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Odorant receptors (ORs) control several aspects of cell fate in olfactory sen-

sory neurons (OSNs), including singular gene choice and axonal identity.

The mechanisms of OR-induced axon guidance have been suggested to prin-

cipally rely on G-protein signalling. Here, we report that for a subset of

OSNs, deleting G proteins or altering their levels of signalling does not

affect axonal identity. Signalling-deficient ORs or surrogate receptors that

are unable to couple to Gs/Golf still provide axons with distinct identities

and the anterior–posterior targeting of axons does not correlate with the

levels of cAMP produced by genetic modifications. In addition, we refine

the models of negative feedback by showing that ectopic ORs can be

robustly expressed without suppressing endogenous gene choice. In con-

clusion, our results uncover a new feature of ORs, showing that they can

instruct axonal identity and regulate olfactory map formation independent

of canonical G-protein signalling and cAMP production.
1. Introduction
Olfaction detects chemosensory stimuli with an enormous diversity in physico-

chemical properties. To accommodate this broad recognition, the olfactory

system employs a large repertoire of odorant receptors (ORs) [1,2]. OR genes

form the largest multi-gene family in mammals, with the mouse having

approximately 1100 functional receptors and approximately 200 pseudogenes

[3]. Signal transduction through the OR is derived by ligand binding (odour)

catalysing the bound heterotrimeric G-protein complex to exchange GDP for

GTP in the Ga subunit and the dissociation from the Gbg dimer. Ga bound

to GTP subsequently activates adenylyl cyclase 3 (Adcy3), inducing the pro-

duction of cyclic AMP (cAMP), which then binds to cyclic nucleotide-gated

ion channels and depolarizes the cell membrane [4]. While one would expect

that the OR’s main role would be to detect odorants and initiate signal trans-

duction, extensive evidence has shown that ORs also play pivotal roles in the

development of the olfactory system [5,6]. However, dissecting the pluralistic

roles of ORs has been challenging and their functions remain enigmatic.

Every olfactory sensory neuron (OSN) is thought to express only a single

OR gene from a single allele, which is referred to as singular expression [7,8].

OSNs expressing a given OR are scattered throughout the epithelium but are

confined to specific zones [9]. An important feature of the system is that the

expression of an OR seems to preclude the expression of additional OR alleles,

which is referred to as OR-induced feedback [10,11] and is shown to rely on

Adcy3, histone demethylase LSD1 and the unfolded protein response [12–15].
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Axons from OSNs that express the same singular

expressed OR coalesce into two of the approximately 1800

glomeruli, typically one on the medial and one on the lateral

side of the olfactory bulb [16]. The OR itself plays an impor-

tant role in this impressive developmental task, since

mutations that alter single amino acids within an OR

sequence or its expression levels reroute axons and shift the

position of the glomerulus [5,6,17]. All developmental out-

comes by an OR can be substituted by surrogate receptors

such as the highly divergent b2-adrenergic receptor

[5,18,19]. These experiments have shown that glomeruli do

not form an invariant topographical map, which would

serve as ‘targets’ for ORs expressed on axons. Instead, glo-

meruli arise through homotypic interactions, in a context-

dependent manner [6]. How ORs and other chemosensory

receptors instruct an identity and regulate axonal interactions

and glomerular formation has remained unclear. One

hypothesis suggests that OR-induced wiring mechanisms

fully rely on Gsa and Golfa signalling [18]; ORs would

have an indirect role, one of regulating the expression levels

of conventional axon guidance and identity molecules. In

this model, each OR and OR polymorphism capable of gen-

erating unique glomeruli, would have a unique level of

basal, agonist-independent activity, which would alter the

transcriptional expression of axon guidance molecules such

as neuropilin-1. The altered levels of cell surface molecules

also regulate anterior–posterior (A-P) targeting of axons:

low levels of cAMP result in anterior glomerular positioning

and high levels of cAMP result in posterior glomerular posi-

tioning [20]. Following A-P positioning, agonist-dependent

Golfa signalling in mature OSNs assists in segregating

axons into unique glomeruli, by altering the expression

levels of cell adhesion molecules, of which Kirrel2, Kirrel3

and BIG2 result in adhesion (attraction of ‘like’ axons),

while EphA and ephrinA mediate contact-dependent repul-

sion (segregation of ‘non-like’ axons) [21–23]. Dorsoventral

positioning of glomeruli does not rely on OR signalling, but

instead correlates with the anatomical locations of OSNs in

the olfactory epithelium and was shown to rely on two

sets of repulsive ligands/receptors expressed by OSNs:

neuropillin2/Sema3F and Slits/Robo2 [24–26].

We now provide evidence for an extended model of

OR-mediated axonal wiring. Importantly, our results indicate

that ORs also regulate A-P targeting and axonal identity via

cAMP-independent mechanisms. In addition, our findings

also redefine concepts within the field of OR gene regulation.
2. Results
2.1. Conditional deletion of Gsa does not affect the

axonal targeting of M71 OSNs
We aimed to investigate the role of Gsa in the axonal target-

ing of M71 OSNs. The olfactory epithelium is stratified such

that the basal stem cells reside beneath immature neurons

that are positive for growth-associated protein 43 (Gap43) and

these neurons are below mature neurons that are positive

for olfactory marker protein (Omp). Simultaneous in situ hybrid-

ization (ISH) using Gnas (Gsa), Gap43 and Omp probes

revealed detectable expression of Gnas in the basal stem cell

layer of the developing olfactory epithelium in postnatal

day (PD)6 animals that are Gnas-E1fl/fl (Gs WT, wild-type;
figure 1a and electronic supplementary material figure S1d ).

Coexpression of Gnas was observed in only a fraction of imma-

ture neurons expressing Gap43, when ORs are first expressed

and impart axonal identity to the axons (electronic sup-

plementary material, figure S1k). By contrast, Gnal (Golfa)

expression colocalized with Omp, indicating that it was

mainly expressed in mature neurons (electronic supplemen-

tary material, figure S1e). To directly test the role of Gsa

signalling in M71 OSNs, we sought to rely on the previously

described Gnas-E1fl/fl mice to obtain a conditional knockout

allele (cKO) for Gsa [27], since full Gsa KO animals are

embryonically lethal. First, we wished to confirm that

the Gnas-E1fl/fl mice could be used to delete Gs in OSNs.

