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Abstract

Objective

Melanoma is rare but dangerous skin cancer, and it can spread rather quickly in the

advanced stages of the tumor. Abundant evidence suggests the relationship between tumor

development and progression and the immune system. A robust gene risk model could pro-

vide an accurate prediction of clinical outcomes. The present study aimed to explore a

robust signature of immune-related gene pairs (IRGPs) for estimating overall survival (OS)

in malignant melanoma.

Methods

Clinical and genetic data of skin cutaneous melanoma (SKCM) patients from The Cancer

Genome Atlas (TCGA) was performed as a training dataset to identify candidate IRGPs for

the prognosis of melanoma. Two independent datasets from the Gene Expression Omnibus

(GEO) database (GSE65904) and TCGA dataset (TCGA-UVM) were selected for external

validation. Univariate and multivariate Cox regression analyses were then performed to

explore the prognostic power of the IRGPs signature and other clinical factors. CIBER-

SORTx was applied to estimate the fractions of infiltrated immune cells in bulk tumor

tissues.

Results

A signature consisted of 33 IRGPs was established which was significantly associated with

patients’ survival in the TCGA-SKCM dataset (P = 2.0×10−16, Hazard Ratio (HR) = 4.220

(2.909 to 6.122)). We found the IRGPs signature exhibited an independent prognostic factor

in all the three independent cohorts in both the univariate and multivariate Cox analysis

(P<0.01). The prognostic efficacy of the signature remained unaffected regardless of

whether BRAF or NRAS was mutated. As expected, the results were verified in the

GSE65904 dataset and the TCGA-UVM dataset. We found an apparent shorter OS in

patients of the high-risk group in the GSE65904 dataset (P = 2.1×10−3; HR = 1.988 (1.309 to

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0240331 October 8, 2020 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Meng L, He X, Zhang X, Zhang X, Wei Y,

Wu B, et al. (2020) Predicting the clinical outcome

of melanoma using an immune-related gene pairs

signature. PLoS ONE 15(10): e0240331. https://

doi.org/10.1371/journal.pone.0240331

Editor: Roger Chammas, Universidade de Sao

Paulo, BRAZIL

Received: May 28, 2020

Accepted: September 23, 2020

Published: October 8, 2020

Copyright: © 2020 Meng et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All TCGA files are

available from the Genomic Data Commons Data

Portal database (Project TCGA-SKCM, TCGA-

UVM).All GEO files are available from the Gene

Expression Omnibus (GEO) database (Project

GSE65904).

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-8271-6605
https://doi.org/10.1371/journal.pone.0240331
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240331&domain=pdf&date_stamp=2020-10-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240331&domain=pdf&date_stamp=2020-10-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240331&domain=pdf&date_stamp=2020-10-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240331&domain=pdf&date_stamp=2020-10-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240331&domain=pdf&date_stamp=2020-10-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240331&domain=pdf&date_stamp=2020-10-08
https://doi.org/10.1371/journal.pone.0240331
https://doi.org/10.1371/journal.pone.0240331
http://creativecommons.org/licenses/by/4.0/


3.020)). The trend in the results of the survival analysis in TCGA-UVM was as we expected,

but the result was not statistically significant (P = 0.117, HR = 4.263 (1.407 to 12.91)). CD8

T cells, activated dendritic cells (DCs), regulatory T cells (Tregs), and activated CD4 mem-

ory T cells presented a significantly lower fraction in the high-risk group in the TCGA-SKCM

dataset(P <0.01).

Conclusion

The results of the present study support the IRGPs signature as a promising marker for

prognosis prediction in melanoma.

Introduction

Melanoma is a kind of malignant tumor that originates from melanocytes [1]. If not found and

treated at an early stage, melanoma may rapidly spread to other organs of the whole body,

which may lead to approximately 10,000 deaths in the USA each year [2]. Primary tumors are

more commonly located in the lower extremities. For primary malignant melanoma that has

not metastasized early, surgical resection is the most effective method, and more than 90% of

patients have more than five years of survival [3]. Once metastasis occurs, surgical treatment

will not help. For patients with more extensive melanoma, neighboring lymph nodes will be

examined to determine whether metastasis has occurred. Moreover, the degree of improve-

ment in radiotherapy and chemotherapy is minimal, so the mortality rate is very high in

advanced melanoma [4].

As an immunogenic tumor, melanoma can overcome the effects of the immune system on

it by producing inhibitory growth factors, cytokines, etc. in the tumor microenvironment [5].

According to the existing evidence, the immune system has an extensive influence on tumori-

genesis and development. Experts around the world have been exploring new treatments for

melanoma, led by immunotherapy and targeted therapy, with promising results [2, 6]. BRAF
mutations are found in the genes of about half of melanoma patients, with younger patients

making up the majority. And targeted BRAF inhibitors have been shown to significantly

improve patients’ physical condition and survival expectations [6]. In recent years, targeted

therapies for melanoma have been converted from conventional BRAF inhibitors to combina-

tion therapy with bothMEK and BRAF inhibitors [7, 8]. Immune-checkpoint inhibitors are

currently considered as the most promising strategies in tumor immunotherapy. Studies have

found that the combined use of programmed cell death-1 (PD-1) and cytotoxic T-lymphocyte

antigen-4 (CTLA-4) immune checkpoint inhibitors significantly enhance the anti-tumor

immune response of CD8+ T cells and inhibit regulatory T cell function in tumor treatment

compared to their use alone [9–11].

