus in combining tasquinimod with
Frontiers in Immunology | www.frontiersin.org 8
ICI to deplete MDSCs immunosuppressive activity while
boosting T cell killing capacity.

Based on important pre-clinical research discussed earlier,
current clinical trials are targeting MDSC in PCa. A Phase I/II of
an anti-IL23 antibody in combination with enzalutamide is
currently recruiting for mCRPC patients (NCT04458311).
Another Phase Ib/II trial is evaluating an anti-IL8 inhibitor in
combination with nivolumab and degarelix (NCT03689699).
IDO is being targeted in a combinatorial strategy in a Phase
FIGURE 2 | Targets for multi-modality therapeutic strategies. As we gain further granularity on the dynamic interconnected TME, new therapeutic targets are being
identified which, in combination with low and high dose irradiation (SBRT), can induce immune infiltration into cold tumors. Multi-modality treatment strategies are
needed to overcome the abundance of immunosuppressive factors in the prostate TME. RT is a non-invasive modality with the potential to augment anti-tumor
immune responses. The in-situ vaccination effect of high-dose RT should be boosted by promoting antigen presentation, T cell priming and activation. LDRT can
remodel the TME. This needs to be leveraged through combination strategies with immunotherapy and emerging novel drugs.
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I/II trial of the IDO inhibitor, epacadostat, in association with a
bi-functional fusion protein against PDL1 and VEGF, an IL15
agonist and a vaccine targeting the transcription factor
brachyury (NCT03493945) (Table 2). Similarly, therapeutic
approaches to repolarize immunosuppressive TAMs are
underway. A phase I/II trial of AZD5069, a CXCR2 antagonist,
in combination with enzalutamide is currently recruiting
patients with mCRPC (NCT03177187).
HIGH DOSE IRRADIATION TRIGGERING
IN-SITU VACCINATION

There is emerging evidence that RT can be an effective non-
invasive approach to stimulate immunomodulatory effects at
local and potentially systemic levels. Radiotherapy has been
shown to initiate a pro-inflammatory cascade, correct aberrant
angiogenesis, and potentially augment systemic responses
to immunotherapy (124). Anecdotal reports of the abscopal
effect, where the irradiation of a metastatic lesion results in the
regression of lesions outside of the irradiated field, demonstrates
the potential of a RT-induced systemic anti-tumor response
(125). Case reports of the abscopal effect in patients resistant
to ICI who responded systemically after receiving palliative RT
treatment have boosted enthusiasm for using RT as an
immunogenic trigger (125–127).

Pre-clinical mice models, in addition to translational clinical
research, supports the hypothesis that the abscopal effect is an
immunologically mediated phenomenon (13, 128). The abscopal
effect was seen in mice models after administering a single
fraction of RT (6 Gy), which was not reproduced in athymic
mice (12). Formenti et al. reported a Phase I trial of 39 patients
with metastatic non-small cell lung cancer treated with
ipilimumab and high-dose RT (5 X 6 Gy or 3 X 9 Gy) to a
single metastatic lesion (128). Objective responses were observed
in 18% of enrolled patients, and 31% had disease control. The
production of type I IFN following RT correlated with clinical
responses (128). Functional analysis in one responding patient
showed the rapid in vivo expansion of CD8 T cells recognizing a
neoantigen encoded in a gene upregulated by radiation,
supporting the hypothesis that one explanation for the
abscopal response is radiation-induced tumor neo-antigens.

Unfortunately, randomized clinical trials have now
conclusively established that abscopal effects are intrinsically
incidental, even when RT is combined with ICI (129, 130).

High dose RT induces cell death due to the accumulation of
double-strand DNA breaks, leading to critical DNA injury. The
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resulting cell necrosis and apoptosis induce the release of tumor-
associated antigens, which act as damage-associated molecular
patterns (DAMPs) (131). These cytosolic DNA fragments trigger
activation of the STING pathway, resulting in the production of
IFNg. However, this cellular pathway can be inhibited by
administering RT doses of above 12-18 Gy, through the
production of DNA exonuclease Trex1, which degrades
cytosolic DNA (132).