To this end, we used a transgenic Cre line in which Cre

expression is driven by the olfactory epithelium specific

#123 promoter. The #123 promoter has been previously

shown to be active from an early developmental stage [28]

and #123-Cre mice were successfully used to abolish

Sema3F expression in immature OSNs [24]. We observed

that in #123-Cre mice, Cre was expressed in all zones and

within basal cells, immature and mature neurons (electronic

supplementary material, figure S1a) and reliably removed

the stop fragment in ROSA26-Stop-tauGFP reporter mice;

mRNA expression of the tauGFP reporter was now observed

in basal cells, immature and mature neurons (electronic sup-

plementary material, figure S1b,c). All olfactory glomeruli

appeared labelled by the ROSA26-tauGFP reporter after

Cre recombination (electronic supplementary material,

figure S1h). We next analysed the loss of Gsa from the entire

olfactory epithelium in the #123-Cre�Gnas-E1fl/fl (Gs cKO)

mice. The efficient excision of Gsa was readily observed in

the vomeronasal organ (VNO), where the ubiquitous

expression seen in WT mice was lost in Gs cKO animals

(figure 1c versus d). In the olfactory epithelium, Gnas
expression was strongly reduced in Gap43þ OSNs and was

mainly limited to the most basal cells (figure 1b and electronic

supplementary material, figure S1f ). Thus, this shows that the

Gnas-E1fl/fl mice can be used to eliminate Gsa expression in

OSNs. Of note, in the #123-Cre � Gnas-E1fl/fl mice, Gnal
expression was maintained in mature OSNs with no derepres-

sion in immature or basal cells (electronic supplementary

material, figure S1g). Remarkably, glomeruli appeared

normal in the #123-Cre � Gnas-E1fl/fl mice (electronic sup-

plementary material, figure S1i) and, by using OR reporters,

we observed that M72-LacZ and MOR23-LacZ glomeruli

were identical in pattern in both Gs WT and #123-Cre-

induced Gs cKO genetic backgrounds (figure 1e–h; electronic

supplementary material, figure S1j). Since deletion of Gs has

been previously shown to affect axonal targeting of OSNs

[18], this suggests that the #123-Cre promoter is not active

early enough during embryonic or neuronal development.

Next we set up a mosaic analysis of Gs WT and Gs cKO in

OSNs expressing the M71 OR. By using M71-Cre mice and

relying on the monoallelic expression pattern of OR genes,

we generated a mouse cross containing four different

mutant alleles in which M71 OSNs were now either:

(i) RFPþ and Gs WT or (ii) GFPþ and Gs cKO (figure 1i).
No aberrations in axonal targeting were observed in the

mutant population of axons (figure 1j,k); all axons co-con-

verged and coalesced. Finally, we did not observe any

deficits in the glomerular formation of M71-GFP axons

in Gnal2/2 (Golf KO) animals (figure 1l; electronic sup-

plementary material, figure S1l) and no expression of Gsa
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Figure 1. Conditional deletion of Gs in immature OSNs. (a – d) Three-colour ISH on coronal sections of PD6 MOE. Riboprobes were used against Gnas (red), Gap43 (green) and
Omp (blue). (a1) MOE Gnas is expressed more basal than Gap43. (a2) Only a fraction of Gap43 cells colocalize with Gnas. (b1) Gs cKO mice, Gnas expression is no longer
observed in Gap43þ OSNs and remaining expression (b2) is more basal. (c1) Gnas is widely expressed in the VNO of Gnas-E1fl/fl mice (¼ Gs WT) and (c2) colocalizes with
Gap43 and Omp. (d1, d2) VNO of #123-Cre � Gnas-E1fl/fl mice (i.e. Gs cKO mice), Gnas expression is no longer observed. (e, f ) Representative images of X-gal-stained
medial wholemounts of M72-LacZ OSNs in (e) Gs WT and ( f ) Gs cKO littermates. Bulbs were analysed for PD10 (Gs WT n ¼ 10; Gs cKO n ¼ 8) and three-week-old (3wo)
animals (Gs WT n ¼ 10; Gs cKO n ¼ 6), no mistargeting was observed. (g,h) Representative images of X-gal-stained wholemounts of MOR23-LacZ OSNs in (g) Gs WT
(n ¼ 10) and (h) Gs cKO (n ¼ 8) littermates (3wo). No mistargeting was observed. (i) Mice were crossed to obtain animals carrying all four of the indicated targeted
alleles (i.e. quadruple mutant). In the quadruple mutant, M71 OSNs are either: (1) RFPþ and Gs WT or (2) GFPþ and Gs cKO. ( j1) Wholemount fluorescence of the dorsal
bulb in a quadruple mutant described in (i) (6wo). RFPþ Gs WT (red) and GFPþ Gs cKO (green) axons converge and comingle (n . 10 mice); ( j2) High magnification
view of coalescing axons. (k) Coronal sections of the bulb of a quadruple mutant, showing an M71 glomerulus. Gs WT (red) and Gs cKO (green) axons converge and
coalesce. DAPI counterstain. (3wo) (l ) Representative wholemount fluorescence image of an M71-GFP glomerulus in a Golf KO mice (2wo). No mistargeting was observed
(n ¼ 10 bulbs). MOB, main olfactory bulb; MOE, main olfactory epithelium. Scale bars, 50 mm (a2,b2,j2,l), 100 mm (c2,d2), 500 mm ( j1,e,g), 20 mm (k).
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protein was observable in Golf KO M71-GFP OSNs (data

not shown).

2.2. A decrease in G-protein signalling, via the
expression of a dominant-negative Gs mutant,
does not shift the position of M71 glomeruli

To corroborate our Gs cKO and Golf KO results, we envisaged

an alternative approach to inhibit basal levels of G-protein sig-

nalling by expressing a dominant-negative Gsa (dnGs) mutant

that has been reported to efficiently inhibit Gsa signalling [29].