These show that the development and treatment of melanoma are very closely related to

immunity. There have also been many studies that have explored the relationship between

immune genes and tumor prognosis and have found some valuable markers. Sheng et al. con-

structed an immune risk score (IRS), which is significantly associated with melanoma metasta-

sis [1]. Recently, Cursons et al. developed a new method to explore nature killer (NK) cell

infiltration in tumor tissue, and they found that metastatic skin melanoma patients who had

evidence of NK cell infiltration in their tumors had an increased survival rate [12]. Chen et al.

explored a signature consisting of four long non-coding RNAs (LncRNAs) that stratify the

prognostic risk of melanoma patients, which may help improve prognosis in early-stage
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patients [13]. However, these signatures were not applied to the clinical application due to the

small sample sizes and inadequate validation datasets. Also, the diversity of data from different

sequencing platforms and the heterogeneity of tumors affect the integration and analysis of a

large amount of gene expression data. Standardization of data across platforms is also the

focus and difficulty of the analysis. Recently, a new approach has been developed based on the

relative sequencing of gene expression levels that overcomes the shortcomings of traditional

gene expression data processing and has yielded stable and reliable results in a variety of stud-

ies [14–17].

In our research, the expression levels of a range of immune-related genes in each tumor

sample were compared in pairs, ultimately generating a score for each immune gene pair [14,

17]. Scoring for this immunogene pair-based approach is based entirely on gene expression

profiles within a single tumor sample. It does not need to be normalized across samples to

account for differences between multiple samples or sequencing platforms [17]. We used skin

cutaneous melanoma (SKCM) program from the Cancer Genome Atlas (TCGA) RNA-seq

dataset to construct an immune-related gene pair signature and to validate it by using the

Gene Expression Omnibus (GEO) dataset (GSE65904) and uveal melanoma dataset

(TCGA-UVM). Subsequently, we confirmed the efficacy of this immunomarker in predicting

tumor prognosis by comparing it with other clinicopathological information. The relationship

between these prognostic immune gene pairs and tumor-infiltration lymphocyte cell content

was further explored.

Material and methods

Data sources of melanoma

The HTSeq-FPKM RNA-seq expression data and clinical data of 471 skin cutaneous melanoma

patients were retrieved from The TCGA-SKCM dataset (https://portal.gdc.cancer.gov).

GSE65904 dataset retrieved from the GEO database (http://www.ncbi.nlm.nih.gov/geo), and the

uveal melanoma dataset (TCGA-UVM) retrieved from the TCGA database with corresponding

survival information were recruited for external validation. The GSE65904 dataset was published

in April 2015 and was based on the GPL10558 platform. Resected tumors from 214 unique mela-

noma samples were profiled on gene expression arrays. There were 80 patients in the

TCGA-UVM dataset with clinical information and tumor tissue expression data. Patients with

overall survival time (OS) less than one month or missing survival information were excluded

from the study. In total, 639 cases were recruited and analyzed in the present study, of which 378

patients in the TCGA-SKCM group, 75 in the TCGA-UVM group, and 186 patients were in the

GEO group. The clinical and pathological data of all included patients are shown in S1 Table.

Gene expression data processing

The RNA-seq expression data was HTSeq-FPKM type. The expression profile data for each

gene was converted to the corresponding gene symbol from the probe level according to the

annotation file. No further standardization of the expressed data is required. If the patient has

multiple samples, take the average expression value of each gene to represent the gene expres-

sion level of the patient. If there are multiple probes for a single gene, the average expression

value will be taken as the expression level for that gene.

Modeling of the immune-related gene pairs (IRGPs) signature

We downloaded a total of 1811 immune-related genes (IRGs) for constructing a prognostic

signature from the ImmPort database (https://immport.niaid.nih.gov). IRGs include

PLOS ONE An IRGPs signature for melanoma prognosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0240331 October 8, 2020 3 / 19

https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo
https://immport.niaid.nih.gov/
https://doi.org/10.1371/journal.pone.0240331


interleukins, interferons, cytokines, cytokine receptors, chemokines, chemokine receptors,

natural killer cells, and genes related to the T-cell receptor signaling pathway, and others. A

total of 1646 immune-related genes measured by both TCGA and GEO datasets platforms

were selected for further analysis. The specific method of constructing the prognostic model is

as described in the previous study [17]. Briefly, we performed a pairwise comparison to obtain

a score for each gene pair between the gene expression value within each sample in the TCGA

cohort. The score of a specific gene pair was set to one when the expression level of the first

gene was higher than the other; otherwise was zero. We would discard the gene pair if more

than 90% of the score of a gene pair were identity in the samples. First, we used both Cox and

