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Excessive Matrix Metalloproteinase-1 and Hyperactivation 
of Endothelial Cells Occurred in COVID-19 Patients and 
Were Associated With the Severity of COVID-19
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Background. Systemic vascular injury occurs in coronavirus disease 2019 (COVID-19) patients; however, the underlying mech-
anisms remain unknown. 

Methods. To clarify the role of inflammatory factors in COVID-19 vascular injury, we used a multiplex immunoassay to profile 
65 inflammatory cytokines/chemokines/growth factors in plasma samples from 24 hospitalized (severe/critical) COVID-19 patients, 
14 mild/moderate cases, and 13 healthy controls (HCs). 

Results. COVID-19 patients had significantly higher plasma levels of 20 analytes than HCs. Surprisingly, only 1 cytokine, 
macrophage migration inhibitory factor (MIF), was among these altered analytes, while the rest were chemokines/growth factors. 
Additionally, only matrix metalloproteinase-1 (MMP-1) and vascular endothelial growth factor A (VEGF-A) were significantly el-
evated in hospitalized COVID-19 patients when compared to mild/moderate cases. We further studied MMP-1 enzymatic activity 
and multiple endothelial cell (EC) activation markers (soluble forms of CD146, intercellular adhesion molecule 1 [ICAM-1], and 
vascular cell adhesion molecule 1 [VCAM-1]) and found that they were highly dysregulated in COVID-19 patients. 

Conclusions. COVID-19 patients have a unique inflammatory profile, and excessive MMP-1 and hyperactivation of ECs are 
associated with the severity of COVID-19.
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Coronavirus disease 2019 (COVID-19), an infectious disease 
caused by a novel coronavirus (severe acute respiratory syn-
drome coronavirus 2, SARS-CoV-2), has created an unprece-
dented global health and economic crisis. By the end of 2020, 
confirmed COVID-19 cases surpassed 84 million globally, re-
sulting in over 1.8 million deaths. COVID-19 patients can expe-
rience various clinical manifestations, including asymptomatic, 
mild, moderate, severe, or critical symptoms. Growing evidence 
shows that COVID-19 is a vascular illness, not solely a respi-
ratory disease. Histopathological examinations of postmortem 
tissues of COVID-19 patients have revealed (1) diffuse alveolar 
damage with perivascular infiltration of inflammatory cells [1], 
(2) extensive damage to the lining of blood vessels throughout 
the body [1–3], (3) severe endothelial injury and widespread 
thrombosis in the lungs, heart, liver, kidney, and small intestine 

[1–3], (4) viral particles in endothelial cells (ECs) of the glomer-
ular capillary loops [2], and (5) caspase-3–positive apoptotic 
ECs in the lung and intestine tissues [2]. In addition, a recent 
study has shown that COVID-19 patients in intensive care units 
(ICUs) have higher counts of circulating ECs than non-ICU 
patients [4]. Circulating ECs are stressed cells detached from 
injured blood vessels, thereby indicating severe vascular in-
jury [5]. Collectively, patients with severe COVID-19 exhibit 
impaired endothelial and microcirculatory functions across 
vascular beds of different organs, which may be particularly 
relevant for vulnerable individuals with preexisting endothelial 
dysfunctions such as diabetes, hypertension, and cardiovascular 
diseases, all of which are associated with adverse outcomes in 
COVID-19 [2, 6, 7].

The pathological mechanisms underlying vascular injury in 
COVID-19 remain unclear, although cytokine storm syndrome 
(CSS) and SARS-CoV-2 infection are considered contributors. 
SARS-CoV-2 is a member of the family Coronaviridae, genus 
Betacoronavirus, and is closely related to the SARS-CoV that 
caused the 2003 SARS pandemic [8–10]. CSS plays a critical 
role in the pathogenesis of SARS-CoV infection and represents 
a major cause of morbidity in SARS patients [11]. Elevated cir-
culating concentrations of numerous inflammatory factors such 
as interleukin 6 (IL-6), interferon-γ (IFN-γ), IL-8, and inducible 
protein-10 (IP-10) have been reported in SARS patients when 
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compared to healthy controls (HCs) [12, 13]. Circulating IL-6 
levels are also elevated in COVID-19 patients and are cited as 
evidence of COVID-19 CSS [14, 15]. However, the levels of IL-6 
and other inflammatory cytokines such as IL-8 are significantly 
less elevated in COVID-19 patients than the values typically re-
ported in patients with CSS caused by conditions such as septic 
shock [16]. Indeed, the concentrations of IL-6, IL-8, and tumor 
necrosis factor-α (TNF-α), 3 of the most important inflamma-
tory mediators in human diseases with CSS [17], in COVID-19 
patients are similar to those found in ICU patients with cardiac 
arrest or trauma, conditions that are not notable for cytokine 
storms [16]. These findings bring into question whether a cyto-
kine storm occurs in COVID-19, and whether IL-6, IL-8, and 
TNF-α act as key inflammatory mediators for fatal manifest-
ations in patients with severe COVID-19 [17]. Our results echo 
recent National Institutes of Health (NIH) guidelines that note 
there are insufficient data to recommend IL-6 inhibitors for the 
treatment of COVID-19 [18]. In fact, efforts to combat cytokine 
storm in patients with severe COVID-19 have proven unsuc-
cessful [19].

