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Abstract

Background: Closely related, ecologically similar species often have adjacent distributions, suggesting competitive
exclusion may contribute to the structure of some natural communities. In systems such as island archipelagos, where
speciation is often tightly associated with dispersal over oceanic barriers, competitive exclusion may prevent population
establishment following inter-island dispersal and subsequent cladogenesis.

Methodology/Principal Findings: Using a combination of tools, we test the hypothesis that the distributions of shrew
(Crocidura) species in the Philippines are the result of competitive exclusion preventing secondary invasion of occupied
islands. We first compare ecological niche models between two widespread, allopatric species and find statistical support
for their ecological similarity, implying that competition for habitat between these species is possible. We then examine
dispersion patterns among sympatric species and find some signal for overdispersion of body size, but not for phylogenetic
branch length. Finally, we simulate the process of inter-island colonization under a stochastic model of dispersal lacking
ecological forces. Results are dependent on the geographic scope and colonization probability employed. However, some
combinations suggest that the number of inter-island dispersal events necessary to populate the archipelago may be much
higher than the minimum number of colonization events necessary to explain current estimates of species richness and
phylogenetic relationships. If our model is appropriate, these results imply that alternative factors, such as competitive
exclusion, may have influenced the process of inter-island colonization and subsequent cladogenesis.

Conclusions/Significance: We interpret the combined results as providing tenuous evidence that similarity in body size may
prevent co-occurrence in Philippine shrews and that competitive exclusion among ecologically similar species, rather than
an inability to disperse among islands, may have limited diversification in this group, and, possibly other clades endemic to
island archipelagos.
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Introduction

Theory predicts that closely related species cannot coexist until

they have diverged sufficiently in ecologically important traits [1–5].

Ecological differentiation may occur rapidly in clades undergoing

adaptive radiation [6–8], but much of biological diversity probably

results from speciation across geographic barriers, with relatively

little attendant divergence in ecologically important traits [9–13]. In

many cases, ecological diversification may happen early in a clade’s

history, with later events producing ecologically similar species

[14,15]. If many species are indeed generated without producing

significant ecological differences, competition may result when

closely related, initially isolated species come into contact, and these

interspecific interactions may result in competitive exclusion,

thereby preventing allopatric cladogenesis.

Such coevolutionary thinking was endorsed enthusiastically

until the 1970s [2,16], but subsequently has been treated with

caution [17–21]. Nevertheless, studies continue to document

patterns consistent with the notion that competition plays a role in

community assembly [22–27]. Although most authors acknowl-

edge some role of competition in shaping communities under

particular circumstances [e.g., 20], many questions remain as to

competition’s potency, pervasiveness, results, and detectability

[17,18,28]. In adaptive radiations, competition is often viewed as a

factor promoting species diversification [6,29]. However, in

radiations that diversify primarily across geographic barriers with

little change in ecologically important traits, competition has the

potential to prevent speciation, by limiting the ability of individual

species to expand over barriers into the range of other, closely

related species.

Unfortunately, competition is difficult to either document or

refute in empirical studies of free-living organisms. Much of the

argument for competitive exclusion therefore derives from

theoretical treatments [30], empirical microcosm studies
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[24,31,32], and correlational studies of patterns of species co-

occurrence in natural communities [25,33,34]. Thus, the pervasive

observation of ecologically similar sister species with abutting

peripatric, or narrowly overlapping parapatric distributions, stands

as one of the most often-cited forms of evidence for competitive

exclusion [e.g., 9, 35]. However, other processes, such as vicariant

isolation, may generate the same pattern [17,36], making it

difficult to distinguish among potential underlying mechanisms.

Nevertheless, if competition for habitat results in exclusion and is

the cause of a particular pair of abutting ranges, then the

competing species must occupy similar ecological space. Until very

recently, techniques for quantifying ecological similarity were

limited, and primarily anecdotal [36]. However, with the advent of

ecological niche modeling and associated statistical tests, an

objective, coarse-resolution means of assessing ecological similarity

is now available [37–39].

Most discussion of niche evolution centers on the Grinnellian

model [e.g., 11, 15], which emphasizes the environmental

dimensions occupied by a species. This conception is useful from

a practical standpoint because of the availability of environmental

data, and we focus on it here. If Grinnellian niches are conserved

over evolutionary time scales [11,15] and niche similarity results in

competition, then secondary colonization of habitats occupied by

closely related species should lead to either extirpation of one species

(exclusion) or character displacement in some ecologically signifi-

cant character that lessens competition and permits coexistence

[e.g., 28, 33]. If so, then within clades that primarily undergo

speciation across geographic barriers, co-occurring species are

expected, on average, to be more distantly related and/or more

different ecologically from one another than expected under a

model of random draws from the regional species pool. In other

words, if competition plays a role in determining the outcome of

inter-island dispersal events (i.e., establishment vs. failure to

colonize), sympatric species should be overdispersed (more

dissimilar than expected by chance) on the phylogeny and/or in

traits that result in ecological differences between species [25,34,40].

Here, we combine a variety of approaches to explore the

potential role of competitive exclusion in limiting inter-island

colonization, and hence speciation, in a group of shrews (genus

Crocidura) endemic to the Philippine archipelago. Shrews are

widely distributed in the Philippines, occurring on nearly all

islands that have been adequately surveyed for small terrestrial

mammals [41]. Most islands have a single species of Crocidura on

them, implying that ecological interactions may prevent coexis-

tence among these closely related species.