Kaplan-Meier methods to analyze the scoring and survival data of immune gene pairs to

screen out the immune gene pairs that were significantly correlated with prognosis, and a total

of 187 prognosis-correlated gene pairs were screened out (p-value < 0.0001). Then we used

the lasso regression model with 1000 random cycles to eliminate highly correlated gene pairs

and retain the most informative and least number of gene pairs as models. Finally, 33 pairs of

genes were retained as a prognostic-related signature. The risk score for each patient was

obtained based on the model we constructed. We stratified patients into low- and high-risk

groups using the most appropriate cut-off of the IRGPs score. We used the "survivalROC" R

package (Using R package "survivalROC", version 1.0.3) to obtain the optimal cut-off value by

the time-dependent receiver operating characteristic (ROC) curve analysis at three years for

OS in the TCGA dataset. We assigned a cut-off value at the point in the ROC curve with the

maximum sum of sensitivity and specificity.

Prognostic value of IRPGs in the TCGA-SKCM cohort

Survival analysis by the log-rank test was performed between the different immune risk

groups. Subsequently, both univariate and multivariate Cox proportional hazards regression

analyses of the risk factor and other clinical factors for the OS were performed in the TCGA

cohort. We queried the cBioPortal website(https://www.cbioportal.org/) for mutations in mul-

tiple related genes in the TCGA dataset, with the highest number of patients with mutations in

BRAF and NRAS. Of the 378 patients included in the analysis, the BRAF gene experienced

mutations in 156 patients, and the NRAS gene experienced mutations in 87 patients. Of these

156 patients who experienced BRAF mutations, all mutation types were missense mutations,

including 134 patients with BRAF V600E mutations, five patients with BRAF K601E muta-

tions, three patients with BRAF G466E mutations, and 14 patients with other uncommon

mutations. Of the 87 patients who experienced NRAS mutations, all mutation types were mis-

sense mutations except for one case with an X37 splice site mutation, of which 39 were NRAS

Q61R mutations, 25 were Q61K mutations, 9 were Q61L mutations, 5 were Q61H mutations,

and eight other rare mutations. And we then stratified the dataset into different sub-datasets

based on BRAF and NRASmutation, to verify whether these factors affect the test efficacy of

the prognostic signature. Besides, to explore the relationship between BRAF orNRASmutation

status and the risk scores we obtained, we then divided patients into two groups based on

whether they had BRAF or NRASmutations and compared the difference in risk scores

between the two groups.

Dataset validation of the IRGPs signature

To further prove the prognostic merit of the IRGPs signature in different cohorts, we applied

the IRGPs signature to two independent cohorts from the GEO database (GSE65904) and

TCGA database (TCGA-UVM) for external validation. These datasets were stratified into

high- and low-risk groups according to each patient’s risk score, and survival analyses were
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performed separately. We also performed the same univariate and multivariate analysis as in

the TCGA cohort.

Estimation of immune cell abundance in tumor tissue

To analyze whether there were differences in the immune cell abundance of tumor tissue in

different risk groups, we used CIBERSORTx (https://cibersortx.stanford.edu/) to evaluate the

relative abundance of predefined cell types in mixed solid tissues. Normalized RNA-seq FPKM

gene expression data from tumor tissues in the TCGA-SKCM dataset were used for this analy-

sis. [18]. We used the default LM22 leukocyte gene signature matrix from the CIBERSORTx

website. LM22 contains 547 genes distinguishing 22 types of immune-related cells. Disabling

quantile normalization was checked. We set the number of permutations to 1000 for robust

analyses. Then CIBERSORTx enumerated the relative proportions of the 22 infiltrating

immune cells, including B cells, dendritic cells (DCs), T cells, natural killer cells, macrophages,

and others. The Wilcoxon rank-sum test with continuity correction was applied to evaluate

cell proportions between high- and low-risk groups using an adjusted P-threshold.

Statistical analyses

Statistical analyses were mainly performed on R software (version 3.6.3, www.r-project.org).

Survival analyses were performed using the ’survival’ package (version 3.1–11) with the

Kaplan-Meier method. We used the student’s two-sample t-test or Wilcoxon rank-sum test to

compare the continuous variables. For comparisons of multiple different variables (e.g., Cell

abundance) between two groups, we used a false discovery rate (FDR) method to correct for

multiple comparisons of the results. The ’survival’ package also calculated the root mean

square (RMS) curve and time ratio. For all analyses, the statistical threshold was set to P-

value<0.05.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and

Gene set enrichment analyses (GSEA)

We performed the KEGG pathway analysis for the prognostic immune signature genes using

the "clusterProfiler" R package (version 3.12.0) [19]. We used P-value < 0.05 as the threshold

for KEGG enrichment analysis. GSEA is used to assess the distribution trends of genes in a

predefined set of genes in a gene set sequenced for phenotypic relevance and thus to determine

their contribution to the phenotype [20]. We applied the GSEA software (Version 4.0.3, http://

software.broadinstitute.org/gsea/) with 1,000 phenotype permutations for GSEA enrichment

analysis. The threshold of statistically significant gene sets was set to a nominal P-value < 0.05

with FDR adjusted P-value < 0.25. We classified the patients into two groups according to

their risk values. We then performed a GSEA analysis to compare whether there were path-

ways of differential enrichment between the two groups. MSigDB Hallmark gene sets (version

7.1, https://www.gsea-msigdb.org/gsea/downloads.jsp) was applied in the GSEA analysis.