This dnGs mutant is likely to compete with both Gsa and

Golfa, thereby reducing basal, agonist-independent G-protein

signalling regardless of whether OSNs are expressing Gsa or

Golfa. By contrast to the KO experiments, which is a gene abla-

tion in all cells, we wished to set up a competition between

cells that contained the dnGs and those that did not, similar

to the experiments done with the heterozygous deletion of

the X-linked Cnga2 gene in female mice [30,31]. This type of

experiment would cripple one population of cells by dnGs

and be directly compared to a WT population of cells in the

same animal. Thus, we developed a new approach, the

ROSA26 Mosaic or RoMo system, for mosaic analysis by com-

bining stochastic Cre recombination [32] with gene targeting

in the ROSA26 locus [33] (figure 2a). When using cell-type

specific promoters to drive Cre expression in RoMo-control
mice, we observed a mosaic population of cells, expressing

either Turquoise or Tomato (data not shown). This led us to

construct a second mouse strain, RoMo-dnGs, where the

expression of Tomato is now linked to the expression of a

dnGs gene via an internal ribosomal entry site (IRES)

sequence. Initially, we crossed RoMo-dnGs with OMP-Cre

mice to induce recombination in all mature OSNs. Again a

mosaic population of either Turquoiseþ or Tomato-dnGsþ
OSNs was observed in the VNO and main olfactory epi-

thelium (MOE) (figure 2b). No apparent segregation of

axons was observed in the olfactory glomeruli (data not

shown), possibly because the effects of dnGs occurred too

late in the development of OSNs. Therefore, to induce recom-

bination in immature OSNs, we crossed RoMo-dnGs mice

with our previously described #123-Cre mice. Mosaic

expression was observed in the MOE, but both populations

of axons converged and comingled into normal glomerular

patterns (figure 2c). Finally, we sought to investigate how

the expression of dnGs affects the identity and basal activity

of M71 expressing OSNs by crossing RoMo-dnGs to M71-

Cre mice. Mosaic expression was observed with axons that

fully converged and comingled (figure 2d ), indicating that

expression of dnGs did not change axonal identity or the glo-

merular position of M71 OSNs. This suggests that either the

inhibition of basal Gs activity did not affect M71 axonal iden-

tity or that the dnGs was not functional. It has been reported

that spontaneous OSN spiking is fully dependent on the
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Figure 2. Mosaic expression of a dominant-negative Gs mutant in M71 OSNs impairs basal G-protein signalling but does not affect axonal projections. (a1) Sche-
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OSNs did not exhibit any basal activity (and were also not incorporated in panel f ). Data are mean+ s.e.m. One-way ANOVA and Tukey post test. (e,f ). Scale bars,
50 mm (b,c left), 250 mm (c right), 25 mm (d ).
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basal signalling of ORs [34]. Therefore, we reasoned that a

dnGs-induced knockdown in G-protein signalling would be

reflected by a reduction in spontaneous firing. Perforated

patch-clamp recordings were performed on dendritic knobs

of M71-Cre/Tomato-dnGsþOSNs using an intact preparation

[35]. M71-Cre/Tomatoþ OSNs (from M71-Cre � RoMo-

control mice) or M71-GFP OSNs were patched as control

groups. Interestingly, M71-Cre/Tomato-dnGsþ OSNs
exhibited strongly reduced numbers of spontaneous spikes

(1.12+0.39 Hz) compared with M71-Cre/Tomatoþ (5.13+
0.77 Hz) or M71-GFP OSNs (5.25+ 1.10 Hz; figure 2e; one-

way ANOVA: F ¼ 7.96065; p ¼ 0.00123). The instantaneous

firing frequency (IF) between these groups also differed

(one-way ANOVA: F ¼ 4.32191; p ¼ 0.02078), with M71-

Cre/Tomato-dnGs OSNs having a significantly higher IF

(19.2+1.8 Hz) than M71-Cre/Tomatoþ (14.2+ 1.0 Hz) and
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M71-GFP neurons (13.7+ 1.3 Hz; figure 2f ), indicating that

M71-Cre/Tomato-dnGs OSNs have a higher tendency for

bursting. The basal and IF firing rates of M71-Cre/Tomatoþ
and M71-GFP OSNs were not different. The reduction in spon-

taneous firing of M71-Cre/Tomato-dnGs OSNs strongly

suggests that the dnGs inhibits basal, agonist-independent

G-protein signalling and cAMP production. Since axons of

Turquoiseþ control OSNs and Tomatoþ dnGs-affected

OSNs coalesced in the dorsal bulb, this suggests that crippling

basal G-protein signalling did not affect M71 axonal identity

or glomerular positioning.

2.3. Increasing G-protein signalling, via the expression
of a constitutively active Gs mutant, can modulate
the M71 axonal identity but not the resulting
position of its glomeruli

We have already addressed the consequences of downregu-

lating G-protein signalling. Now, we wished to assess how

axon targeting is affected by an increase in G-protein signal-

ling in M71 neurons. Therefore, we generated the M71-

caGs-GFP strain, in which the M71 locus was engineered to

coexpress M71 together with a constitutively active Gs

mutant (caGs) and a GFP reporter via a tricistronic mRNA

(figure 3a). In homozygous M71-caGs-GFP mice, 16 out 36

bulbs showed a lateral GFPþ glomerulus at an A-P position

comparable to that of WT M71 (figure 3b; Type 1 conver-

gence). Remarkably, in the remainder of bulbs (55%), axons

failed to converge into a glomerulus (figure 3c), indicating

that glomerular formation was disrupted. Importantly, by

crossing in the M71-RFP allele, we observed that M71-caGs-

GFP axons converged with M71-RFP axons (figure 3e).
This shows that when M71-caGs glomeruli were formed, they

were not posterior to WT M71 glomeruli. This is not because

of an intrinsic inability to shift M71 glomeruli posterior, since

we have previously reported that the M71::GFP fusion protein

induces a clear posterior shift [5]. However, we did observe

that M71-caGs-GFP and M71-RFP axons formed compartmen-

talized glomeruli (figure 3e), indicating a subtle change in

axonal identity. Together this shows that caGs co-expression

did not shift the position of the glomerulus, but did affect

axonal identity and glomerular formation.

The frequent failure to form M71-caGs-GFP glomeruli

suggests that OR-independent signalling via the caGs mutant

could disrupt glomerular formation. However, we cannot

exclude that the aberrant wiring resulted from the tricistronic

structure of the gene-targeted M71 locus. By generating the

M71-M71-GFP strain, which harbours another tricistronic

mutation in the M71 locus (figure 3a), we show that this is unli-

kely. In M71-M71-GFP mice, where instead of caGs we inserted

a second M71 coding region, the formation of GFPþ glomeruli

was always observed (figure 3d). Interestingly, M71-M71-GFP

and M71-RFP axons also often formed a compartmentalized

glomerulus (figure 3f ), suggesting that the change in M71

protein levels was sufficient to change the identity of the axons.