To determine whether Philippine Crocidura could potentially

compete with one another for habitat, we employ ecological niche

modeling to assess crude similarity of potential habitat use. We

then test for overdispersion of sympatric species in terms of their

phylogenetic relatedness and body size, with the goal of

understanding whether the few cases of co-occurrence are non-

random. Body size represents an important ecological trait that

may influence the ability of species to coexist [42–44], potentially

due to its relationship with other factors, such as metabolic and

reproductive rates, prey preferences, and vulnerability to predators

[45]. As a final treatment of questions related to the potential role

of species interactions in determining current species richness, we

simulated the process of inter-island colonization to determine

whether the current distribution of Crocidura could be generated

with a random model of dispersal that lacks ecological forces.

Geographic Setting
The Philippines has a remarkably complex geological history, in

which a combination of volcanic activity, subduction, and island

accretion altered the distribution of land dramatically over the

history of the archipelago (approximately the last 30 My) [46–48].

Geological history and its effect on biological diversity in the

Philippines have been discussed extensively in several papers

[49–55], and references cited therein.

However, with regard to the relatively recent ecological and

evolutionary processes considered here, the most relevant aspect of

the geographic history of the archipelago is that of sea-level

fluctuations, and the resulting aggregation of islands currently

separated by shallow seas. Because the large complex islands of the

Philippines are the product of accretion, rather than breakup, of

paleoislands [46–48], geologically driven vicariance is largely

absent from the Philippines; all speciation events in Philippine

Crocidura are thus thought to be the result of inter-island

colonization [41]. However, sea levels fluctuated widely from the

late Pliocene through the Pleistocene, and resulted in cycles of

connection and isolation among modern islands in the Philippines

[56–61]. When sea levels were low (2120 m) six major islands

were formed, here termed greater Luzon, Mindanao, Mindoro,

Negros–Panay, Palawan, and Sulu (Fig. 1). We refer to these as

Pleistocene Aggregate Island Complexes (PAICs) [62]. Although

Plio-Pleistocene sea-level fluctuations varied in duration, magni-

tude, and local effect, islands separated by channels currently at

least 140 m deep have probably remained isolated throughout

their history [55]. Presumably, the repeated connections among

neighboring islands allowed for dispersal of plants and animals

Figure 1. Map of the Philippines. The extent of land during
Pleistocene sea-level low-stands corresponding to the 120 m isobath is
shown in light gray. Modern islands are shaded according to their shrew
diversity, with islands lacking Crocidura records as medium gray, islands
with one species of Crocidura as dark gray, and islands with two species
as black (Borneo excluded). Species recorded from each island are given
in Table 1.
doi:10.1371/journal.pone.0021885.g001
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between modern islands within PAICs. Phylogeographic and

taxonomic evidence suggests the effect is important, but not

universal [50,52,55,63–67]. Because of the absence of geologically

driven vicariance in the archipelago [46–48], we consider the

history of sea-level fluctuations more important than tectonic

processes to understanding the colonization history of Philippine

shrews. Given the lack of tectonic vicariance, all currently isolated

shrew populations must be the result of over-water colonization, or

colonization over land bridges.

Distributional Patterns of Shrews in the Philippines
Crocidura shrews are widely distributed in the Philippines; they

have been documented on all but one of the PAICs (Sulu) and on a

few small oceanic islands (Fig. 1; Table 1) [41,49,68,69]. One

species, C. tanakae, occurs only at the northern extremity of the

Philippines, in the Batanes Islands—it is closely related to

populations from Taiwan and the Asian mainland, and a distant

relative of other Philippine Crocidura [70]; as it is part of a distinct

biogeographic setting and species pool, we exclude it from further

consideration. Among the remaining nine species, at least seven

are members of an endemic Philippine clade that occurs

throughout the country, from Calayan in the north, to Palawan,

Balabac, and Mindanao in the south (Fig. 1; Table 1) [41]. One

species (C. grandis) has not been recorded in over a century and is

known only from the holotype [71], but likely is a member of the

endemic Philippine clade [68]. Another species (C. batakorum),

occurs on Palawan and is most closely related to an endemic

Sulawesian radiation of Crocidura [41]. Among the nine species we

consider here, most are endemic to a single PAIC or oceanic island

(Fig. 1; Table 1). The two exceptions are C. grayi, which occurs on

Greater Luzon, and on Mindoro and Calayan islands, both of

which are isolated by deep water. The other is C. beatus, which

occurs on the islands of Greater Mindanao, but also on Camiguin

Sur, a small, young volcanic island that has remained isolated

throughout its existence [72]. Thus, most islands in the Philippines

hold single species of Crocidura, but two species are found on the

islands of Mindanao (C. beatus and C. grandis), Mindoro (C. grayi and

C. mindorus), and Palawan (C. batakorum and C. palawanensis: Fig. 1;

Table 1). The taxonomy of Philippine Crocidura has recently been

revised and is relatively well understood [41,68,69,73].

Herein, we treat populations on islands separated by deep ocean

channels, which have never been connected to one another

[58,59], as species. We adopt this strategy because taxonomy is

conservative in its recognition of recently diverged species,

requiring diagnostic characters, which are unlikely to be present

in the youngest species. Furthermore, we think gene flow between

populations on permanently isolated islands is probably very rare,

and populations on these islands should therefore be treated as

species in analyses of evolutionary processes. This approach is

consistent with Wiley’s evolutionary species concept [74].