SARS-CoV-2 uses angiotensin-converting enzyme 2 
(ACE2) as a primary receptor for viral binding and entry [20, 
21]. Viral entry is also facilitated by transmembrane protease 
serine 2 (TMPRSS2) and neuropilin-1 (NRP1) [20, 22]. ACE2, 
TMPRSS2, and NRP1 are highly abundant on the lung alveolar 
type II epithelial (AT2) cells, rendering AT2 cells highly sus-
ceptible to productive SARS-CoV-2 infection [22–25]. ACE2, 
TMPRSS2, and NRP1 are also expressed on the surface of ECs 
[22, 23], albeit at lower levels than in AT2 cells [22], suggesting 
that these molecules may facilitate SARS-CoV-2 infection of 
ECs. Indeed, SARS-CoV-2 particles were observed in ECs in 
kidney tissues from COVID-19 patients [8]; however, the un-
derlying mechanisms are unclear.

To explore the profile and key players of the cytokine storm 
in COVID-19, we used a multiplex immunoassay to simul-
taneously measure 65 inflammatory cytokines/chemokines/
growth factors in plasma samples from hospitalized (severe/
critical) COVID-19 patients, mild/moderate cases, and HCs. 
Surprisingly, matrix metalloproteinase-1 (MMP-1) and vas-
cular endothelial growth factor A (VEGF-A), not conventional 
inflammatory cytokines such as IL-6, were 2 of the most un-
ambiguously elevated inflammatory factors in hospitalized 
COVID-19 patients when compared to mild/moderate cases 
or HCs. Spearman correlation analysis revealed that the plasma 
levels of MMP-1 and VEGF-A in hospitalized COVID-19 pa-
tients were positively correlated. Given that excessive MMP-1 
plays a central role in tissue destruction in a wide variety of 
vascular diseases and that elevated VEGF-A, an EC activa-
tion marker, increases vascular permeability [26], we further 
studied MMP-1 enzymatic activity and other EC activation 
markers, including soluble forms of CD146, intercellular adhe-
sion molecule 1 (ICAM-1), and vascular cell adhesion molecule 

1 (VCAM-1) in our cohort of COVID-19 patients and HCs. 
We found that excessive MMP-1 and hyperactivation of ECs 
occurred in COVID-19 patients and were correlated with the 
severity of COVID-19.

METHODS

Study Subjects and Ethical Considerations

This study was performed with the approval of the Institutional 
Review Boards at Indiana University School of Medicine. Blood 
samples were drawn after each participant provided a written 
informed consent form.

The study subjects included 24 hospitalized COVID-19 
patients, 14 mild/moderate cases, and 13 HCs. Hospitalized 
COVID-19 patients included SARS-CoV-2–infected individ-
uals who developed severe illness (dyspnea, hypoxia, >50% 
lung involvement on imaging, or required oxygen support 
[27]) or critical disease with complications such as respiratory 
failure, thrombosis, and/or multiorgan failure [27]. Some of 
these hospitalized patients were admitted to ICUs. Patients 
with mild/moderate COVID-19 were characterized with mild 
respiratory symptoms (nasal congestion, runny nose, and 
a sore throat) or mild pneumonia [27]. All COVID-19 pa-
tients were treated in Indiana University Health hospitals in 
Indianapolis, Indiana, during May to December 2020. Plasma 
samples from HCs were selected from our banked blood sam-
ples that were collected before the COVID-19 pandemic as 
described in our previous reports [28, 29]. Demographics 
of HCs were matched with COVID-19 patients so that there 
were no significant differences between age or sex of HCs and 
COVID-19 subjects. The demographic and clinical character-
istics of COVID-19 patients and HC demographics are sum-
marized in Table 1.

Multiplex and ELISA Immunoassays

Peripheral blood was collected in heparin-coated BD Vacutainer 
Blood Collection tubes (BD Biosciences). Blood samples were 
centrifuged within 12 hours of collection at 700g for 20 min-
utes at room temperature without brake. The top layer (plasma) 
was harvested and stored at −80°C until use. Plasma concen-
trations of 65 human cytokines/chemokines/growth factors 
were simultaneously measured using a magnetic bead-based 
multiplex kit (EPX650-10065–901; Invitrogen) according to the 
manufacturer’s instructions. The beads were read on a BioPlex 
200 system (Bio-Rad). The standards at 4-fold serial dilutions 
were run on each plate in duplicate and used to calculate the 
concentrations of cytokines/chemokines/growth factors using 
the Bio-Plex Manager Software (Bio-Rad).

Plasma levels of soluble CD146 (sCD146), soluble ICAM-1 
(sICAM-1), soluble VCAM-1 (sVCAM-1), and intestinal fatty-
acid binding protein (I-FABP) were quantified using the human 
CD146, ICAM-1, VCAM-1, and I-FABP DuoSet enzyme-
linked immunosorbent assay (ELISA) kits (all from R&D 
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Systems), respectively, according to manufacturer’s instruc-
tions. ELISA results were recorded using a microplate reader 
system (Bio-Tek).