2.4. ORs can regulate A-P targeting via cAMP-
independent mechanisms

Our results indicate that Gs/Golf signalling and cAMP pro-

duction are not the main drivers of A-P targeting in M71

OSNs. To further corroborate this, we wished to set up an

experimental system in which OSNs would express different

ORs but have the same level of G-protein signalling. If such

axons would not coalesce, this would be a clear indication
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of an OR-instructed identity, independent of the levels of

G-protein signalling. To achieve this, we thought to compare

M71 OSNs in which the coding sequence (CDS) was

exchanged with distinct signalling-deficient ORs and where

G-protein signalling was rescued via expression of the caGs

mutant. To induce signalling deficiency in ORs, we chose to

mutate the highly conserved DRY motif, which is critical

for regulating GPCR conformational states [36]. Mutating

the E/DRY residues into REY or RDY has been previously

shown to abolish G-protein signalling for Rhodopsin [37],

CXCR4 [38] and the rat I7 OR [20]. To confirm that these

mutations would indeed cause a loss of function phenotype,

we created a gene-targeted strain in which the M71 DRY

motif was replaced by RDY (D121R;R122D) along with

an IRES-taulacZ reporter, M71(RDY)-LacZ (figure 4a). In

contrast to M71-LacZ axons (figure 4b; electronic supplemen-

tary material, figure S2a), M71(RDY)-LacZ axons showed

poor outgrowth, typically did not reach the cribiform plate
and were not observed on the dorsal bulb (figure 4c; elec-

tronic supplementary material, figure S2b,c). Furthermore,

the number of M71(RDY)-LacZ neurons rapidly decreased

over time (electronic supplementary material, figure S2d )

and by PD21 their numbers were 10-fold lower when com-

pared with M71-LacZ neurons in age-matched animals

(electronic supplementary material, figure S2e). This dramatic

phenotype indicates that G-protein signalling in M71 OSNs is

necessary when competing with normal OSNs.

Now we were in a position to test two additional mouse

strains: M71(RDY)-caGs-GFP and MOR23(RDY)!M71-

caGs-Tomato, in which the RDY mutant OR is coexpressed

with a caGs to rescue G-protein signalling (figure 4a).

Furthermore, in the MOR23(RDY)!M71-caGs-Tomato

strain, the M71 CDS is replaced by a DRY! RDY mutant

of the MOR23 CDS. The M71(RDY)-caGs-GFP

and MOR23(RDY)!M71-caGs-Tomato OSNs thus express

different ORs—M71(RDY) versus MOR23(RDY)—but
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should have the same level of G-protein signalling (derived

from the OR-independent caGs mutant). Coexpression of

caGs rescued axonal projections to the bulb for both

M71(RDY)-caGs-GFP and MOR23(RDY)!M71-caGs-

Tomato OSNs (figure 4d,e). The number of caGs-rescued

OSNs remained very low (electronic supplementary material,

figure S2e) and as a consequence glomerular formation was

often inefficient [39]. In mice that were only heterozygous

for one of the mutant alleles, axons projected to the expected

A-P region, but glomerular formation was often not observed

(e.g. Tomatoþ axons figure 4f,h). These findings are also in

line with what was seen for M71-caGs mice, where

expression of caGs often disrupted glomerular formation

(figure 3c). Importantly, however, M71(RDY)-caGs and

MOR23(RDY)!M71-caGs axons projected to fundamentally

different A-P regions (figure 4d,e). The differential identities

of M71(RDY)-caGs-GFP and MOR23(RDY)!M71-caGs-

Tomato axons were confirmed in a mixed cross, where coalesc-

ence was never observed between GFPþ and Tomatoþ axons,

and where GFPþ axons extended more posterior (figure 4f ).

Remarkably, M71(RDY) axons projected to the same A-P

region as WT M71 axons, as was seen in M71-RFP �
M71(RDY)-caGs-GFP mice (figure 4g). Similarly,

MOR23(RDY)!M71-caGs-Tomato axons projected very

close to WT MOR23!M71-LacZ axons, which was anterior

to M71 (figure 4h). Together this shows that M71(RDY)-

caGs and MOR23(RDY)-caGs axons project to distinct A-P

regions on the bulb, very close to the targeting site of their

respective WT receptors. It is important to note that for

both populations the caGs is expressed from the same locus

with a similar tricistronic strategy. This suggests that ORs

can regulate axonal targeting via cAMP-independent

mechanisms.
2.5. G-protein signalling is critical for neuronal
maturation and competition

Are DRY! RDY mutations in ORs blocking G-protein

signalling? We observed that M71(RDY)-LacZ cells resided

very basal in the epithelium suggesting that these cells

were not mature and might not contain necessary signal

transduction components to assess G-protein signalling.

Thus, we used ISH to determine the percentage of Ompþ
mature, OmpþGap43þ intermediate and Gap43þ immature

cells in normal and RDY strains of mice: M71-LacZ,

M71(RDY)-LacZ, M71(RDY)-caGs-GFP and MOR23(RDY)!
M71-caGs-Tomato OSNs (figure 5a). An almost complete

absence of Ompþ mature OSNs was observed in the

M71(RDY)-LacZ population (figure 5a). M71(RDY)-LacZ

OSNs also failed to upregulate Adcy3 expression, a key

component of the signalling machinery in mature OSNs

(figure 5b). By contrast, Ompþ and Adcy3þ mature

M71(RDY)-caGs and MOR23(RDY)!M71-caGs OSNs were

observed, albeit at a lower percentage as compared with

WT M71 (figure 5a,b). These results suggest that G-protein

signalling may be a checkpoint in OSN maturation. Alterna-

tively, the loss in G-protein signalling may render OSNs

uncompetitive and they may be quickly eliminated as they

mature, which would explain the rarely observed only

Ompþ expressing M71(RDY)-LacZ OSNs.

We next wished to perform physiology to assess OR func-

tionality. Since M71(RDY)-LacZ OSNs remained immature,
they would not be suitable for recordings as their signalling

machinery may not be functional. We therefore chose

MOR23(RDY)!M71-caGs-Tomato OSNs, on which we per-

formed perforated patch-clamp recordings. MOR23(RDY)!
M71-caGs-Tomato neurons were stimulated with saturating

concentrations of lyral (an MOR23 ligand), acetophenone

(an M71 ligand), or a mixture of odorants that activates

66% of randomly patched OSNs in the MOE [40]. In our

analysis, we only considered OSNs that responded to a mix-

ture of IBMX and forskolin, which directly activates

adenylate cyclases and indicates whether the neurons are

mature. Of the 13 recorded OSNs that responded to

IBMX þ forskolin (out of 17 total), none responded to any

of the other stimulants, showing that there is no chemical

or mechanical activity in these neurons (figure 5c). In

addition, MOR23(RDY)!M71-caGs OSNs exhibited almost

no spontaneous activity, which is clearly present in WT

MOR23 or M71 OSNs (figure 5d,e). Four conclusions are

delineated: (i) DRY! RDY mutations uncouple ORs from

G-protein signalling; (ii) no other ORs were coexpressed in

these cells as MOR23(RDY)!M71-caGs OSNs never

responded to the mixture of odorants (gene choice remained

intact); (iii) spontaneous OSN spiking is indeed fully depen-

dent on the basal signalling of ORs; and (iv) caGs does not

elicit spontaneous spiking, indicating that the rescue of

MOR23(RDY) OSNs does not require electrical activity.