Methods

Ethics Statement
Permits to collect scientific specimens were provided by the

Protected Areas and Wildlife Bureau of the Philippine Department

of Natural Resources. Field protocols were approved by the

University of Kansas IACUC #158-02.

Modeling Potentially Suitable Ecological Space
Most species of Philippine Crocidura are known from only a few

localities. Two species (C. grayi and C. beatus), however, have

moderately wide geographic distributions, each with numerous

spatially unique, vouchered localities [66]. To characterize

Table 1. Distribution of shrews (Crocidura) in the Philippines (excluding the Batanes Islands).

Species Island Area (km2) Pleistocene Island GenBank Accessions: CytB/ND2

Crocidura batakorum Palawan 11,785 Palawan FJ813976/FJ814541

Crocidura beatus Biliran 498 Mindanao

Bohol 3864 Mindanao

Camiguin Sur 249 – FJ813985/FJ814550

Leyte 7213 Mindanao

Maripipi 22 Mindanao

Mindanao 96,467 Mindanao FJ813844/FJ814410

Samar 13,429 Mindanao

Crocidura grandis Mindanao 96,467 Mindanao

Crocidura grayi Calayan 196 – FJ813930/FJ814495

Catanduanes 1513 Luzon

Luzon 107,170 Luzon FJ813850/FJ814416

Mindoro 9735 Mindoro FJ813932/FJ814497

Crocidura mindorus Mindoro 9735 Mindoro FJ813840/FJ814406

Crocidura negrina Negros 13,670 Negros–Panay FJ813957/FJ814522

Crocidura ninoyi Sibuyan 449 – FJ813841/FJ814407

Crocidura palawanensis Balabac 306 Palawan

Palawan 11,785 Palawan FJ813978/FJ814543

Crocidura panayensis Panay 12,300 Negros–Panay FJ813945/FJ814509

The Pleistocene Island column indicates to which Pleistocene Aggregate Island Complex the island belongs, if any. GenBank accession numbers are given for
populations included in the test of phylogenetic dispersion.
doi:10.1371/journal.pone.0021885.t001
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ecological niches of Philippine Crocidura, we used all known

sampling localities to generate ecological niche models (ENMs) for

C. grayi from Greater Luzon and C. beatus from Greater Mindanao

using Maxent 3.3.3 [75].

Maxent uses an algorithm based on the principle of maximum

entropy. The result of the algorithm is a probability distribution

from the environmental and occurrence data in which the best

explanation is that which shows the broadest probability

distribution. Maxent fits this distribution subject to particular

constraints, in this case, environmental values associated with

collection localities. The logistic output is considered by some as

an analogue of the probability of species occurrence in a Bayesian

context [76]. To convert the resulting map of continuous

probabilities to a predicted presence/absence map, we used the

lowest probability in our training occurrence data as a threshold,

where lower probabilities were considered absence [77].

We generated ENMs using 44 (Crocidura grayi) and 33 vouchered

localities (C. beatus) and raster GIS layers summarizing climate

parameters. Climate data consisted of seven WorldClim layers

[78] that represent variation in precipitation and temperature

(annual mean temperature, mean diurnal temperature range,

maximum temperature of warmest month, minimum temperature

of coldest month, annual precipitation, precipitation of wettest

month, and precipitation of driest month), and are generally

uncorrelated with one another [79].

We plotted occurrence points and regions that could be

reasonably assumed to have been available for colonization by

the species, as ‘‘M’’ in the ‘‘BAM’’ framework [80,81]. The BAM

concept is best visualized as a Venn diagram, in which an

organism’s geographic distribution is represented by the intersec-

tion of the biotic (B), abiotic (A), and movement (M) components

of the organism’s niche and history [e.g., 82, 83]. M is intended to

represent areas the species has explored during its history. For the

purpose of this study, M was defined as all islands within the PAIC

on which the species occurs. Thus, for C. grayi (excluding Mindoro

and Calayan populations), this area was represented by Greater

Luzon and for C. beatus (excluding Camiguin Sur population) it

consisted of Greater Mindanao (Fig. 1).

We generated ENMs for each species with current climate data,

drawn from their respective M areas. These ENMs were then

projected onto the entire Philippine archipelago and northern

Borneo using current climate data and Pleistocene reconstructions

of environmental layers representing the last glacial maximum

(LGM, 20 Kya) [84] and last interglacial (LIG, 135 Kya). We

applied the threshold rule derived from the current climate models

to each of the climate reconstructions.

As a test of the hypothesis that Crocidura beatus and C. grayi are

ecologically similar, and therefore potential competitors, we

calculated the niche overlap metrics, Hellinger’s based I and

Schoener’s D, for the thresholded ENMs projected onto the current,

LGM, and LIG climate regimes. Completing these tests over three

distinct climate scenarios provides an indication of how consistent

any similarities or differences in ecological niches might be, given

Pleistocene levels of climate variation. Niche similarity was

evaluated using a variant of the background similarity test [39], as

implemented in ENM Tools. To produce null distributions of

overlap metrics, we generated random occurrence points (44 for C.

grayi and 33 for C. beatus) within the area of M for one of the two

species. ENMs were generated in Maxent 3.3.3 from these points

within the respective M, projected onto the climate space of the

entire archipelago (as above), thresholded with the minimum

presence value, and compared to the empirical, thresholded ENM

of the other species to calculate the overlap metrics I and D. Nine-

hundred-ninety-nine randomizations were completed and projected

onto each climate regime. We placed observed overlap values in the

resulting null distributions of I and D and calculated one-tailed

P-values.