Results

Construction of the IRGPs signature

Gene expression data of the TCGA-SKCM cohort was used as an exploratory dataset. Genes

with an average expression greater than 0 and genes with median absolute deviation (MAD)

>0.5 are included in the subsequent analysis. A total of 378 patients were recruited in the

exploratory dataset. We applied a screened exploratory dataset to construct the survival model.

624 IRGs contained in both the exploratory set and the validation set were included in the
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model construction. The total number of gene pairs established was 32997. After rigorous

screening to remove relatively small variation IRGPs (MAD = 0), only 187 candidate IRGPs

were left for further study. Finally, a series of 33 IRGPs were recruited in the risk model using

Lasso Cox proportional hazards regression from the TCGA cohort. Detailed information on

the immune gene pair model can be found in Table 1. Using the model, we can calculate a risk

score of IRGPs for each sample. The fittest cut-off value of the IRGPs risk score was set at

−1.130 using a time-dependent ROC curve analysis. We then stratified the dataset into the

high- or low- risk group according to the cut-off value (Fig 1). Significantly, compared to the

low-risk group, the high-risk group in the exploratory TCGA cohort exhibited a poorer OS

(P = 2.0×10−16, Hazard Ratio (HR) = 4.220 (2.909 to 6.122)) (Fig 2A and Table 2). Significant

differences in age, pathologic tumor stage, T stage, N stage, and Clark level were shown

between groups related to OS in the univariate Cox analysis (P<0.01). However, in the multi-

variate Cox, only the phenotype of IRGPs signature exhibited a robust independent prognostic

factor (P<0.001) (see in Fig 3A and Table 2 for details). Besides, to analyze whether frequent

genetic mutations affect the efficacy of the prognostic signature, we grouped the TCGA-SKCM

dataset according to whether BRAFor NRAS was mutated, respectively. Consistent results were

obtained for all four subsets of the dataset. Survival analyses in all groups showed the prognos-

tic accuracy of the signature independent of whether these common genes were mutated or

not (P<0.0001) (see in Fig 4). The superiority of the signature over other clinical factors as

independent prognostic factors was also not affected by BRAF or NRASmutation in both uni-

variate and multivariate analyses (see in S1 Fig). Besides, we divided patients into two groups

based on whether they had BRAF or NRASmutations and compared the difference in risk

scores between the two groups. Interestingly, we found a lower risk score in the BRAFmuta-

tion group (P = 0.03947), suggesting that patients may have a better prognosis than those in

the non-mutation group. However, when analyzing the NRASmutations, we did not find any

difference in risk scores between the two groups (P = 0.1897).

Signature validation in the GEO dataset

Using the risk score cut-off, we stratified the patients in the GEO validation cohort into high-

and low-risk groups. Consistent with the findings previously obtained in the TCGA dataset, a

significant difference of OS was found between the two groups (P = 2.1×10−3, HR = 1.988

(1.309 to 3.020)) (see in Fig 2B). Similarly, we found clinical factors, including age and gender,

didn’t exhibit a predictive value in both the univariate and multivariate Cox analysis (P >0.01)

(see in Table 2 and Fig 3B). Notably, the IRGPs signature remained an independent predictive

value of OS (see in Table 2 and Fig 3B) in both the univariate and multivariate Cox analysis in

the validation dataset (P<0.01).

Signature validation in the TCGA-UVM dataset

Similar to the GEO dataset, the TCGA-UVM dataset (n = 75) was stratified into high- and

low-risk groups according to the cut-off value. Notably, after grouping, most patients were in

the high-risk group; there were only eight patients in the low-risk group in this dataset. The

trend in the results of the survival analysis in TCGA-UVM was as we expected (patients in the

high-risk group may exhibit a poorer prognosis), but the result was not statistically significant

(P = 0.117, HR = 4.263 (1.407 to 12.91)) (see in Fig 2C). However, the IRGPs signature

remained an independent predictive value of OS (see in Table 2 and Fig 3C) in both the uni-

variate and multivariate Cox analysis in this validation dataset (P<0.01).
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Immune cell infiltration between different risk groups

CIBERSORTx was used to estimate the fractions of 22 infiltrated immune cells using the

RNA-sequence data. We used a threshold of P< 0.05 to rule out unreliable results. Among the

378 tumor samples in TCGA, only 374 tumor samples were eligible for further analysis. The

relative abundance of parts of the 22 infiltrated immune cells exhibited significant differences

between the high- and low-risk groups. When compared to other immune cells in tumor tis-

sues, CD8 T cells, resting CD4 memory T cells, macrophages M0, and macrophages M2 are

the four immune cells with the highest abundance (relative fraction >0.05 in both risk groups)

(see in Fig 5A and 5B). Compared to the low-risk group, the proportion of M0 Macrophages,

M2 Macrophages, resting CD4 memory T cells, resting NK cells, Mast cells resting, Eosino-

phils, and activated Mast cells exhibited higher fraction in the high-risk group (FDR adjusted

P value<0.01). Conversely, CD8 T cells, activated DCs, regulatory T cells (Tregs), and

Table 1. Prognostic IRGPs signature.