This process of pro-inflammatory cytokine production and
immune cell activation is called immunogenic cell death (133–
135). Necrotic cell death also produces other DAMPs which
include high-mobility group box-1 (HMGB1), which activates
TLR4 on antigen presenting cells (136). Cellular stress leads to
membrane translocation of calreticulin from the endoplasmic
reticulum, which elicits activation of DCs, who in turn secrete
pro-inflammatory cytokines, such as IL6 and tumor necrosis
factor alpha (TNFa) (137).

In addition, RT can exert pro-inflammatory responses in
surviving tumor cells through multiple mechanisms. High dose
RT stimulates the production by the tumor of pro-inflammatory
cytokines, such as TNFa, interleukin 1 (IL1), IL6 and interleukin
8 (IL8) (138), increasing the recruitment of activated T cells and
myeloid cells, and stimulates the maturation and recruitment of
DCs (13). Antigen presentation is further facilitated through the
upregulation of MHC class I molecules on irradiated cells and
antigen presenting cells (18). The trafficking and infiltration of
effector cells is augmented through the production of
chemotactic chemokines, such as CXCL9, CXCL10, and
CXCL16, and the upregulation of vascular adhesion molecules
ICAM and VCAM (139).
COMBINATION OF HIGH DOSE
IRRADIATION WITH IMMUNOTHERAPY

While single-agent ipilimumab showed no survival benefit versus
placebo for mCRPC chemotherapy-naïve patients (29), another
phase III trial combined ipilimumab with a single fraction of RT
(8 Gy) in the post-chemotherapy setting (14) and showed a non-
statistically significant improvement in OS at a median follow-up
of 11 months (14). This trial randomised patients, who have
progressed after docetaxel, to receive ipilimumab 10 mg/kg or
placebo every three weeks for up to four cycles, following the
administration of a single fraction of bone-directed RT (8 Gy)
(14). Final analysis results reveal however a crossing of the curves
at 7-8 months, and subsequent sustained survival in the
ipilimumab and RT arm, with 4-year OS of 10% versus 3.3%
TABLE 2 | MDSC-directed immunotherapy.

Method of action Target Agent Ongoing clinical trials (NCT) Phase

Depletion of MDSCs S100A9 Tasquinimod (123)
Tyrosine Kinase inhibitor Cabozantinib (85)

Impairment of MDSC function/recruitment IL23 inhibitor Tildrakizumab NCT04458311 I/II
IL8 inhibitor BMS-986253 NCT03689699 Ib/II
IDO inhibitor Epacadostat NCT03493945 I/II
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(140). The high dose RT administered prior to ICI may have
played a synergistic role in the delayed separation of the curves
seen in this study (14).

Analysis of the combination of sipuleucel-T and ipilimumab
in mCRPC patients revealed improved radiographic PFS in those
with prior high dose external beam RT or brachytherapy to the
prostate (141). In addition, translational analysis showed higher
PD1 and VISTA expression levels in circulating peripheral T
cells, and lower CTLA4 expression (141). This is evidence of
long-term immune modulation following high dose RT.
Similarly, long-term immune modulation by high dose RT was
observed in patients undergoing prostate-directed SBRT (36.25
Gy in 5 fractions) for localised disease (142). In this study
patients peripheral blood mononuclear cells produced IFNg in
vitro upon exposure to known prostate specific antigens (PSA,
PSCA, and PSMA) at day 40 post SBRT (142). This study shows
that an RT-induced in-situ vaccination in PCa might be observed
several weeks after treatment.

Considering the multitude of potent interconnected
immunosuppressive pathways activated in PCa, it is unlikely that
RT to a single lesion without any additional immunological
intervention will induce a sustained systemic anti-tumor
response, except in exceptional circumstances. The inflammatory
trigger must boost systemic innate and adaptive immunity and
dampen immunosuppressive signals to alter the TME composition
of distant lesions, which is determined by local interactions
between the host and the genetic and epigenetic states of often
clonally distinct tumor deposits. Decades of cancer vaccine failures
show that all distant lesions require local reprogramming of the
TME in addition to eliciting a systemic immune response (143).
This explains why abscopal effects are rarely observed in clinical
trials, despite SBRT-induced in-situ vaccination being observed
primarily in pre-clinical models. Irradiation of all metastatic
deposits could overcome this tumor local immune resistance,
however this approach is not feasible due to severe toxicity of
high dose irradiation when irradiating multi-metastatic deposits.