Testing for Phylogenetic Overdispersion
We used previously published mitochondrial DNA sequence

data to infer an ultrametric tree for eight of the nine species

(Crocidura grandis is unavailable) of Philippine Crocidura recognized

by taxonomy [41,73], plus all known populations from oceanic

islands. Nuclear sequence data were not used as divergences

among these species are mostly recent and involve limited

differences in available nuclear loci [70]. A concatenated character

matrix of Cytochrome b and NADH dehydrogenase subunit 2

(ND2) was used (2184 nucleotides). The matrix is nearly complete,

with only 10 characters missing from the 39 end of ND2 in C.

mindorus. We included a single individual of each taxonomically

defined species, from each of the PAICs and/or oceanic islands on

which it occurs. Thus, for the eight taxonomically defined species

sampled, a total of 11 individuals (evolutionary species) were

included (Table 1), comprising three representatives of C. grayi (one

each from the islands of Luzon, Mindoro, and Calayan), two of C.

beatus (one each from the islands of Mindanao and Camiguin Sur),

and one of each of the remaining species. Phylogenetic topology

and branch lengths were inferred in a Bayesian framework using

BEAST v1.5.3 [85]. Six independent runs of 5 million generations

were completed using a GTR + C model of sequence evolution

and Yule speciation prior. Parameters were sampled every 2000

generations and the initial 300,000 generations of each run were

discarded as burn-in, leaving 15,000 trees in the posterior

distribution. To evaluate convergence among MCMC analyses,

trends and distributions of parameters, including the likelihood

score, were examined in Tracer v1.4 [86]. The posterior

distribution of trees was summarized on a maximum clade

credibility tree with branch lengths presented as median heights.

Pairwise patristic distances (i.e., sums of branch lengths

separating two terminals) were calculated between all terminals

using the DendroPy phylogenetic library [87]. We then calculated

a metric of phylogenetic dispersion as

DPatristic~ �XXS{ �XXA,

where �XXS is the mean of pairwise patristic distances separating

sympatric species and �XXA is the mean of pairwise patristic

distances separating allopatric species. If DPatristic is positive,

sympatric species are distant relatives, indicating either allopatric

speciation resulting from inter-island colonization or, if the value is

higher, perhaps the presence of a sympatry threshold and

competitive exclusion. If DPatristic is negative, this indicates either

habitat filtering, in which closely related species tend to occur

sympatrically because they have similar ecological needs, or

within-island speciation. Because no tissue samples of C. grandis are

available, this test incorporated only two sympatric species pairs

(C. grayi and C. mindorus from Mindoro and C. batakorum and C.

palawanensis from Palawan). To measure significance, we recalcu-

lated DPatristic 2000 times on the empirical matrix of distances,

with sympatry (two species pairs) randomized among the

terminals, and calculated a one-tailed P-value from this distribu-

tion. This approach is similar to the widely used Net Relatedness

Index (NRI) [40,88], but allows us to calculate a single measure of

dispersion for the regional community and provides an alternative

means of testing dispersion patterns where diversity of individual

island communities is too low to use the more standard NRI. This
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test was completed on the maximum clade credibility tree with

branch lengths summarized as medians, and on a sample of 600

trees (the last 100 samples from each run) drawn from the

posterior distribution.

Testing for Overdispersion in Body Size
Body size represents an important ecomorphological trait in

shrews and many other vertebrates [4,5,42,43,89,90]; communi-

ties of sympatric species of shrews are often noted for their highly

regular distributions of body size [44]. Here, we use the length of

the skull as a proxy for body size because it is available from all

island populations and can be consistently measured [e.g., 4, 89,

91]. We measured the greatest length of skulls from the posterior

margin of the occipital condyles to the anterior margin of the

incisors (condylo-incisive length), using digital calipers precise to

the nearest 0.01 mm. Only adult specimens, as judged by

complete fusion between the basioccipital and basisphenoid bones

and fully erupted molars [e.g., 92], were measured (Appendix S1).

The average skull length was calculated for each species, and

pairwise differences in mean skull length were calculated between

all species. As with the phylogenetic dispersion analysis, we

included representatives of each taxonomically defined species

from all permanently isolated islands on which it occurs. Thus, all

of the island populations included in the phylogenetic analysis are

represented here. In addition, we include the holotype of Crocidura

grandis, resulting in the representation of all known species of

Crocidura from our focal area and inclusion of all three sympatric

species pairs (C. palawanensis and C. batakorum from Palawan, C.

grandis and C. beatus from Mindanao, and C. grayi and C. mindorus

from Mindoro). The test statistic for body-size dispersion was

calculated as

DSize~ �YYS{ �YYA,

where �YYS is the mean of differences in body size among

sympatric species pairs and �YYA is the mean of differences in body

size among allopatric species pairs. A null distribution was

generated by randomizing sympatry (three pairs) among the

species and recalculating DSize 2000 times. We then calculated a

one-tailed P-value by placing the observed value in this

distribution. We repeated this exercise using median values of

body-size differences to avoid any potentially undue influence of a

single value.

Because body size overdispersion could result from either

competitive exclusion or character displacement, we also tested for

phylogenetic signal in body size using Pagel’s lambda [93].

Likelihood scores for untransformed and transformed trees were

calculated in R 2.10.1 [94] using the package GEIGER [95] and

significance was evaluated with a likelihood ratio test. The result

was compared to a chi-square distribution with one degree of

freedom.