Quantitative Determination of Human Active MMP-1 in Plasma Samples

Enzymatic activity of plasma MMP-1 was determined using 
the Human Active MMP-1 Fluorokine E kit (F1M00; R&D 
Systems) as per manufacturer’s instructions. Briefly, diluted 
plasma samples and MMP-1 standards were added to the 
wells that were precoated with a monoclonal antibody spe-
cific for human MMP-1. After washing, amino-phenyl mer-
curic acetate, an activation reagent of MMP-1, was added to 
the standards, but not the plasma samples. After washing, 
a fluorogenic substrate linked to a quencher molecule was 
added and any active enzyme present would cleave the pep-
tide linker between the fluorophore and the quencher mol-
ecule, generating a fluorescent signal that is proportional 
to the amount of enzyme activity in an individual sample. 
Thus, plasma levels of active MMP-1 were quantitatively 
detected using a Synergy H1 Hybrid Multi-Mode Reader 
(BioTek), where fluorescence emission was recorded in rel-
ative light fluorescence units (RLU).

Statistical Analysis

Statistical analysis was performed using GraphPad Prism 
6.0. Data were expressed as mean ± standard error of the 
mean. Differences between 2 groups were calculated using 
the Mann-Whitney test. Kruskal-Wallis test with Dunn cor-
rections was used for comparisons among 3 groups. χ 2 test 
was used for comparison between groups for categorical 
variables. The linear relationship between 2 variables was 
analyzed using the Spearman correlation test. P < .05 was 
considered statistically significant.

RESULTS

Characteristics of Study Subjects

The study subjects included 24 hospitalized patients with se-
vere/critical COVID-19, 14 patients with mild/moderate 
COVID-19, and 13 HCs. Severe/critical COVID-19 patients 
were hospitalized in Indiana University Health hospitals in 
Indianapolis, Indiana and mild/moderate COVID-19 patients 
visited Indiana University Health hospitals between May and 
December 2020. HCs were recruited before the COVID-19 
pandemic as described in our previous report [29]. The dem-
ographics and clinical characteristics of these subjects are sum-
marized in Table 1. There were no differences in age, sex, or race 
distributions between these 3 groups. Hospitalized COVID-19 
patients had lower absolute lymphocyte count and higher levels 
of D-dimer, C-reactive protein, and ferritin than patients with 
mild/moderate COVID-19 (Table 1). There were no differences 
in white blood cell or neutrophil counts between the hospi-
talized patients and patients with mild/moderate COVID-19 
(Table 1).

Profiles of Inflammatory Cytokines/Chemokines/Growth Factors in 

Hospitalized COVID-19 Patients, Mild/Moderate Cases, and HCs

The pathogenesis of severe or critical COVID-19 is complex 
and has been suggested to include a cytokine storm that sus-
tains an aberrant systemic immune response [30]. To eluci-
date the profile and key pathogenic inflammatory mediators 
of the cytokine storm in COVID-19 patients, we used a mul-
tiplex immunoassay to simultaneously detect plasma levels 
of 65 cytokines/chemokines/growth factors in hospitalized 
(severe/critical) patients, mild/moderate cases, and HCs. In 
comparison to HCs, COVID-19 patients had significantly 
higher plasma levels of 20 of these analytes (Table 2). Among 
these altered analytes, macrophage migration inhibitory 
factor (MIF) was the only inflammatory cytokine, all others 

Table 1. Demographics and Clinical Characteristics of COVID-19 Patients vs HCs

Characteristic HC (n = 13) Mild (n = 14) Hosp (n = 24)

Age, y, median (IQR) 56.6 (42.1–65.5) 59.0 (43.0–63.0) 64.0 (48.5 -73.0)

Sex, male, No. (%) 6 (46.3) 6 (42.9) 10 (41.7)

Race, No. (%)    

 African American 5 (38.5) 7 (50.0) 10 (41.7)

 Caucasian American 7 (53.8) 6 (42.9) 13 (54.2)

 Other 1 (7.7) 1 (7.1) 1 (4.1)

D-Dimer, ng/mL, median (IQR) <250a 282 (259–290) 527 (244–814)***

CRP, mg/L, median (IQR) <10a 126 (89–268)* 830 (642–1273)***

Ferritin, ng/mL, median (IQR) <300a 350 (145–939) 311 (88–1078)

WBC, No./μL, median (IQR) 4000–11 000a 5450 (4200–8100) 8000 (5800–12 150)

Neutrophils, ANC/μL, median (IQR) 1500–8000a 3600 (2550–4800) 6300 (4400–10 300)