Thus, innovative strategies must be employed to potentiate an
abscopal effect. The in-situ vaccination response requires
bolstering through combinatorial immunotherapeutic
approaches to counteract the potent immunosuppressive
TME. Combination of RT and immunotherapy trials that targets
innate and adaptive immunity are currently underway. In the
oligometastatic setting, SBRT and durvalumab (NCT03795207),
SBRT and pembrolizumab, and ADT and a TLR9 agonist
(NCT03007732) are currently enrolling. Two ongoing Phase II
trials are investigating the combinations of sipuleucel-T vaccine
with external beam RT (NCT01807065) and SBRT
(NCT01818986) for patients with mCRPC. Another Phase II
trial is evaluating the addition of a dendritic cell vaccine to high
dose adjuvant RT in localised high-risk PCa (NCT02107430).

The combination of CAR-T therapy and high dose RT (20-35
Gy) is gaining scientific interest in lymphomas, due to its
effectiveness as a bridging therapy (144), and the fact that it
may improve responses to CAR-T cells (145). A recent study
compared patients who received RT prior to CAR-T cell therapy
to those who did not, and found that those who received RT
Frontiers in Immunology | www.frontiersin.org 10
prior to CAR-T cell therapy had a better 1-year PFS of 78%,
compared to 44% in those who did not receive RT within 30 days
of infusion, with no increase in toxicity (146). There is scientific
rational that RT has the potential to augment CAR-T cell therapy
efficacy through increasing target antigen expression. Preclinical
data demonstrates that RT increases antigen release and priming,
in a dose dependent fashion (147). Weiss et al. demonstrated that
combining a single fraction of RT (4 Gy) with NKG2D-CAR-T
cells enhanced the number of CAR-T cells that reached the
tumor site, boosted interferon-secretion, improved therapeutic
efficacy, and extended mouse survival in a glioblastoma model
(148). There are currently multiple Phase I clinical trials
underway targeting PSMA (NCT04249947, NCT04227275)
and PSCA (NCT03873805, NCT02744287) CAR-T cells in
mCRPC, however a combinatorial approach with concurrent
RT warrants evaluation.

Radionuclide therapy in combination with immunotherapy is
currently being explored in PCa. Radionuclides like Radium-223
and Lutetium-177 (177Lu)-PSMA-671 selectively deliver high-dose
RT, and are now standard-of-care in the management of
metastatic PCa (149, 150). Emerging evidence is accumulating
demonstrating their efficacy in combination with ICI in PCa.
Results of Radium-223 in combination with atezolizumab were
discouraging, with increased toxicity without clinical benefit (151),
however strategies with 177Lu-PSMA-671 appear promising.
Recently Aggarwal et al. reported on the use of a single dose of
177Lu-PSMA-671 with pembrolizumab in a chemotherapy naïve
mCRPC population, with PSMA-avid disease (152). The overall
response rate was 44%, with four (22.2%) patients displaying
durable responses (5.4-17.8 months) (152). The PRINCE trial
also evaluated 177Lu-PSMA-671 with pembrolizumab in the
mCRPC setting (153). Thirty-seven patients, some having
received prior docetaxel, with PSMA-avid FDG non-avid
disease, received 6 cycles of the radionuclide in addition to
pembrolizumab, 73% demonstrated a PSA response, defined as
at least 50% reduction in PSA, and seven of the nine patients with
measurable disease (78%) had a partial response by Response
Evaluation Criteria in Solid Tumors (RECIST) (153). Radium-223
in combination with niraparib was shown to be safe and tolerable
in a Phase I trial (154), with a subsequent Phase II trial pending
results. Similar phase I/II clinical trials of Radium-223 in
combination with olaparib (NCT03317392), and 177Lu-PSMA-
671 with olaparib are also being conducted (NCT03874884).
LOW DOSE RADIOTHERAPY TO
REPROGRAM THE TUMOR
MICROENVIRONMENT