2.6. One neuron – two receptors: OSNs in O/E2-M71-
GFP mice coexpress the M71 OR together with
an endogenous receptor

Our results show that signalling-deficient ORs can regulate

the identity and A-P targeting of M71 axons, suggesting

that this did not rely on differences in OR-induced cAMP

levels. However, it may be argued that the M71(RDY) and

MOR23(RDY) coding sequences differentially affect mRNA

stability, thereby resulting in different caGs protein levels in

M71(RDY)-caGs compared to MOR23(RDY)-caGs OSNs. To

resolve these issues, we reasoned that forcing the coexpres-

sion of a WT OR in all OSNs may also rescue the

maturation and axonal projections of M71(RDY) neurons.

Furthermore, this might uniformly increase G-protein signal-

ling in all OSNs, allowing a direct comparison of the A-P

targeting of M71(RDY) with other ORs. Based on previous

experiments using ubiquitously activated ORs via the ttA/

tetO system [41–43], it was unclear whether it was a priori
possible to coexpress a second OR in all OSNs. In theory,

OR-mediated negative feedback mechanisms would prevent

endogenous gene expression or endogenous genes would

silence the expression of the ectopic OR [41,42].

In an attempt to express an OR in all OSNs, we started

from the MOR23 cDNA (containing exons 1–3, Tg3’D, see

[44]), where we removed the MOR23 promoter and MOR23
coding region and replaced it with an M71-IRES-tauGFP-

ACNF cassette (figure 6a). This was subsequently cloned

into the O/E2 targeting vector (TV) [45] and used to replace

the first 6 exons of the O/E2 gene via gene targeting. In the

resulting O/E2-M71-GFP strain, expression of an M71-IRES-

tauGFP cDNA is placed under the control of the native

O/E2 promoter, which is prominently expressed in all OSNs

[45]. A widespread and bright intrinsic GFP fluorescence

was seen in the MOE and VNO of O/E2-M71-GFP mice
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(figure 6b–e). All OSNs appeared GFPþ, as did the glomer-

uli, which were homogeneously labelled and showed a

normal morphology (figure 6f ). Importantly, M71 mRNA

was robustly observed in the whole MOE and VNO of

O/E2-M71-GFP mice (figure 6g,h; electronic supplementary

material, figure S3a,c). O/E2 expression is typically observed

prior to Gap43, at a very immature neuronal stage of OSNs.

M71 expression from O/E2-M71-GFP mice was also seen in

this early OSN stage (figure 6g). The MOE of O/E2-M71-

GFP mice had a normal multi-layered structure and

thickness, comparable to that of O/E2 WT control animals
(electronic supplementary material, figure S3b,d). Interest-

ingly, it was evident that expression of M71 via the O/E2
promoter did not suppress endogenous OR expression. ISH

showed coexpression of M71 with other unrelated class II

OR genes (figure 6i). Next, NanoString was used to assess

the expression of a random selection of OR genes in the

MOE of O/E2-M71-GFP(þ/2) and O/E2-WT littermates

(figure 6j ). Of the 19 OR genes tested, only one transcript

showed a significant but small downregulation, showing

that the majority of ORs had comparable expression levels

in the two groups. In addition, the zonal expression of
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endogenous ORs in the MOE was not altered in O/E2-M71-

GFP mice, as illustrated by crossing the mice to the

M71-LacZ, MOR23-LacZ and P2-LacZ strains (figure 7a–c).

As reported previously, OSNs that choose an OR locus that

does not contain an OR gene—such as the DM71-LacZ

allele where the M71 CDS is deleted—coexpress additional

OR genes [5]. Therefore, the projection of lacZþ axons in

DM71-LacZ mice depends on the guidance properties of the

other ORs, resulting in a divergent pattern of projections

(figure 7d ). Interestingly, distributed axons entering multiple

glomeruli were also observed in DM71-LacZ mice crossed to

O/E2-M71-GFP (figure 7d ).

To investigate whether the ectopic M71 in O/E2-M71-

GFP mice is functional and contributes to signalling and

neuronal activity, we performed patch-clamp recordings on

the MOE of O/E2-M71-GFP mice. In addition, we also

crossed in the MOR23(RDY)!M71-caGs-Tomato mutation.

In the resulting cross, we patched the dendritic knobs of

random OSNs that express an unknown endogenous OR

(GFPþ Tomato2) or MOR23(RDY)!M71-caGs OSNs

(GFPþ Tomatoþ) and measured their responses to varying

concentrations of the M71 ligand acetophenone. All ran-

domly patched OSNs (n ¼ 10) and MOR23(RDY)!
M71-caGs OSNs (n ¼ 10) responded to acetophenone

(figure 8a,b). While responses were heterogeneous, most

O/E2-M71-GFP neurons responded to concentrations above

1025 M acetophenone (figure 8d,e). Responses to acetophe-

none were not widespread in the normal WT MOE, as in

O/E2 WT littermates only 1 in 10 patched OSNs responded

(figure 8c). As a reference we also patched WT M71 OSNs

in M71-GFP mice and plotted a threshold frequency histo-

gram, which represents the percentage of cells that

responded to a specific threshold concentration (figure 8f ).

This showed that O/E2-M71-GFP neurons were less sensitive

to acetophenone than M71-GFP OSNs. Importantly, O/E2-

M71-GFP expression also rescued the spontaneous firing of

MOR23(RDY)!M71-caGs OSNs, which now exhibited
mean and instantaneous firing frequencies in the same

range as that of randomly patched OSNs (figure 8g,h).

Since without O/E2-M71-GFP expression MOR23(RDY)!
M71-caGs OSNs exhibit no spontaneous firing (figure 5e),

this shows that the ectopic M71 contributes to basal, agonist-

independent, spiking in OSNs, while caGs does not.

2.7. O/E2-M71-GFP rescue experiments confirm that the
A-P targeting of ORs and surrogate receptors can
be driven by cAMP-independent mechanisms

We wondered how the ectopic M71 expression would affect

M71-LacZ or MOR23!M71-LacZ axonal projections. In

O/E2-M71-GFP mutants, M71-LacZþ and MOR23!M71-

LacZ OSNs formed glomeruli in the correct A-P position

(figure 9a,b). However, M71 axons took altered routes on

the bulb and traversed through regions were they are nor-

mally excluded and often formed an additional glomerulus

at the same A-P position (figure 9a,b; electronic supplementary

material, figure S4).