Simulating the Process of Island Colonization
We simulated the process of island colonization to determine

whether a random dispersal process lacking ecological interactions

could generate the known geographic distribution of Philippine

Crocidura. In other words, we asked whether competitive exclusion

might have caused the failure of past inter-island dispersal events

after arrival of potential propagules on an occupied island. In

doing so, we assumed that all colonization events lead to

speciation, which we consider reasonable given our understanding

of shrews’ limited ability to regularly cross marine barriers and the

understanding that all known Philippine shrew species are

probably the result of inter-island colonization [41].

A single island was randomly selected as the first island with a

shrew population. This seeding event was not counted as a

colonization event. From there, colonization events occurred one

at a time with the source population selected at random from among

occupied islands. The recipient island was selected among all the

islands (excluding the source) with a probability derived from the

distance between it and the source. The simulations were run with

two distinct probability distributions: (1) the probability of

colonizing a particular island was inversely proportional to its

minimum inter-shore distance from the source island, and (2) this

probability was the inverse of the distance squared. We adopted the

second approach to account for our expectation that long-distance

colonization by shrews should be much rarer than short-distance

colonization; squaring the distance results in much lower probability

for long-distance colonization. This expectation is based on shrew’s

fast metabolic rate and small body size, which presumably make it

difficult for them to survive long periods of time at sea. The

simulated colonization process was repeated until a given number of

islands had been colonized. For these simulations, we treated island

groups united during Pleistocene sea-level low-stands as single

islands. Minimum distances among these PAICs were measured

using Google Earth and were taken between the shores of the

nearest modern islands with an area $100 km2 within each PAIC.

Simulation code was written in Python and is available at: http://

github.com/jesselstyn/Island-colonization.

Because uncertainty exists as to exactly how many islands have

extant populations of Crocidura, we adopted three geographic scopes

in these simulations, including scenarios where 8 of 14 islands, 8 of 9

islands, and 5 of 6 islands must be colonized before the simulation is

terminated. The 14-island scenario included all five PAICs and the

three oceanic islands with shrew records (Camiguin Sur, Calayan,

and Sibuyan; Fig. 1), plus the one PAIC (Sulu) and five oceanic

islands lacking a shrew record. The oceanic islands included here

are those with an area $100 km2 and records of at least three native

mammal species [96, 97; Oliveros and Esselstyn, unpubl. data].

Thus, we included oceanic islands that are both sufficiently large to

support shrew populations (see below) and have been the subject of

at least cursory biodiversity inventories (i.e., Babuyan Claro,

Camiguin Norte, Lubang, Siquijor, and Tablas islands). In the 9-

island scenario, all five PAICs and three oceanic islands with shrew

records, plus the largest PAIC lacking a shrew record (Sulu) were

included. In the 6-island scenario, only the PAICs were included,

leaving out all oceanic islands. We adopted this final approach with

the hope of avoiding the uncertainty in shrew presence/absence on

small islands.

Under each scenario, the total number of colonization events

(speciation events) that had occurred by the time the termination

criterion was met was recorded during each of 10,000 replicates. A

subset of these replicates, which originated from the most plausible

routes of colonization from the continent into the Philippines

(Palawan and Mindanao islands), were examined as well, to

determine whether the seeded island impacts the number of

colonization events necessary for an organism to spread across the

archipelago. We then calculated one-tailed P-values with these

distributions by treating the minimum number of colonization

events necessary to generate the known distribution of shrews as

the observed value.

In general, large PAICs have been the subject of more intensive

biodiversity surveys than smaller islands, and knowledge of their

shrew faunas is more complete. Given this bias in survey effort, we

decided to limit the simulations geographically to the PAICs,
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oceanic islands known to have shrew populations, and the larger

oceanic islands ($100 km2) with records of at least three native

mammal species. By excluding small islands, we assumed there is a

lower limit on the area of an island necessary to support a shrew

population over evolutionary time scales [e.g., 98]. Among the

islands in the area considered here that are known to have shrew

populations, Maripipi is the smallest (22 km2). However, it was

united repeatedly with the larger islands of Greater Mindanao

during the Pleistocene, perhaps indicating that it does not provide

a meaningful indication of the smallest suitable island. Calayan

(196 km2) is the smallest island never to have been connected to

another island that is known to have a population of Crocidura.

However, outside the area of our geographic focus, populations of

Crocidura are found on Batan (35 km2) and Sabtang (41 km2)

islands [68,70], which were connected to each other, but are

isolated from other islands and the continent by deep water. Thus,

there is little evidence of shrews being capable of long-term

persistence on islands smaller than about 100 km2, and we treated

this as the minimum area necessary.

Results

Modeling Potentially Suitable Ecological Space
Ecological niche models estimate broad geographic overlap in

the potentially suitable ecological spaces for Crocidura beatus and C.

grayi (Fig. 2). Both species are predicted to find suitable climatic

space across much of the Philippines and northern Borneo under

current, LGM, and LIG conditions. Tests of niche overlap failed

to reject the null hypothesis that C. beatus and C. grayi have similar

niches, using both metrics of similarity and with independent

randomizations of each species’ occurrence data, under each

climate regime (Table 2). P-values were in fact very high, and

under a two-tailed approach revealed statistically significant

similarity between C. beatus and C. grayi in five of the 12 tests,

with marginal support for similarity in another five tests (Table 2).