Lymphocytes, ALC/μL, median (IQR) 1000–4800a 1100 (650–1850) 610 (522–660)#

***P < .001 (increased), #P < .05 (decreased), comparison between mild/moderate and hospitalized COVID-19 patients. 

Abbreviations: ALC, absolute lymphocyte count; ANC, absolute neutrophil count; COVID-19, coronavirus disease 2019; CRP, C-reactive protein; HC, healthy control; Hosp, hospitalized 
COVID-19 patient; IQR, interquartile range; Mild, patients with mild/moderate COVID-19; WBC, white blood cell count.
aValues of D-dimer, CRP, ferritin, WBC, ANC, and ALC in HCs are the reference values or range for healthy population. 
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Table 2. Plasma Levels of Cytokines/Chemokines/Growth Factors in COVID-19 Patients and HC

Analyte HC (n = 13) Mild (n = 14) Hosp (n = 24)

BLC (CXCL13) 36 (17–73) 92 (45–183)* 107 (75–185)***

ENA-78 (CXCL5) 22.8 (4.6–32.4) 94.5 (68.0–69.0)*** 108.1 (66.6–178.2)***

Eotaxin-3 (CCL26) 2.2 (2.2–2.2) 6.0 (2.2–20.7)** 9.6 (6.3 -18.9)***

Fractalkin (CX3CL1) 2.5 (1.7–2.5) 3.9 (2.8–5.2)* 3.6 (2.7–5.6)***

IP-10 (CXCL10) 6.4 (3.1–9.7) 29.1 (9.2–69.9)** 28.8 (16.7–87.4)***

I-TAC (CXCL11) 11.1 (11.1–35.8) 165.6 (92.6–287.1)**  196.8 (114.2–491.2)***

MIG (CXCL9) 8.6 (8.6–10.3) 37.8 (27.4–69.1)*** 26.2 (12.7–53.2)**

MIP-1α (CCL3) 5.3 (3.1–26.3) 10.0 (3.1–19.2)*** 9.4 (3.5–19.4)***

MIP-1β (CCL4) 4.6 (4.6–4.6) 20.0 (10.0–45.8)*** 19.6 (8.8–32.7)***

SDF-1α (CXCL12) 679 (472–989) 1099 (815–1274)* 1087 (718–1275)**

HGF 11.9 (6.4–17.9) 54.8 (28.4–141.1)* 163.2 (77.1–357.3)***

MMP-1 73.8 (30.9–96.1) 316.8 (189.0–589.5)** 863.4 (551.4–1880)***,#

SCF 4.6 (3.4–8.6) 15.4 (12.4–43.6)** 16.6 (8.3–26.2)**

VEGF-A 6.8 (6.8–8.2) 124.5 (86.0–293.0)*** 353.9 (235.1–701.7)****,#

APRIL 745 (602–913) 1951 (1236–4852)*** 1883 (1239–2515)***

CD30 100 (38–126) 409 (194–936)*** 274 (178–703)***

IL-2R (CD25) 84 (84–1414) 6474 (2006–9316)** 6884 (4217–9539)***

TNF-RII 78.6 (59.1–96.4) 221.2 (158.7–262.3)*** 202.2 (150.2–256.1)***

TRAIL (CD253) 11.0 (11.0–29.5) 63.3 (41.9–103.3)** 41.4 (24.5–415.2)*

MIF 37.7 (19.7–48.4) 90.7 (80.3–125.1)*** 89.5 (70.7–157.2)***

MCP-1 (CCL2) 41.1 (21.8–59.5) 109.4 (40.1–281.5) 172.2 (84.2–363.4)**

MCP-2 (CCL8) 2.8 (0.8–4.9) 4.4 (3.1–6.2) 5.0 (2.6–8.6)*

IL-6 7.9 (7.9–7.9) 7.9 (7.9–7.9) 41.9 (7.9–76.1)*

IL-18 9.7 (4.2–9.7) 9.7 (9.1–20.5) 21.8 (9.7–56.5)***

CD40L (CD154) 4.8 (4.8–82.0) 29.5 (17.6–71.2) 36.6 (19.7–59.7)

Eotaxin (CCL11) 4.2 (21.9–99.0) 54.8 (17.8–103.0) 51.2 (31.5–128.7)

G-CSF 9.9 (9.9–33.8) 16.5 (9.9–36.4) 28.8 (13.7–38.9)

GM-CSF 15.9 (15.9–54.0) 15.9 (15.9–15.9) 15.9 (15.9–15.9)

IFN-γ 13.1 (6.4–13.1) 11.2 (7.3–15.5) 18.3 (8.9–16.4)

IL-2 36.3 (22.0–104.1) 42.4 (22.0–106.7) 53.9 (22.0–78.8)

IL-10 2.2 (2.2–2.9) 1.8 (0.9–3.2) 2.3 (1.3–4.4)

IL-15 9.0 (3.3–27.9) 3.3 (3.3–3.7) 3.3 (3.3–19.4)

IL-16 799 (412–1175) 1091 (865–1362) 936 (736–1386)

IL-17A 24.3 (24.3–358.2) 24.3 (24.3–180.3) 24.3 (24.3–187.0)

IL-20 9.1 (7.6–50.2) 9.1 (6.1–31.7) 8.8 (2.0–21.2)

IL-21 9.1 (9.1–9.1) 9.6 (8.9–33.8) 13.8 (7.3–27. 2)