We next tested the consequence of adding M71 expression

to signalling-deficient M71(RDY) OSNs. O/E2-M71-GFP

expression rescued axon outgrowth of M71(RDY)-LacZ

OSNs, which formed two points of coalescence on the

dorsal bulb (figure 9d,f ). An ectopic convergence point was

observed in an anteromedial region of the dorsal bulb,

where both medial and lateral projecting axons co-converged

(figure 9d, white arrow). The lateral M71(RDY) glomerulus

was observed at the same A-P region as WT M71 glomeruli

(figure 9d, black arrow), which was clearly more posterior

than MOR23!M71-LacZ or MOR23(RDY)!M71-caGs-

Tomato axons (figure 9b,c,e). Importantly, in O/E2-M71-

GFP mice, M71(RDY)-LacZ OSNs have lower levels of basal

G-protein signalling than MOR23!M71-LacZ OSNs or

MOR23(RDY)!M71-caGs-Tomato OSNs. Indeed, while in

M71(RDY)-LacZ OSNs only the O/E2-derived ectopic M71
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contributes to cAMP production, in the latter two popu-

lations this is combined with cAMP stemming from the WT

MOR23 receptor or the caGs mutant, respectively. Therefore,

despite having lower levels of cAMP, M71(RDY) axons

project more posterior than MOR23!M71-LacZ or

MOR23(RDY)!M71-caGs-Tomato OSNs. This again high-

lights that in M71 or M71-swapped OSNs A-P targeting

relies on the expressed OR but not on the levels of cAMP

production.

Can we ascertain that the axonal identity and glomerular

targeting of O/E2-M71 �M71(RDY) OSNs is imparted by

the M71(RDY) OR or could it be derived from the ectopic

O/E2-M71 alone? We have previously reported that in

V1rb2!M71-LacZ mice, where the M71 CDS is replaced by

the vomeronasal receptor V1rb2, axonal outgrowth and
coalescence is very inefficient [5]. Interestingly, O/E2-M71-

GFP expression rescued the axonal projections of V1rb2!
M71-LacZ OSNs, which in all analysed bulbs efficiently

formed glomerular-like structures (figure 9g). This shows

that upon O/E2-M71 rescue, V1rb2 can efficiently substitute

for an OR and induce a unique axonal convergence. Impor-

tantly, V1rb2!M71-LacZ axons had a different identity and

a convergence point that was positioned much more anterior

than M71(RDY)-LacZ axons. Since both M71(RDY) and

V1rb2 are GPCRs that cannot couple to Gs/Golf, this confirms

that their axonal identity and A-P positioning were shaped by

OR-dependent, Gsa/Golfa-independent mechanisms.

It has been suggested that the level of basal, agonist-

independent G-protein signalling regulates the expression

of neuropilin-1 (Nrp1), plexin-A1 (Plxna1) and semaphorin-3A
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(Sema3a) and that these molecules are the main drivers of A-P

targeting [18]. To examine whether in O/E2-M71-GFP mice

the expression levels of these and other cell adhesion mol-

ecules were affected, we performed NanoString analysis on

the MOE of O/E2-M71-GFP mutant versus WT littermates

(figure 9h). There were no changes in the expression levels

of any of the neuropilin, semaphorin or plexin genes tested.

Surprisingly, we observed a significant downregulation of

Kirrel2 and Epha5 together with an increase of ephrin-A5 in

O/E2-M71-GFP mice (figure 9h). Remarkably, both signal-

ling impaired CNGA2 KO mice and activity reduced, naris

occluded animals are known to have this same expression

pattern [21]. This suggests that in O/E2-M71-GFP mice

there is a general reduction in the electrical activity of OSNs.
 l.6:160018
3. Discussion
Our results provide a set of profound insights into how the

OR regulates the developmental pathway of OSNs, starting

from regulation of gene choice, to OSN maturation and

finally to axonal identity and glomerular formation.

3.1. Negative feedback by OR genes
Forcing the widespread expression of an OR using trans-

genic approaches has not been straightforward, which has

contributed to shaping the current models of OR-induced

feedback. To achieve ectopic OR expression, several

groups have used the tetO-TTA system using immature/

mature neuronal TTA drivers [41–43]. These TTA-induced

transgenic ORs are able to suppress the expression of

endogenous ORs. Remarkably, it has been suggested that

the tetO-driven ORs themselves can be silenced by the

endogenous ORs, implying that OR coding regions are tar-

gets for feedback mediated suppression [41]. Remarkably,

all OSNs in O/E2-M71 mice robustly express M71 together

with an endogenous OR, while maintaining their specific

glomerular formation. This coexpression shows that OR

coding regions, including the 50 and 30 UTRs, are not targets

for feedback suppression, otherwise the endogenous OR

would have blocked O/E2-M71 expression. But why did

the O/E2-M71 OR, which was already expressed very

early in OSN development, not suppress the endogenous

OR? One explanation is that negative feedback does not sup-

press first choice, but only subsequent choices. The

projection pattern of DM71 OSNs—where first choice does

not lead to the expression of an OR—was similar in an O/

E2-M71-GFP background. This may indicate that OSNs

that have chosen to express the DM71 locus still choose a

second OR locus for expression, despite the ubiquitous

expression of M71 from the O/E2 promoter. An alternative

explanation is that second OR choice is blocked by O/E2-

M71, but its expression alone is not able to efficiently

coalesce DM71-LacZ axons into distinct glomeruli. Further

characterization of the expressed ORs in DM71 OSNs is

needed to resolve this.

An explanation for the lack of suppression is that the O/

E2-M71 expression levels do not reach a required threshold

level to induce feedback. This would imply that robust

expression levels that are sufficient to rescue axon out-

growth and neuronal maturation of OSNs are not

sufficient to induce negative feedback. It has recently been
proposed that stable OR gene expression requires the

recruitment of many cis- and trans-acting enhancers [15]. It

is therefore possible that gene choice remains open until

one OR locus is able to recruit a sufficient number of enhan-

cers and achieve a high threshold level of expression.