An innovative strategy to reprogram the TME is LDRT. There is
emerging evidence that LDRT may have immune-stimulatory
effects (124, 155). Radiotherapy doses of up to 2 Gy can induce
DNA damage and trigger activation of the STING pathway,
leading to DC activation (156). Translational research has
demonstrated the upregulation of TLR signalling molecules on
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human monocytes after irradiation with 0.05 and 0.1 Gy (157).
LDRT can remodel the TME, attenuating pro-tumorigenic
TAMs, increasing effector T cell trafficking and function (124)
and reducing TGFb production (158). Furthermore, Tregs may
be more sensitive to LDRT compared to effector T cells (159),
and indeed low-dose total body irradiation reduced Tregs and
prolonged OS in a melanoma model (160). Klug et al. reported
on the immunomodulatory effect of a single fraction of LDRT in
pancreatic cancer pre-clinical model, where 2 Gy reprogrammed
TAMs to an anti-tumorigenic M1-like phenotype and corrected
aberrant tumor vasculature allowing for correct T cell
trafficking (21).

Recent pre-clinical evidence from our group demonstrates
that LDRT can overcome immune resistance in immune desert
tumors, including PCa, increasing T cell infiltration and response
to ICI (22). Initially, we administered 0.5-2 Gy external beam
LDRT to the peritoneal cavity of ovarian tumor-bearing mice, or
localized 1 Gy external beam RT to subcutaneous Lewis lung
carcinoma tumors (22). We discovered that 0.5 to 2 Gy RT can
inflame cold tumors by increasing the frequency of CD8+, CD4+,
CD11b+, CD11c+ cells in the TME (22). 1 Gy LDRT resulted in
the greatest immune cell infiltration and the highest CD8+:
Foxp3+ cell ratio (22). T-cell inflammation subsided after one
week, but weekly cyclic 1 Gy administration resulted in ongoing
immune cell recruitment into ovarian tumors.

In light of these findings, a combinatorial protocol was created,
combining LDRT with ICI, nivolumab and ipilimumab, in
addition to low-dose cyclophosphamide, to attenuate Tregs, and
an CD40 agonist to stimulate antigen presentation (22). This
orthogonal combination was administered once a week for three
weeks. 83% of mice exhibited a tumor response (22).
Deconvolution of the treatment protocol revealed that all agents
were required for full benefit (22).

Using this encouraging pre-clinical data, we rationally
designed a Phase I clinical trial for low TIL-infiltrated solid
tumours (tumors with less than 5 CD8+ T cells per high power
field by immuno-histochemistry), combining LDRT with
metronomic cyclophosphamide, ICI targeting CTLA4 and
PD1, together with aspirin to reduce PGE2-induced immune
suppression. Overall disease control rate of the eight
immunotherapy-naïve patients was 87.5%, which is striking for
this immunologically cold tumor population (22). Responses
were seen in PCa patients (22). A response was seen in all
irradiated lesions in those who responded, and subsequent
progression occurred outside the irradiated field, highlighting
the critical role of locally delivered LDRT to modulate the TME.

Translational analysis confirms the inflammatory effect of
LDRT with the immunotherapy combination. Pre and post
LDRT biopsies revealed a ‘hot’ TME in responding patients,
with increased total CD4+ and CD8+ TILs, as well as
upregulation of genes involved in immune cell activation (22).
Furthermore, tumors had a high levels of CD4+ T cell infiltration,
which was associated with a significant increase in TCR clonal
diversity in peripheral blood (22). Non-responders had
upregulation of transcriptomic signatures associated with
tolerogenic DCs and M2-like TAMs. These encouraging
Frontiers in Immunology | www.frontiersin.org 11
clinical results add weight to the RT-based combinatorial
therapeutic approach.