IL-22 17.8 (17.8–17.8) 17.8 (17.8–34.5) 17.8 (17.8–23.6)

IL-27 17.4 (17.4–17.4) 17.4 (17.4–22.8) 17.4 (17.4–17.4)

MDC (CCL22) 46.2 (20.1–74.5) 104.6 (51.9–164.8) 62.9 (20.0–119.3)

MIP-3α 21.0 (21.0–21.0) 24.5 (15.2–57.9) 44.8 (16.8–96.4)

TSLP 4.7 (2.4–11.6) 4.6 (2.3–13.2) 6.4 (4.0–8.8)

TWEAK 409 (216–1859) 935 (469–1867) 799 (566–1566)

BAFF 3/13 3/14 7/24

Eotaxin-2 (CCL24) 0/13 2/14 4/24

FGF-2 0/13 0/14 1/24

Gro-α (CXCL1) 0/13 0/14 1/24

IFN-α 1/13 1/14 4/24

IL-1α 0/13 1/14 2/24

IL-1β 3/13 3/14 6/24

IL-3 1/13 5/14 8/24

IL-4 0/13 0/14 2/24

IL-5 1/13 1/14 2/24

IL-7 0/13 0/14 0/24

IL-8 1/13 1/14 4/24

IL-9 0/13 1/14 1/24

IL-12p70 0/13 1/14 0/24

IL-13 0/13 1/14 1/24
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were chemokines (BLC/CXCL13, ENA-78/CXCL5, eotaxin-3/
CCL26, fractalkine/CX3CL1, IP-10/CXCL10, I-TAC/CXCL11, 
MIG/CXCL9, MIP-1α/CCL3, MIP-1β/CCL4, and SDF-1α/
CXCL12), growth factors (HGF, MMP-1, SCF, and VEGF-A), 
and soluble receptors (APRIL, CD30, IL-2R/CD25, TNF-
RII, and TRAIL/CD253) (Table 2). Surprisingly, MMP-1 and 
VEGF-A were the only 2 elevated inflammatory factors that 

were significantly higher in hospitalized COVID-19 patients 
when compared to mild/moderate cases (Table 2 and Figure 
1A), while all others did not show differences between hos-
pitalized and mild/moderate COVID-19 patients (Table 2). 
Spearman correlation analysis revealed that the plasma levels 
of MMP-1 and VEGF-A in hospitalized COVID-19 patients 
were positively correlated (Figure 1B), indicating that there 
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Figure 1. Plasma levels of inflammatory factors were highly elevated in hospitalized COVID-19 patients. A, Scatter plots demonstrating the plasma levels of MMP-1, 
VEGF-A, MCP-1, MCP-2, IL-6, and IL-18 in hospitalized COVID-19 patients (n = 24), mild/moderate COVID-19 patients (n = 14), and HCs (n = 13). Kruskal-Wallis test with 
Dunn correction for pairwise comparisons among hospitalized COVID-19 patients, mild/moderate COVID-9 patients, and HCs. *P < .05; **P < .01; ***P < .001; ns, not 
significant. Lines represent the mean and the standard error of the mean. B, Spearman correlation analysis between plasma levels of MMP-1 and VEGF-A in hospital-
ized COVID-19 patients. Abbreviations: COVID-19, coronavirus disease 2019; HC, healthy controls; Hosp, hospitalized COVID-19 patients; IL, interleukin; MCP, monocyte 
chemoattractant protein; Mild, mild/moderate COVID-19 patients; MMP-1, matrix metalloproteinase-1; r, Spearman correlation coefficient; VEGF-A, vascular endothelial 
growth factor A.

Analyte HC (n = 13) Mild (n = 14) Hosp (n = 24)

IL-23 0/13 0/13 1/24

IL-31 0/13 1/14 1/24

LIF 0/13 0/14 1/24

MCP-3 (CCL7) 0/13 1/14 0/24

M-CSF 0/13 0/14 0/24

NGF-β 0/13 1/14 1/24

TNF-α 0/13 0/14 0/24

TNF-β 0/13 0/14 0/24

Data are median (interquartile range) or number of detected out of total subjects in rows BAFF to TNF-β. 

Kruskal-Wallis test with Dunn corrections was used for comparisons among 3 groups of HCs, mild/severe cases, and hospitalized COVID-19 patients. *P < .05, **P < .01, ***P < .001 for 
comparison between hospitalized COVID-19 and HCs, #P < .05 for comparison between hospitalized COVID-19 patients and mild/moderate cases.

Sixty-five human cytokines/chemokines/growth factors were measured: 33 cytokines (G-CSF, GM-CSF, IFN-α, IFN-γ, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, 
IL-15, IL-16, IL-17A, IL-18, IL-20, IL-21, IL-22, IL-23, IL-27, IL-31, LIF, M-CSF, MIF, TNF-α, TNF-β, and TSLP), 18 chemokines (CXCL13, CXCL5, CCL11, CCL24, CCL26, CX3CL1, CXCL1, CXCL10, 
CXCL11, MCP-1, MCP-2, MCP-3, MDC, MIG, MIP-1α, MIP-1β, MIP-3α, and SDF-1α), 6 growth factors/regulators (FGF-2, HGF, MMP-1, NGF-β, SCF, VEGF-A), and 8 soluble receptors (APRIL, 
BAFF, CD30, CD40L, IL-2R, TNF-RII, TRAIL, and TWEAK).