Phylogenetic Dispersion
Phylogenetic inferences were consistent across six independent

Markov Chain Monte Carlo analyses. Examination of trends in

log-likelihood scores and other parameters suggest that all six runs

converged within the first 300,000 generations. Effective sample

sizes for all parameters were .200, with most exceeding 1000.

The topology inferred here (Fig. 3) is similar to previous estimates

[41], differing only in the placement of Crocidura mindorus. The

phylogenetic position of this species consistently receives low

support [41,66,70], probably a result of short internal branches.

However, as our test is based on branch lengths, the topology is

only critical to the extent it affects branch lengths. The test

statistic, DPatristic, was positive, and hence in the direction of

overdispersion (Fig. 4); however, its deviation from zero on the

maximum clade credibility tree was not statistically significant

(P = 0.272). All 600 samples we tested from the posterior also had

positive values of DPatristic, but most were not statistically

significant (Fig. 4).

Body-Size Dispersion
Body sizes, as indexed by average skull length, range from 18.01

to 23.70 mm (Table 3). The empirical value of DSize (1.746) was

greater than the corresponding values from nearly all randomi-

zations (Fig. 5; P = 0.012), suggesting that body size is significantly

overdispersed in sympatric species pairs of shrews in the

Philippines. However, when we repeated this analysis using

medians, rather than means, the effect was reduced, with DSize

equaling 1.10 (P = 0.155). Phylogenetic signal in body size was

marginal (P = 0.076).

Island Colonization Process
Our simulations of island colonization suggest it is somewhat

unlikely that shrews would colonize all of the currently occupied

islands with a random colonization process and the minimum

necessary number of dispersal events. When the probability of

colonization is inversely proportional to inter-shore distance and

the starting island is randomly chosen, the average number of

colonization events necessary for shrews to reach 8 of 14 islands is

16.52, for 8 of 9 islands it is 32.25, and for 5 of 6 islands it is 13.11

(Fig. 6). When we make long distance colonization more difficult

by using the inverse of squared distances as the probability of

colonization, the mean number of dispersal events increases

dramatically to 56.89, 181.96 and 49.51, respectively (Fig. 6). The

minimum number of colonization events necessary for Crocidura to

reach all of the islands it is known to occur on, with sympatric,

non-sister species pairs present on three islands and one species on

Figure 2. Results of ecological niche modeling. Collection localities used to generate ecological niche models are represented by black triangles
(Crocidura grayi) and circles (C. beatus). Potentially suitable climatic space is shown for C. beatus only (green), C. grayi only (yellow), and both species
(blue) in the Philippines and northern Borneo. Areas identified as unsuitable for both species are shown in gray. Predicted potential distributions are
shown for the present, Last Glacial Maximum (LGM), and Last Interglacial (LIG).
doi:10.1371/journal.pone.0021885.g002
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all other islands, is 10 (excluding colonization of the first island).

This small number of colonization events was rare in the two

simulation schemes that required colonization of 8 of 9 islands

(P#0.017; Fig. 6). In simulations with a termination criterion of 8

of 14 islands colonized, replicates with 10 or fewer colonization

events were somewhat common when long distance colonization

was probable (P = 0.1404), but rare when long-distance coloniza-

tion was unlikely (P = 0.0103; Fig. 6). If we ignore shrew

populations on oceanic islands, only considering the six PAICs

(five of which are known to have shrew populations), the minimum

necessary number of colonization events that can explain this

distribution (three PAICs with two species, two PAICs with one

species) is seven. Simulation replicates with seven or fewer

colonization events were relatively common when the colonization

probability was inversely proportional to distance (P = 0.246), but

rare when long-distance colonization was simulated as more

difficult (P = 0.051; Fig. 6). By recalculating these P-values for the

subset of replicates in which the seeded island was one of the two

islands most likely to serve as a colonization routes from the

continent to the Philippines, we find that fewer colonization events

are necessary from Palawan, but more are necessary from

Mindanao, relative to random starting points (Fig. 6).

Discussion

Testing forces that potentially shape patterns of relatedness and

community structure requires a combined approach, because

individual tests generally do not provide complete resolution

Table 2. Results of background similarity tests of the predicted ecological niches of Crocidura beatus from Greater Mindanao and
C. grayi from Greater Luzon.

Similarity Metric Time Period Empirical Values P-values: C. grayi localities randomized P-values: C. beatus localities randomized

Hellinger’s based I Present 0.942234 0.992 0.976

LGM 0.952043 0.991 0.920

LIG 0.943076 0.959 0.710

Schoener’s D Present 0.990111 0.987 0.961

LGM 0.989482 0.979 0.930

LIG 0.993111 0.940 0.634

Ecological niche models used climate data for the present, Last Glacial Maximum (LGM), and Last Interglacial (LIG). P-values revealing statistically significant similarity are
emphasized with a bold typeface.
doi:10.1371/journal.pone.0021885.t002

Figure 3. Maximum clade credibility tree for Philippine shrews (Crocidura). Terminals are labeled with species names, followed by island
names in parentheses. Numbers at internal nodes are posterior probabilities. Gray bars at nodes represent 95% highest posterior densities of node
ages on an arbitrary time scale.
doi:10.1371/journal.pone.0021885.g003
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among competing hypotheses [13]. However, even our combined

strategy provides only mixed evidence of competition’s possible

role in determining current patterns of diversity of Philippine

shrews. Comparisons of ecological niche models for the two well-

sampled species support similarity of abiotic ecological niches,

leaving open the possibility for competitive interactions if the two

species come into contact. However, the validity of extending this

conclusion to other species of Philippine Crocidura is debatable.