Gene-A Full name-A Gene-B Full name-B Coefficient

HFE homeostatic iron regulator SLPI secretory leukocyte peptidase inhibitor -0.03375

HFE homeostatic iron regulator LHB luteinizing hormone subunit beta -0.18429

HLA-DQA2 major histocompatibility complex, class II, DQ alpha 2 SLPI secretory leukocyte peptidase inhibitor -0.00242

HLA-DQB1 major histocompatibility complex, class II, DQ beta 1 S100A8 S100 calcium binding protein A8 -0.52645

HSPA2 heat shock protein family A (Hsp70) member 2 APOBEC3G apolipoprotein B mRNA editing enzyme catalytic subunit 3G 0.00529

MICB MHC class I polypeptide-related sequence B OAS1 2’-5’-oligoadenylate synthetase 1 0.054884

PSME1 proteasome activator subunit 1 IFITM1 interferon-induced transmembrane protein 1 0.120809

PI3 peptidase inhibitor 3 FGF1 fibroblast growth factor 1 0.060244

PI3 peptidase inhibitor 3 LCP2 lymphocyte cytosolic protein 2 0.023869

SLPI secretory leukocyte peptidase inhibitor KDR kinase insert domain receptor 0.24411

CCL13 C-C motif chemokine ligand 13 FABP4 fatty acid-binding protein 4 -0.13567

CCL8 C-C motif chemokine ligand 8 STC1 stanniocalcin 1 -0.05866

CCL8 C-C motif chemokine ligand 8 APLNR apelin receptor -0.02258

TINAGL1 tubulointerstitial nephritis antigen like 1 IGF2 insulin-like growth factor 2 -0.22219

APOBEC3G apolipoprotein B mRNA editing enzyme catalytic subunit 3G ACVRL1 activin A receptor-like type 1 -0.00508

APOBEC3G apolipoprotein B mRNA editing enzyme catalytic subunit 3G ANGPTL2 angiopoietin-like 2 -0.13337

APOBEC3G apolipoprotein B mRNA editing enzyme catalytic subunit 3G S1PR1 sphingosine-1-phosphate receptor 1 -0.12991

TLR2 toll-like receptor 2 DLL4 delta-like canonical Notch ligand 4 -0.00407

PAEP progestagen associated endometrial protein PTK2B protein tyrosine kinase 2 beta 0.059944

PAEP progestagen associated endometrial protein TYMP thymidine phosphorylase 0.125313

FABP3 fatty acid-binding protein 3 MDK Midkine 0.212626

IRF1 interferon regulatory factor 1 MET MET proto-oncogene, receptor tyrosine kinase -0.32083

APOBEC3F apolipoprotein B mRNA editing enzyme catalytic subunit 3F EDNRA endothelin receptor type A -0.14079

LYZ lysozyme NEO1 neogenin 1 -0.04497

APOBEC3H apolipoprotein B mRNA editing enzyme catalytic subunit 3H CXCR6 C-X-C motif chemokine receptor 6 0.038609

MARCO macrophage receptor with collagenous structure PLAUR plasminogen activator, urokinase receptor -0.18686

IRF7 interferon regulatory factor 7 RAC3 Rac family small GTPase 3 -0.10045

PLSCR1 phospholipid scramblase 1 RAC3 Rac family small GTPase 3 -0.14566

CXCR6 C-X-C motif chemokine receptor 6 IL24 interleukin 24 -0.08622

LTBP1 latent-transforming growth factor beta-binding protein 1 LHB luteinizing hormone subunit beta -0.09531

CCRL2 C-C motif chemokine receptor-like 2 CTLA4 cytotoxic T-lymphocyte associated protein 4 0.092781

CLCF1 corticotrophin like cytokine factor 1 LHB luteinizing hormone subunit beta -0.2615

IL1RN interleukin 1 receptor antagonist LCP2 lymphocyte cytosolic protein 2 0.370091

https://doi.org/10.1371/journal.pone.0240331.t001
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activated CD4 memory T cells presented a significantly lower fraction in the high-risk group

(FDR adjusted P value <0.01) (see in Fig 5A and 5B).

Functional characteristics of the IRGPs signature

Since the IRGPs signature obtained was found to be highly correlated with melanoma develop-

ment and prognosis, then we attempted to explore their functional implication and intrinsic

association through subsequent enrichment analysis. Results of KEGG functional enrichment

analysis revealed that 52 related genes of the signature were enriched significantly in 19 KEGG

pathways (P<0.05). Among them, the pathway of Cytokine-cytokine receptor interaction was

most significantly enriched (see in Fig 6 and S2 Table). We classified patients into high- and

low-risk groups based on IRGPs risk scores cut-off value and used this risk classification as a

phenotype for GSEA enrichment analysis of the TCGA cohort. As a result, we found the

enrichment of four cancer hallmark gene sets in the high-risk group, including "OXIDATI-

VE_PHOSPHORYLATION", "ADIPOGENESIS", "MYC_TARGETS_V1", and "MYC_TAR-

GETS_V2" (see in Fig 7), which suggests a crucial role in melanoma progression and

prognosis of these significantly enriched gene sets.