Abbreviations: COVID-19, coronavirus disease 2019; HC, healthy control; Hosp, hospitalized COVID-19 patients; Mild, patients with mild/moderate COVID-19.

Table 2. Continued
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are interactions between MMP-1 and VEGF-A in COVID-
19. Thus, the highly elevated plasma levels of MMP-1 and 
VEGF-A were associated with the severity of COVID-19.

Monocyte chemoattractant protein-1 (MCP-1), MCP-2, IL-6, 
and IL-18 were the 4 analytes that were significantly increased in 
hospitalized patients, but not in mild/moderate cases, when com-
pared to HCs (Table 2 and Figure 1A). However, plasma levels of 
IL-6 and IL-18 were elevated in some, but not all, patients with 
severe/critical COVID-19. As shown in Figure 1A, IL-6 was de-
tected in 0 HCs (limit of detection ≥7.98 pg/mL), 1 mild/mod-
erate case (67.8 pg/mL), and 7 hospitalized cases (13.8–325.4 pg/
mL). Similarly, IL-18 was detected in 0 HCs (limit of detection 
≥9.72 pg/mL), 4 mild/moderate cases (15.3–54.4 pg/mL), and 
18 hospitalized patients (15.7–127.3 pg/mL). Notably, the levels 
of IL-6 are significantly less elevated in patients with critical 
COVID-19 than the values typically reported in patients with 
CSS caused by conditions such as septic shock [16].

Eighteen analytes were detected in all 3 groups of research 
subjects (CD40L, Eotaxin, G-CSF, GM-CSF, IFN-γ, IL-2, IL-10, 
IL-15, IL-16, IL-17A, IL-20, IL-21, IL-22, IL-27, MDC, MIP-3a, 
TSLP, and TWEAK), albeit with no difference in the analyte 
levels (Table 2). Twenty-three analytes, primarily inflamma-
tory cytokines such as IL-8 and TNF-α, were below the limit of 

detection in the majority of hospitalized cases, mild/moderate 
cases, and HCs (Table 2).

Enzymatic Activity of MMP-1 and Activation Markers of ECs Increased in 

the Peripheral Blood in Hospitalized COVID-19 Patients

MMP-1 and VEGF-A were 2 of the most unambiguously ele-
vated inflammatory factors in hospitalized COVID-19 patients 
(Table 2). Their plasma levels were positively correlated (Figure 
1), suggesting that there are interactions between MMPs and 
ECs in COVID-19. We further studied plasma MMP-1 en-
zymatic activity and the EC activation marker profiles. To 
date, only one MMP, MMP-9, has been analyzed in one pilot 
COVID-19 study [31]. This study measured plasma MMP-9 
levels using an enzyme immunoassay and showed that hospi-
talized COVID-19 patients had higher MMP-9 levels than HCs 
[31]. However, no MMP enzymatic activity has been studied 
in COVID-19 patients. We found that the enzymatic activity of 
MMP-1 was significantly increased in hospitalized COVID-19 
patients when compared to HCs and those with mild/moderate 
COVID-19 (Figure 2A). Thus, both the levels and the enzy-
matic activity of MMP-1 were upregulated in the peripheral 
blood of COVID-19 patients, particularly in patients with se-
vere/critical COVID-19.
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Figure 2. Enzymatic activity of MMP-1 and activation markers of ECs were elevated in the peripheral blood of hospitalized COVID-19 patients. A–C, Scatter plots 
demonstrating enzymatic activity of MMP-1, levels of EC activation markers (sCD146, sICAM-1, and sVCAM-1), and levels of intestinal epithelial injury marker (I-FABP), re-
spectively, in the peripheral blood of hospitalized COVID-19 patients (n = 24), mild/moderate COVID-19 patients (n = 14), and HCs (n = 13). Kruskal-Wallis test with Dunn cor-
rection for pairwise comparisons among HC, hospitalized COVID-19 patients, and mild/moderate COVID-9 patients. *P < .05; **P < .01; ns, not significant. Lines represent the 
mean and the standard error of the mean. D, Spearman correlation analysis between plasma levels of MMP-1 and sCD146 in hospitalized COVID-19 patients. Abbreviations: 
COVID-19, coronavirus disease 2019; EC, endothelial cell; HC, healthy control; Hosp, hospitalized COVID-19 patients; I-FABP, intestinal fatty-acid binding protein; Mild, mild/
moderate COVID-19 patients; MMP-1, matrix metalloproteinase-1; r, Spearman correlation coefficient; sCD146, soluble CD146; sICAM-1, soluble intercellular adhesion mol-
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We also found that hospitalized COVID-19 patients had 
significantly higher plasma levels of sCD146, sICAM-1, and 
sVCAM-1 than HCs. Mild/moderate COVID-19 patients 
also had higher levels of sCD146, but neither sICAM-1 nor 
sVCAM-1, than HCs (Figure 2B). There were no differences 
in the plasma levels of sCD146, sICAM-1, or sVCAM-1 be-
tween hospitalized and mild/moderate COVID-19 patients 
(Figure 2B). As I-FABP is solely expressed in epithelial cells 
of the mucosal layer of the small intestine and used as a 
plasma marker of intestinal epithelial injury [32], an I-FABP 
ELISA assay was also performed to study and compare the 
effects of COVID-19 on epithelial cells versus ECs. In con-
trast to EC activation markers, plasma I-FABP levels were 
not different between hospitalized COVID-19 patients, 
mild/moderate cases, and HCs (Figure 2C), suggesting that 
systemic ECs, not small intestine epithelial cells, are signifi-
cantly affected by COVID-19.