Pre-clinical data also suggests that LDRT may enhance the
efficacy of adoptive cellular therapies. DeSelm et al. discovered
that LDRT of 2 Gy sensitized tumors to CAR-T cell therapy, in a
murine model of pancreatic cancer with heterogeneous antigen
expression (161). This augmented anti-tumor effect was not due
to increasing target antigen expression on antigen-negative
tumor cells but more to an immunomodulatory effect of LDRT
(161). The authors found that sLeA-targeted CAR-T cells
produce TNF-related apoptosis-inducing ligand (TRAIL) upon
engaging sLeA+ tumor cells, and eliminated sLeA− tumor cells
previously exposed to systemic or local LDRT in a TRAIL-
dependent manner (161).These results suggest a synergistic
therapeutic effect of LDRT in combination with CAR-T cell
therapy in solid tumors, which merits prospective evaluation in a
Phase I/II trial.

Strategies of combining LDRT with SBRT have also been
investigated, in attempts to maximise the systemic anti-tumor
response (158). Barsoumian et al. have developed a strategy
entitled ‘Radscopal’, in which high-dose RT is administered to
the primary lesion, and LDRT delivered to metastatic lesions.
This translational research demonstrated success across multiple
mouse models, with increased survival, which was not replicated
in the absence of the LDRT to metastatic sites, or high dose RT to
all sites. Reponses were further increased with concomitant ICI,
with anti-PD1 and anti-CTLA4 monoclonal antibodies. LDRT
polarised TAM to the M1-like phenotype, increased NK cell
infiltration and reduced TGFb production (158). The potential of
LDRT in combination with SBRT and ICI deserves exploration
in future Phase I/II trials.
CONCLUSION

Over the last decade, there have been significant advances in
radiation and systemic therapies for localized and metastatic
PCa. While these new therapies have improved survival,
responses are not durable. More work is needed to render PCa
responsive to immunotherapies.

As we gain granularity on the complex and dynamic TME,
multiple key immune regulators have been identified.
Orthogonal combinatorial therapies that target the
immunosuppressive TME, while boosting innate and adaptive
immunity, may achieve anti-tumor immune responses in PCa.

RT is a non-invasive modality with immune modulatory
effects, which can be combined with immunotherapy for
synergistic anti-tumor responses. High dose RT can trigger in-
situ tumor vaccination. SBRT appears to be a promising
approach for precisely targeting tumor deposits; however,
when attempting to irradiate all metastasis in multi-metastatic
patients, the high dose schemas of SBRT will pose toxicity issues.
New innovative approaches include LDRT to large fields, either
alone or in combination with SBRT to selected lesions (22, 158).
Emerging evidence supports this alternative therapeutic method
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for sensitising PCa to immunotherapy (22). As our group
demonstrated, the local effects of radiation on one metastasis
should be expanded to all metastatic lesions in order to elicit an
anti-tumor immune response (22). This approach will require
integration with immunotherapy strategies, based on druggable
targets upregulated by RT, that address the immunosuppressive
TME, while also engaging RT-induced immune responses.

We believe that multi-modality trials that include novel
radiation strategies are needed in PCa. Rapid clinical
development requires robust pre-clinical tumor models, such
as in vitro human organoids (162), and neo-adjuvant clinical
trials to allow clinical and pathological evaluation of therapeutic
combinations. The use of high throughput technology to
interrogate tumor biopsies and peripheral blood will be critical
in the search for predictive biomarkers. Identification of
biomarkers which reflect the immune landscape, such as
cytokines, circulating TILs, and anti-tumor autoantibodies, in
addition to tumor-specific biomarkers, is essential to enrich
clinical trial populations (163). Furthermore, adapting standard
imaging methods to accurately capture the immune response is
required to assess response to treatment. Radiomics analysis of
multiple standard imaging modalities, magnetic resonance
Frontiers in Immunology | www.frontiersin.org 12
imaging (MRI), computed tomography (CT) and positron-
emission tomography (PET), incorporated with machine
learning and artificial intelligence, is emerging as a promising
field (164).
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