Discussion

The annual incidence of melanoma has been increasing, which may be related to an increased

detection rate of the disease. In the United States, according to the latest report, about 95,710

newly discovered melanoma in situ cases will be diagnosed in 2020, and about 7,230 of them

will likely die from the disease [3]. The 5-year survival rate for cutaneous melanoma is rela-

tively optimistic, at approximately 92% [3]. However, the mortality rate is significantly higher

if the melanoma metastasizes subcutaneously to regional lymph nodes or distant organs [21].

Fig 1. The optimal cut-off value of the IRGPs risk-score obtained by the time-dependent ROC curve analysis.

Abbreviations: IRGPs, immune-related gene pairs; ROC, receiver operating characteristic; AUC, area under curve.

https://doi.org/10.1371/journal.pone.0240331.g001
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Recently, many studies have proposed different genes markers or signatures to predict the

metastasis or survival of malignant melanoma. Yang et al. constructed a robust prognostic sig-

nature of six lncRNAs for melanoma patients. They suggested that the prognosis may be

affected by these lncRNAs by regulating immune and inflammation-related pathways, MAPK

pathways, and others [22]. Another four-DNA methylation signature significantly correlated

with prognosis was proposed by Guo et al. The marker was also found to be substantially asso-

ciated with immunotherapy-associated features of immune checkpoint blockade and was con-

sidered a potential indicator of immunotherapy responsiveness [23]. Sheng et al. tried to

predict melanoma metastasis by constructing an immune-related risk model and successfully

validated its efficacy in different datasets [1]. However, the clinical applicability of these bio-

markers remains limited due to tumor heterogeneity and sequencing technical problems. In

particular, the issue of standardization of the data from different sequencing platforms is also a

challenge in clinical applications. Therefore, in our study, to eliminate the influence of differ-

ent platforms and inter-individual standardization on the results, we introduced the concept

of immune gene pairs. And by assigning the size of a specific pair of immune gene expression

Fig 2. Survival curves for different risk groups. According to the optimal cut-off value, patients from different cohorts were stratified into the

high- or low- risk group. Kaplan-Meier curves were used for survival analyses between different risk groups in different datasets: (A)

TCGA-SKCM training dataset. (B) The GEO external validation cohort (GSE65904). (C) The TCGA-UVM external validation cohort.

https://doi.org/10.1371/journal.pone.0240331.g002
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values, we obtained a new predictive model that is more suitable for individual studies and

clinical application. As described by Li et al., there is no need for data normalization or to con-

sider technical bias across platforms as it only performs pairwise comparisons of the expres-

sion values of the target genes within a single sample [17]. Several previous studies have

confirmed the availability and accuracy of this immune gene pairs method in predicting OS in

Table 2. Summary of the results of univariate and multivariate analyses of the risk factors for the OS of patients with melanoma in the TCGA-SKCM cohort, the

TCGA-UVM cohort, and the GEO cohort.

Datasets Variables Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value

TCGA-SKCM (Training dataset) Age 1.023(1.007−1.039) 0.005 1.012(0.997−1.028) 0.129

Gender 1.297(0.770−2.185) 0.328 1.115(0.645−1.926) 0.697

Stage 1.538(1.205−1.962) <0.001 1.210(0.557−2.625) 0.630

T stage 1.828(1.431−2.337) <0.001 1.428(0.885−2.305) 0.145

N stage 1.546(1.212−1.973) <0.001 0.970(0.526−1.791) 0.923

Clark level 1.506(1.128−2.011) 0.006 0.819(0.565−1.188) 0.293

Risk-score 3.831(2.726−5.383) <0.001 3.453(2.392−4.985) <0.001

GSE65904 (Validation dataset) Age 0.997(0.982−1.012) 0.713 1.000(0.985−1.015) 0.986

Gender 1.302(0.832−2.039) 0.249 1.316(0.838−2.065) 0.233

Stage 1.405(1.167−1.692) <0.001 1.457(1.211−1.754) <0.001

Risk-score 1.723(1.226−2.423) 0.002 1.902(1.319−2.744) <0.001

TCGA-UVM (Validation dataset) Age 1.046(1.008–1.085) 0.019 1.051(1.012–1.092) 0.010

Gender 1.542(0.651–3.652) 0.325 1.376(0.563–3.366) 0.484

Stage 1.311(0.839–2.048) 0.234 1.392(0.862–2.246) 0.176

T stage 1.941(0.712–5.294) 0.195 1.506(0.529–4.291) 0.443

Risk-score 5.213(1.686–16.120) 0.004 7.645(2.054–28.452) 0.002

Abbreviations: HR, hazard ratio; CI, confidence interval

https://doi.org/10.1371/journal.pone.0240331.t002

Fig 3. Forest plots of univariate and multivariate Cox regression analyses in different cohorts. (A) TCGA-SKCM training cohort (n = 378). (B)