Spearman correlation analysis was performed to identify 
any associations between plasma levels of active MMP-1 and 
EC activation markers. There was a positive correlation be-
tween plasma active MMP-1 and plasma levels of sCD146 
(r = 0.51 and P = .039; Figure 2D). There were no correlations 
between the plasma levels of active MMP-1 and plasma levels 

of sICAM-1 or sVCAM-1 in hospitalized COVID-19 patients 
(data not shown).

Taken together, our data demonstrate that both plasma levels 
and enzymatic activity of MMP-1 and plasma levels of EC ac-
tivation markers are highly elevated and positively correlated 
in COVID-19 and their dysregulations are associated with the 
severity of COVID-19.

Association of Elevated MMP-1 and EC Activation Markers With 

Demographics in Hospitalized COVID-19 Patients

We analyzed the relationship between demographic factors 
(age, sex, and race) and circulating MMP-1 and EC activation 
markers in hospitalized COVID-19 patients. Twenty-four hos-
pitalized COVID-19 patients were split into 2 age groups: 10 
cases ≤ 55 years old and 14 cases > 55 years old. As shown in 
Figure 3A, plasma VEGF-A levels were significantly higher in 
hospitalized COVID-19 patients >55 years old when compared 
to cases ≤ 55  years old. Plasma levels of MMP-1, sICAM-1, 
sVCAM-1, and active MMP-1 trended higher in the older group 
(Figure 3A). We also found that plasma sVCAM-1 levels were 
significantly higher in men (n = 10) when compared to women 
(n = 14) (Figure 3B). There were no differences in the plasma 
levels of MMP-1, active MMP-1, or EC activation markers in 
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Figure 3. Relationship of MMP-1 and EC activation with demographics of hospitalized COVID-19 patients. Scatter plots demonstrating levels of MMP-1, levels of EC ac-
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African Americans (n = 10) when compared to Caucasian 
Americans (n = 13) (Figure 3C).

DISCUSSION

In the present study, we systematically profiled and compared 
65 inflammatory cytokines/chemokines/growth factors in the 
plasma samples from hospitalized COVID-19 patients, mild/
moderate COVID-19 cases, and HCs. COVID-19 patients 
had significantly higher levels of 20 out of 65 factors ana-
lyzed when compared to HCs. These altered factors include 
10 chemokines (BLC/CXCL13, ENA-78/CXCL5, eotaxin-3/
CCL26, fractalkine/CX3CL1, IP-10/CXCL10, I-TAC/CXCL11, 
MIG/CXCL9, MIP-1α/CCL3, MIP-1β/CCL4, and SDF-1α/
CXCL12), 4 growth factors (HGF, MMP-1, SCF, and VEGF-A), 
5 soluble receptors (APRIL, CD30, IL-2R/CD25, TNF-RII, and 
TRAIL/CD253), and 1 cytokine (MIF). In addition, MCP-1, 
MCP-2, IL-6, and IL-18 were significantly increased in hos-
pitalized patients when compared to HCs. However, IL-6 and 
IL-18 were only elevated in some patients with severe/critical 
COVID-19, and the IL-6 levels were much less elevated than the 
values typically reported in patients with CSS-associated dis-
eases such as septic shock [16].

The vast majority of altered circulating inflammatory factors 
in COVID-19 patients were chemokines, growth factors, and 
soluble receptors, not inflammatory cytokines. Our results in-
dicate that COVID-19 patients have inflammatory profiles that 
are distinct from the cytokine storms found in other human dis-
eases [30, 33], and also question whether a cytokine storm oc-
curs in COVID-19. The term “cytokine storm” was first coined 
to describe the excessive release of inflammatory cytokines by 
immune cells in graft-versus-host disease [30, 33]. Since then, 
CSS has been reported in a wide range of human diseases in-
cluding cancer patients undergoing chimeric antigen receptor 
(CAR) T-cell therapy [34], sepsis [35], and viral infections [13, 
36]. Indeed, CSS is a common complication of viral respiratory 
infections such as infection with SARS-CoV [13, 37, 38], and 
the Middle East respiratory syndrome coronavirus (MERS-
CoV) [39]. In these CSS-linked diseases, IL-6, IFN-γ, IL-1β, 
and TNF-α are highly elevated and act as hallmarks. In HCs, 
mean levels of circulating IL-6 have been reported to be <5 pg/
mL [40], which can be increased to >10 000 pg/mL in cancer 
patients on CAR T-cell therapy [41]. The substantial elevation 
of IL-6 and its correlation with disease severity have resulted in 
IL-6 inhibitors such as sarilumab, siltuximab, and tocilizumab 
becoming therapeutic agents that can effectively treat CSS-
associated diseases [41]. Circulating IL-6 levels are also elevated 
in COVID-19 patients and cited as evidence of COVID-19 CSS 
[14, 15]. However, as previously reported, elevated IL-6 levels 
in COVID-19 patients are minuscule compared to those found 
in individuals on CAR T-cell therapy and other CSS-associated 
diseases [17, 42], suggesting that IL-6 does not act as a key in-
flammatory mediator for fatal manifestations in patients with 