Interestingly, recent reports by Hanchate and colleagues

[46] have shown that developing OSNs transition from

expressing low levels of multiple ORs to expressing high

levels of a single OR. These results fit with the interpretation

that sub-threshold expression of an OR early in developing

OSNs does not block gene choice. Our results also suggest

that the expression of an OR is coupled to OSN maturation,

as described below.
3.2. G-protein signalling and the expression of a
functional OR promote OSN maturation

Our results indicate that OSNs expressing ORs with

G-protein coupling mutations in the DRY motif remained in

an immature state, were unable to send axons to the bulb

and were gradually eliminated from the epithelium. Co-

expression of a caGs was able to rescue OSN maturation,

with the reappearance of Ompþ Adcy3þ OSNs and axonal

projections on the bulb. One explanation for these obser-

vations is activity-dependent competition [30], which

would result in the rapid elimination of OSNs expressing

signalling-deficient ORs. However, no agonist-dependent or

-independent neuronal spiking was observed in caGs-rescued

OSNs. This suggests that the spatio-temporal dynamics of

cAMP production by the caGs did not reach spike threshold

levels. Furthermore, the total number of caGs-rescued OSNs

in the MOE remained very low, indicating that they were

still being eliminated. Together, this makes it unlikely that

the caGs-induced reappearance of mature OSNs was linked

to activity-dependent competition. One plausible explanation

for the observed caGs rescue is a slow or small accumulation

of cAMP in immature OSNs that result in a differentiation/

maturation signal to the nucleus. Therefore, the expression

of a functional OR that is capable of inducing G-protein

signalling may directly promote OSN maturation. Interest-

ingly, reports by Lomvardas and co-workers [13] have

shown that ORs induce Adcy3 expression via Perk and

ATF5 signalling. Adcy3 subsequently downregulates Lsd1

expression, thereby stabilizing OR gene choice [14]. Since

the expression of a functional OR, coupled to G-protein

signalling, promotes maturation and Adcy3 expression, this

could further help in stabilizing OR gene choice. An apparent

benefit would be an increased ability to filter out the many

dysfunctional OR genes in the repertoire, since signalling-

deficient ORs would be less efficient in inducing maturation

and Adcy3 upregulation.

The rescue of OSNs by O/E2-M71 is also likely to involve

a permissive signal that promotes OSN maturation or survi-

val. Surprisingly, however, OE2-M71 OSNs also showed

alterations in the expression of activity-dependent axon

guidance molecules that are normally suppressed or enhanced

in naris occlusion or CNG2A KO backgrounds [21]. Thus,

the rescue of axonal outgrowth in M71(RDY)!M71-LacZ

and V1rb2!M71-LacZ in O/E2-M71-GFP mice may be

further enhanced through a reduction in activity-dependent

competition, as has been observed in male CNGA2 KO mice

(2/0) or naris occluded CNGA2 (þ/2) female mice
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[30]. Why would the ectopic expression of M71 result in a gen-

eral reduction of activity? We speculate that the ectopic M71

competes for space with the endogenous ORs in the cilia,

thereby reducing the sensitivity of OSNs for most odours

except M71 ligands. This would concomitantly result in a

global reduction in OSN activity.

We show that mosaic Gsa expression using M71-Cre does

not result in a differential A-P targeting of WT and Gs cKO

axons. This does not strictly mean that Gs is not involved

in the development or axonal targeting of M71 OSNs, but

rather that the levels of Gsa expression can vary in conver-

gent populations of axons. It also suggests that deleting Gs

shortly after the onset of OR expression does not lead to a

differential A-P targeting or segregation of WT and cKO

axons. It is possible that Gs deletion occurs too late, for

example that Gs protein carried over from the basal stem

state to immature OSNs is sufficient to support signalling.

In this regard, there are indications that Gs mRNA may

have a long half-life [47]. Also, if Cre recombination at the

Gnas locus is not very efficient, then Gs may be deleted

with some delay following Cre onset. In the absence of Gs,

low levels of Golf protein may rescue G-protein signalling.

However, Golf by itself was not critical, since Golf KO ani-

mals retained normal formation of M71 glomeruli in the

dorsal bulb consistent with previous reports for P2 [48] and

rI7 [18] glomeruli. While keeping some of the aforementioned

caveats in mind, based on our mosaic Cre-deletion exper-

iments, we speculate that leaky or low levels of Gs or Golf

protein are sufficient to support normal axonal targeting.

We favour the interpretation that Gs carried over from

basal cells to immature OSNs plays a role in kick-starting

signal transduction shortly after OSNs start to express an

OR. This would subsequently promote maturation and

further upregulation of the signal transduction machinery.

In line with this Nakashima and colleagues [18] have

shown that simultaneous deletion of both Gs and Golf results

in severe targeting defects.

3.3. A case for cAMP-independent mechanisms
in regulating A-P targeting and axonal identity
of M71 or M71-swapped OSNs

The molecular mechanism of how ORs and other chemosen-

sory receptors provide ‘self’ identity, thereby regulating

axonal interactions and glomerular formation in the olfactory

system, remains unclear. The state of OSN activity has often

been ascribed as having a role in axonal wiring [49]. One

model for axonal identity is based on OR-specific G-protein

signalling that would in turn provide discrete levels of

cAMP within each type of OSN [23]. The source of cAMP

production would be derived by Gsa signalling within

immature OSNs and Golfa signalling within mature OSNs.

Interestingly, we now have obtained results which show

that for M71 or M71-swapped OSNs, OR-induced A-P target-

ing also relies on cAMP-independent mechanisms. This

conclusion is based on various observations.

If A-P targeting would solely rely on differences in basal

cAMP levels, then OSNs with the same level of basal

G-protein signalling would project to the same A-P position,

irrespective of the expressed OR. Since every OR is suggested

to induce different basal activities, we devised a genetic swap

experiment, where we expressed different signalling-deficient
ORs from the same endogenous locus, and restored activity

via receptor-independent G-protein signalling. Importantly,

this showed that signalling-deficient M71(RDY) and

MOR23(RDY) ORs induced distinct identities and projected

axons to different A-P regions on the bulb, close to the cog-

nate WT receptor. These data show that even in the absence

of effective coupling of ORs to G proteins, M71(RDY) and

MOR23(RDY) ORs were still regulating A-P targeting.

Furthermore, M71(RDY) and MOR23(RDY)!M71 axons

did not coalesce, showing that they also had different identi-

ties. This suggests that both A-P targeting and axonal identity

can be regulated via cAMP-independent mechanisms. How-

ever, we cannot rule out small differences in mRNA

stability, leading to differential caGs protein levels, or that

the RDY mutants still possess some difficult to detect residual

activity. In this regard, the expression of caGs may provide a

permissive environment to allow OSN maturation and axon

outgrowth. Under this condition, the coupling of the

mutant ORs with the G proteins, albeit ineffective, may still

affect glomerular positioning. However, it is questionable if

the system would be sensitive enough to detect such small

variations in signalling. Moreover, a striking observation,

which cannot easily be explained by the aforementioned

arguments, was that M71(RDY) and MOR23(RDY) ORs sent

axons to the same A-P position as their respective WT

receptors.