The GEO validation cohort (n = 186). (C) The TCGA-UVM external validation cohort (n = 75). HR, hazard ratio.

https://doi.org/10.1371/journal.pone.0240331.g003
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different types of cancer, including hepatocellular carcinoma and serous ovarian carcinoma

[14–17]. In this study, we successfully constructed a robust prognostic signature consisting of

33 IRGPs using the TCGA-SKCM dataset. And its predictive efficacy has been validated in two

external datasets (GSE65904 and TCGA-UVM). Although the prognosis of patients in the

high-risk group was also relatively poorer, the result of the survival analysis in the

TCGA-UVM dataset was not significant (P>0.05). To explain this, we believe that this is

closely related to the disproportionately low number of patients in the low-risk group (n = 8).

For the signature was confirmed in subsequent univariate and multivariate regression analyses

as an independent prognostic indicator significantly superior to clinical factors such as age or

staging (Fig 3C). Abundant evidence suggests the close relationship between the immune sys-

tem and tumor development or prognosis. Immunotherapy plays a critical role in prolonging

the survival time of advanced melanoma. Recently, the discovery and application of immune

checkpoint inhibitors had been a boon to patients with melanoma and other malignancies [2].

Fig 4. Survival analyses after grouping according to gene mutation status in the TCGA-SKCM dataset. (A) BRAF-mutated patients. (B)

BRAF-wild-type patients. (C) NRAS-mutated patients. (D) NRAS-wild-type patients. All groupings, according to the genotypes, had no effect

on the predictive validity of the markers.

https://doi.org/10.1371/journal.pone.0240331.g004
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Immunological findings have given us new hopes for a complete cure for the tumor. The main

reason why tumor cells are difficult to destroy is their ability to escape from the immune sys-

tem through different mechanisms, and the strength of the body’s anti-tumor immune

response directly affects the prognosis and outcome of tumor patients [2, 24, 25]. Therefore, it

is logical and accurate to predict tumor development, prognosis, and outcome by selecting

immune-related genes.

Fig 5. The relative fraction of infiltrated immune cells in different risk groups in the TCGA dataset. (A) Radar plot of the difference in the

abundance of 22 immune cells in tumor tissue in the two risk groups. (B) Violin plot of differences in various immune cell abundances between the

high- and low-risk groups. (�FDR adjusted P-value<0.05, ��FDR adjusted P-value<0.01, ���FDR adjusted P-value<0.001).

https://doi.org/10.1371/journal.pone.0240331.g005
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In our study, A robust signature of 33 IRGPs consist of 52 IRGs was identified to predict

OS for melanoma patients. Nearly half of the genes that make up this marker are related to

cytokines or chemokines. Among the IRGs filtered, the CTLA-4 promotes immune escape of

tumor cells by competitively binding to CD80 and CD86, blocking T cell activation and anti-

tumor immune response of the body [24, 26]. The chemokine receptor CXCR6 is selectively

expressed on T cells, plasma cells, and NKs. In melanoma, CXCR6 is overexpressed in primary

and metastatic melanoma, and CXCR6 positive cells are identified as cancer stem cells and can

self-renew but also generate other tumor cells [27]. IL-24 belongs to the IL-10 family of cyto-

kines that inhibits tumor cell growth and promotes tumor cell apoptosis by inhibiting angio-

genesis, activating growth inhibition and DNA damage genes, and other signaling pathways,

without harming healthy cells [28]. WhileMET receptors, also known asHGF receptors, are

mainly expressed in epithelial cells of many tissues, including the skin, oncogenic effects of the

HGF/MET signaling pathway has long been observed in melanoma and other malignancies

[29]. Thus, beneficial anti-tumor effects may be produced by inhibiting theMET signaling

pathway. Related targeted therapies have been studied extensively and have yielded impressive

results. The more widely used ones, such as Tivantinib, areMET pathway inhibitors that bind

to dephosphorylatedMET kinases and inhibit the activation and transduction ofMET signal-

ing pathways. Its safety and efficacy have been staunchly demonstrated in clinical trials in

advanced melanoma [30].

Tumor-infiltrating lymphocytes (TILs) are those leukocytes (NK cells, myeloid-derived

suppressor cells (MDSCs), B cells, T cells, macrophages, DCs, and others) that leave the blood-

stream and enter the tumor tissue. When a large amount of tumor-infiltrating lymphocytes are

present, it indicates that the organism has initiated an immune response against the tumor.