severe or critical COVID-19 [17]. Thus, IL-6 inhibitors are not 
recommended to be used as therapeutic agents to treat patients 
with critical COVID-19, as noted by NIH guidelines [18]. Our 
results provide evidence that explains why efforts to combat cy-
tokine storm have proven unsuccessful in severe COVID-19 
patients. Our study implies a chemokine storm, not a conven-
tional cytokine storm, occurs in COVID-19 pathogenesis. This 
chemokine storm may play an important role in the pathogen-
esis of COVID-19 via recruitment of inflammatory cells to the 
lungs and other organs. Several clinical trials are ongoing that 
use antagonists to target specific chemokine receptors (CCR2, 
CCR5, and CXCR8) involved in recruitment of immune cells 
in COVID-19 patients [43–45]. The ligands for those receptors 
include several chemokines, such as MCP-1, MCP-2, MIP-1α, 
and MIP-1β, which were found to be elevated in the COVID-19 
patients in our study.

MMP-1 and VEGF-A were 2 of the most unambiguously 
elevated inflammatory factors in hospitalized COVID-19 pa-
tients when compared to mild/moderate cases or HCs, while 
all other inflammatory factors did not show differences be-
tween hospitalized and mild/moderate COVID-19 patients. 
The plasma levels of MMP-1 and VEGF-A in hospitalized 
COVID-19 patients were positively correlated, suggesting inter-
actions between MMP-1 and VEGF-A in COVID-19. MMP-1 
is an interstitial collagenase capable of degrading collagen types 
I, II, and III, and plays a critical role in vascular remodeling 
and vascular diseases [46]. In addition, MMP-1 acts as a po-
tent agonist for protease-activated receptor-1 (PAR1) [47], a G 
protein-coupled protease-activated receptor, on the surface of a 
variety of cell types such as ECs [47]. MMP-1/PAR1 signaling 
can increase expression of VEGF receptor-2 (VEGFR2) [48], 
the main receptor for VEGF, on ECs to trigger EC activation. 
We found that the levels of MMP-1, VEGF-A, and MMP-1 en-
zymatic activity were significantly elevated in the peripheral 
blood in hospitalized (severe/critical) COVID-19 patients com-
pared to mild/moderate cases or HCs, suggesting that MMP-1/
PAR1/VEGFR2/VEGF-A signaling may be in a hyperactivation 
state in ECs in COVID-19 patients.

In addition to VEGF-A, other EC activation markers in-
cluding sCD146, sICAM-1, and sVCAM-1, but not epithelial 
cell activation marker I-FABP, were highly elevated in COVID-
19. These findings indicate that systemic ECs, not epithelial 
cells, are significantly affected by COVID-19.

Age is a well-known factor that influences the severity and 
fatality of COVID-19 [49]. The risk for severe illness with 
COVID-19 increases with age, with older adults at highest risk 
[49]. Other demographic factors such as sex and race have also 
been linked with risk for the severity of COVID-19. We found 
that excessive MMPs and/or circulating markers of EC acti-
vation increased with age or were higher in hospitalized male 
COVID-19 patients, but were not affected by race. However, we 
realize that our sample size of hospitalized COVID-19 patients, 
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after splitting into 2 demographic groups, is too small to make 
significant statistical differences.

Additional limitations of our study include the lack of 
COVID-19–negative hospitalized patients, which might have 
allowed us to identify a unique profile of inflammatory medi-
ators in hospitalized COVID-19 patients [50]. We were unable 
to detect IL-8 and TNF-α, 2 factors shown to be elevated by 
multiplex and ELISA immunoassays in critically ill COVID-19 
patients with sepsis [50]. This discrepancy is likely due to dif-
ferences in COVID-19 patient populations, clinical parameters, 
and detection limits of the different multiplex immunoassay 
kits used.

In conclusion, our study demonstrates that SARS-CoV-2 in-
fection induces a chemokine storm. In addition, severe COVID-
19 patients have excessive MMP-1 and hyperactive ECs that are 
associated with the severity of COVID-19. Thus, dysregulated 
chemokines and MMPs could be explored as therapeutic targets 
for COVID-19 treatment.
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