Our tests of phylogenetic dispersion were in the direction of

overdispersion (i.e., DPatristic .0), but not statistically significant.

Some degree of overdispersion is expected in this situation—tests

of alternative phylogenetic topologies have shown that sympatric

species of shrews in the Philippines are not sister species [41].

Therefore, because all speciation events in this clade are thought

the result of inter-island colonization, some overdispersion is

expected, even in the absence of competitive exclusion. Addition-

ally, statistical power for this test is almost certainly limited because

only two pairs of sympatric species are included. Our tests of body-

size dispersion, which included all three sympatric species pairs,

Figure 4. Relatedness of sympatric and allopatric shrews. Panel A shows the distribution of 2000 randomizations of DPatristic (difference in
mean patristic distances between sympatric species pairs and between allopatric species pairs) among species of Philippine Crocidura. The observed
value and one-tailed p-value are indicated. Panel B shows one-tailed p-values for DPatristic from a sample of 600 trees drawn from the posterior
distribution.
doi:10.1371/journal.pone.0021885.g004

Table 3. Mean condylo-incisive lengths (mm), with standard
errors (SE) and sample sizes (N) for Philippine species of
Crocidura.

Species Island
Mean condylo-incisive
length ± SE (N)

C. batakorum Palawan 18.0160.091 (5)

C. beatus Greater Mindanao 20.9960.143 (13)

C. beatus Camiguin 20.8060.136 (6)

C. grandis Mindanao 23.706NA (1)

C. grayi Luzon 20.1260.091 (23)

C. grayi Calayan 21.1760.170 (4)

C. grayi Mindoro 19.6360.032 (15)

C. mindorus Mindoro 22.2860.141 (4)

C. negrina Negros 22.9360.215 (8)

C. palawanensis Greater Palawan 23.6260.145 (27)

C. panayensis Panay 21.4560.279 (7)

C. ninoyi Sibuyan 22.6060.335 (3)

Measurements were taken from adult voucher specimens collected on
Pleistocene islands and oceanic islands (Appendix S1). These lengths were used
as a proxy for body size.
doi:10.1371/journal.pone.0021885.t003

Figure 5. Body size differences between sympatric and
allopatric shrews. The distribution of 2000 randomizations of DSize
(difference in the mean difference in skull length between sympatric
species pairs and between allopatric species pairs) among species of
Philippine Crocidura is shown. The observed value and one-tailed p-
value are indicated, as is the p-value when we repeated this analysis
using medians, rather than means.
doi:10.1371/journal.pone.0021885.g005
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provide some evidence that co-occurring species may be more

divergent in body size than expected by chance. The pattern of

body-size differences was significant when using the mean, but not

significant when we used the median. The latter approach

eliminated the effect of the large difference between the two

species on Palawan (C. batakorum and C. palawanensis). If differences

in body size among co-occurring species are non-random, this

could be due to either character displacement or a body-size filter

that prevents some species from colonizing occupied islands. We

suspect the latter is more probable, because there is marginal

phylogenetic signal in body size, despite the small clade size.

Our simulations of inter-island colonization indicate that under

some scenarios (four of six tests with random starting points were

statistically significant), it is unlikely that all the islands that

currently hold shrew populations could be colonized with the

minimum necessary number of inter-island dispersal events. In

other words, ecological factors may have played a role in

determining which inter-island dispersal events resulted in

successful colonization. If competitive exclusion (or some other

factor) is not preventing colonization (and subsequent allopatric

speciation), we expect to see a different distribution of species

richness in the Philippines. In particular, there should be greater

variation in species richness among islands, with high species

richness in islands in the center of the archipelago. In contrast to

this expectation, we see a conspicuously regular pattern, in which

all moderately large islands have only one or two species.

However, we acknowledge that there are inherent assumptions

built into this model (e.g., random source and direction of

colonization) and that our decisions regarding which islands

should be included directly affect these expectations. For instance,

if we have excluded islands with shrew populations from the

simulations, or, if any of the islands we think lack shrews actually

hold shrew populations, then our simulated estimates of the

numbers of colonization events necessary to populate the

archipelago are too low. However, if we have excluded islands

that truly lack shrew populations, then our simulations over

estimate the numbers of colonization events necessary to populate

the archipelago.

Given the potential for unknown species to exist on additional

islands, we adopted three geographic scopes in our simulations.

First, we included all six PAICs (five of which have shrew

populations) and eight oceanic islands (three with shrew

populations). However, we note that the mammal faunas of the

five oceanic islands and one PAIC lacking shrew records are very

poorly known [97], and it remains possible that shrew populations

exist on some or all of these islands. In the second approach, we

included all oceanic islands and all Pleistocene islands with a

record of shrews, plus the largest PAIC that lacks a record (Sulu;

Fig. 1), with the expectation that all but one of these islands be

colonized. This scenario is liberal in that it excludes oceanic islands

that probably have not been colonized. However, it is conservative

in that we treated PAICs as cohesive units that only need to be

colonized once, despite evidence to the contrary. For instance, the

populations of C. beatus on Samar and Leyte islands are deeply

divergent from other populations on Greater Mindanao [41,66],

perhaps indicating that establishing a shrew population on these

islands required an additional colonization event, as if it were an

oceanic island. If modern islands within Pleistocene islands have

been colonized over water, or over unsuitable habitats, then our

treating PAICs as cohesive units would lead to underestimation of

the numbers of colonization events in simulations. In our final

approach, we ignored the existence of oceanic islands, only

considering the six PAICs, five of which are known to have shrew

populations. By excluding oceanic islands, we hope to bypass most

of the uncertainty associated with the distribution of shrews.