Researchers have conducted relevant studies in many of these cancers, quantifying these

tumor-infiltrating cells and correlating their abundance with tumor features and outcomes

[31]. Previous studies have provided substantial evidence to support a favorable prognosis and

outcome for malignant melanoma with abundant infiltration of TILs [32, 33]. In the current

Fig 6. The KEGG pathway enrichment analysis of 52 immune-related genes. Significantly, there are seven genes

enriched in the pathway of cytokine-cytokine receptor interactions. KEGG, Kyoto Encyclopedia of Genes and

Genomes.

https://doi.org/10.1371/journal.pone.0240331.g006
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study, by using the CIBERSORTx platform, we have estimated the relative fractions of 22 TILs

in tumor tissues from the TCGA cohort using the CIBERSORTx platform. Using the IRPGs

risk score cut-off, we divided the CIBERSORTx result into two different risk groups and then

verified the correlations of immune cells fraction with the IRPGs risk factor. Significant differ-

ences in the relative fraction of infiltrated immune cells in tumor tissue were observed between

the two different risk groups. The highest concentration of lymphocytes in tumor tissue is

found in macrophages M0, macrophages M2 and CD8 T cells compared to other immune cells

(relative portion>0.1 in both risk groups). Compared with the high-risk group, Eosinophils,

Fig 7. GSEA enrichment analysis of the TCGA cohort with hallmark gene sets. According to the GSEA results, there were four significant gene sets

enrichments in the high-risk group (P< 0.05, FDR< 0.25). GSEA, Gene set enrichment analysis.

https://doi.org/10.1371/journal.pone.0240331.g007
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M0 Macrophages, M2 Macrophages, and activated Mast cells presented a lower fraction in the

low-risk group. The primary function of macrophages is phagocytosis and digestion of cellular

debris and pathogens, and activation of other immune cells. However, tumor-associated mac-

rophages (TAM) not only prevent T cells from attacking tumor cells but also secrete growth

factors that nourish tumor cells and promote tumor angiogenesis, leading to tumor cell expan-

sion and metastasis [34–36]. M0 macrophage is an inactivated macrophage that without any

inflammatory or tumor-associated function. However, due to the state of activation and roles

in the tumor microenvironment, M0 macrophages can be transformed into classically acti-

vated M1 macrophages and alternatively activated M2 macrophages. And the difference is M1

macrophages have mainly anti-tumor effects and can differentiate tumor cells from healthy

cells, recognize and then kill tumor cells by mediating cytotoxic effects. The role of M2 macro-

phages is, on the contrary, to promote tumor growth and metastasis. It can secrete cytokines

such as epidermal factors to stimulate the proliferation of tumor cells, and also facilitate tumor

angiogenesis and migration of tumor cells multiple regulatory pathways [34]. In our study, we

found more M0 macrophages and M2 macrophage infiltrates in the high-risk group, indicat-

ing a more suitable microenvironment for tumor growth and metastasis, resulting in a poor

prognosis for patients. Both eosinophils and mast cells belong to inflammatory cells. These

inflammatory cells are sought to contribute to barriers to anti-tumor immunity [37]. Cause

the inflammatory environment in the tumor tissue is believed to promote the development

and progression of the tumor according to previous studies [38]. Conversely, in the high-risk

group of our research, activated memory CD4+ T cells, CD8+ T cells, activated DCs, and

Tregs presented a significantly lower fraction. Significant infiltration of CD8+ T cells among

TILs suggested a more robust anti-tumor immune response with a better prognosis in the low-

risk group.

The CIBERSORTx software imputes cell fractions for 22 immune cell types based on a sig-

nature matrix file consisting of 547 genes. Interestingly, we found seven genes in the IRGPs

signature (APOBEC3G, CCL13, CCL8, CTLA4, CXCR6,MARCO, TLR2) that are also in the

CIBERSORTx reference gene list. All six genes belong to antimicrobials except CTLA4, which

is a gene related to the T-cell receptor signaling pathway [39]. This suggests that antimicrobials

are significantly correlated with both the composition of immune cells and tumor prognosis. It

also explains why the prognostic signature we obtained was significantly correlated with the

fraction of multiple immune cells. The primary purpose of the signature is to synthesize and

distill these factors related to overall survival and to obtain, when possible, a brief and compre-

hensive evaluation indicator.

Consistent with previous studies, GSEA enrichment analysis of the TCGA cohort revealed

that four cancer hallmark gene sets, including "ADIPOGENESIS" were significantly enriched

in the high-risk group, suggesting a crucial role in melanoma progression and metastasis of

these gene sets [14, 40, 41].

There are several limitations to the present study. Firstly, this study was not a prospective

study. But we try to verify the accuracy of our results by recruiting the other two external data-

sets for validation. Second, Gene expression testing is expensive and requires tumor tissue to

be obtained in advance, so it is challenging to apply it routinely in clinical practice. Further-

more, the signature we established in this study consisted of 52 immune-related genes that

needed to be tested simultaneously, which resulted in the inability to validate them in some

other datasets. The signature should also be optimized with more rigorous algorithms and vali-

dated with more datasets from different platforms.
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Conclusion

We constructed a robust prognosis-related signature for melanoma using a novel immune

gene pair approach and successfully validated its efficacy in other external datasets. This

approach is more suitable for scientific research and clinical guidance as it only compares the

values of gene expression profiles within a single sample and does not require a standardiza-

tion of the data or consideration of technical bias across platforms.
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