In addition, we examined sets of simulations in which the

starting island was randomly chosen, or restricted to either

Palawan or Mindanao. Palawan and Mindanao are considered the

two primary routes through which relatively recently colonizing

organisms have invaded the Philippines [56,99]. They are

considered most important in this sense because of their present

proximity to the Sunda Shelf. Our simulations suggest range

expansion from Palawan (three of six were statistically significant)

may require fewer colonization events than when the organisms

originate from Mindanao (five of six were statistically significant).

This difference is probably caused by the extremely short distances

between Greater Mindanao and Greater Luzon, which leads to

frequent back and forth colonization between these two islands

being favored over colonization of other areas.

If our chosen geographic scopes and colonization probabilities

are reasonable, then numerous potential colonization events may

have failed after dispersing shrews arrived on islands already

occupied by another species. In effect, this would have limited the

number of speciation events by preventing the establishment of

isolated populations of species. This interpretation assumes that

dispersing individuals would not simply interbreed with local

populations. Unfortunately, we have no means of assessing

whether these species have the capacity to interbreed. If dispersing

individuals do interbreed with resident populations, then a genetic

signal should be detectable in the form of polyphyly of island

populations. However, the foreign genotypes might be extremely

rare and detecting them would require extraordinarily dense

sampling. The population-level samples used from C. beatus and C.

grayi in a previous analysis [66] showed no signs of introgression,

implying a lack of gene flow. However, we doubt that this

sampling was sufficient to detect extremely rare inter-species

introgression.

Additional anecdotal evidence suggests body size and/or

relatedness may play a role determining species’ ability to coexist.

We note that in two of the three cases of co-occurring Crocidura in

the Philippines, one member of the sympatric pair is a restricted

range species, perhaps endemic to a single mountain. Specifically,

on Mindoro Island, C. mindorus is only known from near the peak

of Mt. Halcon, but C. grayi is widespread and common on the

island. Both species have been collected at high elevation on Mt.

Halcon, suggesting they are truly sympatric on that mountain.

Similarly, on Mindanao Island, C. grandis is only known from the

type locality at high elevation on Mt. Malindang, but C. beatus is

widespread on the island and known from numerous localities,

including areas sampled on Mt. Malindang. In both cases, surveys

of neighboring mountains have failed to capture the apparent

micro-endemic species [51, 66, 70, 73; Esselstyn, D. S. Balete, L.

Figure 6. Results of inter-island colonization simulations. Histograms showing numbers of inter-island colonization events necessary to reach
a particular number of islands, given a stochastic model of colonization and random starting island are shown. Vertical arrows indicate the minimum
number of colonization events necessary to generate populations on 8 of 14 islands, 8 of 9 islands, and 5 of 6 islands, in each case with three islands
holding two non-sister species and all others holding one species. P-values indicate the proportion of simulations with the number of colonization
events less than or equal to the empirical minimum. Scales on x- and y-axes are not equal. P-values and sample sizes (N) are shown for the entire data
set with random starting island (Ran), and for the subsets of replicates that started from near the continental shelf (Mindanao [Min] and Palawan
[Pal]).
doi:10.1371/journal.pone.0021885.g006
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R. Heaney unpubl. data]. Thus, it appears that C. mindorus and

C. grandis are each restricted to high elevation areas on one

mountain, implying that a narrowing of one species’ niche may

facilitate coexistence. In contrast, on Palawan Island, C. batakorum

and C. palawanensis are both widely distributed [41]. Patristic

distances and differences in body size between these two species

are greater than those observed in the other pairs of sympatric

species, suggesting that magnitude of body-size and/or phyloge-

netic distances may contribute to the extent to which species co-

occur. However, it should be noted that C. batakorum is more

closely related to Crocidura from Sulawesi than to the other

Philippine species [41].

While we acknowledge that our results are mixed, with several

non-significant tests, we note that all our test statistics lie on the

sides of their respective distributions (e.g., positive DSize and

DPatristic) that suggest ecological interactions do play a role in

determining the outcome of inter-island dispersal events. Statistical

power in our analyses is certainly limited by both clade size and

uncertainty in the fine-scale geographic distribution of Philippine

Crocidura. We therefore interpret our results as tenuously suggesting

Philippine shrews represent a non-adaptive radiation, in which a

lack of ecological innovation may have prevented the accumula-

tion of more than 1–2 species per island. Although the distinction

between adaptive and non-adaptive radiations is one of degree

[100], we suspect that many terrestrial vertebrates that have

diversified within the Philippines are closer to the non-adaptive

end of the spectrum [e.g., 90], perhaps because speciation is so

often allopatric and associated with inter-island colonization. If

our supposition is correct, then a general lack of recent ecological

innovation [sensu 11, 14, 15] may present a greater hindrance to

speciation than does the need to cross the numerous ocean

channels that ‘isolate’ the many islands of the Philippines.

Although our results are not entirely conclusive, they provide a

new perspective and a set of testable hypotheses that potentially

explain the accumulation of insular diversity, in which inter-island

dispersal is common, but successful colonization rare, and a

general lack of ecological innovation constrains archipelago-wide

diversity.

Supporting Information

Appendix S1 Voucher specimens measured for condylo-incisive

length.
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