To further investigate how subtle changes in G-protein

signalling would affect axonal identity and A-P targeting in

M71 OSNs, we also modified cAMP production through

the coexpression of a constitutively active or dominant-

negative Gsa mutant. Using a mosaic readout, neither was

found to induce a shift in the position of M71 glomeruli.

However, one cautionary note is that we do not yet know

to what extent the dnGs or caGs mutants modulate basal

cAMP production in OSNs. In the case of the dnGs mutant,

we used spontaneous electrical activity as a proxy for basal

cAMP signalling, which is based on previous observations

[34,50]. However, this does not allow us to ascertain the

exact level of cAMP inhibition, which will require new exper-

imental approaches. Our results with the Gsa mutant Q227L

are in contrast to the changes observed for the rI7 glomeruli,

where the same Gs mutant could shift the glomerular

position [20]. One explanation may be found in the hetero-

geneity of OSNs. The existence of different OSN cell types

that target to distinct domains on the bulb has been demon-

strated [51]. Our work is centred on OSNs that are able to

choose the endogenous M71 locus, while Imai and colleagues

[20] use the MOR23 minigene strategy, a transgene expressed

in OSNs that are able to choose the endogenous MOR23 locus.

Our results may suggest that the importance of G-protein sig-

nalling and cAMP production in axonal wiring may vary

depending on the OSN cell type. Alternatively, the difference

may simply be due to the transgenic versus gene-targeted

approach. The transgenic approach is sensitive to variations

in transcription levels, cell-type expression and RNA stability,

which can also affect the expression levels of caGs.

Additional evidence showing that ORs can regulate A-P

targeting via cAMP-independent mechanisms was provided

by the O/E2-M71 rescue experiments. These showed that

upon O/E2-M71 rescue, the A-P position of the lateral

M71(RDY) glomeruli closely matched that of WT M71,

which could not be explained by invoking the levels of G-

protein signalling and cAMP production. We also show
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that upon O/E2-M71 rescue, the V1rb2 receptor can robustly

provide for axonal identity and the coalescence of axons.

Importantly, the M71(RDY) and V1rb2 glomeruli were in

completely different regions of the bulb. This shows that in

a permissive environment (via O/E2-M71 expression), the

M71(RDY) and V1rb2 genes regulate A-P targeting and

axonal coalescence. Since both receptors have a deficiency

in coupling to Gs/Golf, this suggests the involvement of

cAMP-independent mechanisms.

An important recent discovery was the existence of a

developmental critical period in olfactory map formation

[52,53]. Work by the Barnea laboratory has shown that

tetO-TTA-mediated ectopic expression of MOR28 in a

subset of OSNs results in the appearance of multiple trans-

genic MOR28 glomeruli. Interestingly, if transgene

expression is active during early development, endogenous

MOR28 axons are found to reroute to additional nearby glo-

meruli that are co-innervated by transgenic MOR28 axons.

This shows that the axonal targeting of OSNs is affected by

other OSNs that express the same OR, indicating non-cell

autonomous effects [52]. Interestingly, a striking feature of

the axonal projections in O/E2-M71 mice was that OSNs

expressing a given OR took altered routes on the bulb and

often formed multiple glomeruli (see the electronic sup-

plementary material, figure S4 for additional examples).

One hypothesis is that due to the global co-expression of

M71 in all OSNs, there are now M71-dependent homotypic

interactions between axons that express different endogenous

ORs. These interactions may allow axons to trail along novel

axonal tracts and thus re-route to nearby regions. If this

hypothesis were to be correct, it is likely that the M71-

induced homotypic interactions are not cAMP-dependent,

since the ectopic M71 expression is global and should affect

G-protein signalling to the same extent in all OSNs.

3.4. A case for cAMP/activity-dependent mechanisms
in regulating axonal identity and glomerular
formation

Importantly, in an O/E2-M71 background, M71(RDY) axonal

projections did not completely mirror those of WT M71.

Indeed, the medial M71(RDY) glomeruli were in a new ectopic

anterior position. Two independent groups have shown that in

Adcy3(2/2) animals, M71 and M72 axons form, besides the

expected glomeruli, an additional glomerulus in an anterome-

dial region [54,55]. Strikingly, the position of the anteromedial

Adcy3(2/2) M71 glomeruli closely resembles that of the

medial O/E2-rescued M71(RDY) glomeruli. This invites the

hypothesis that in the absence of normal G-protein-dependent

activity, additional glomeruli can be formed. This activity-

dependent exclusion may rely on specific adhesive or repul-

sive axon guidance molecules such as neuropilin, kirrel and

ephrins, the expression of which may be altered or lost in

activity mutants [54]. In this regard, the altered axonal projec-

tions and mistargeting observed in O/E2-M71 mice, may in

part be due to our observed changes in the expression of

Kirrel2, Epha5 and ephrin-A5.

Furthermore, we observed that M71 and M71(RDY)-caGs

axons had distinct identities. It is known that even single

amino acid substitutions can alter axonal identity [6]. Impor-

tantly, M71 and M71(RDY)-caGs have completely different

activity profiles, with M71(RDY)-caGs OSNs resembling
activity knockouts. This suggests that the differential

axonal identities of these OSNs are shaped by their neuronal

activity patterns. The importance of neuronal activity for

axonal identity and glomerular segregation has been pre-

viously reported. For example, blocking neuronal activity

via the forced expression of Kir2.1 leads to the erroneous

innervation of multiple glomeruli by neurons expressing

the same OR [53]. The segregation of M71 and M71-caGs

axons further fits this interpretation. CaGs-induced changes

in G-protein signalling may affect the expression of

adhesive/repulsive molecules and thereby change axonal

identity [23]. Furthermore, while in the presence of a WT

allele M71-caGs axons were consistently found to converge

with M71 glomeruli, in homozygous mutants glomerular

formation of M71-caGs OSNs was frequently disrupted.

While the mechanistic reasons are unclear, we speculate

that this is due to a reduction of neuronal survival leading

to fewer projections present needed to form stable glomeruli

[39]. Remarkably, a previous study has shown that the

expression of caGs via retroviral vectors can also induce

the convergence of axons expressing different ORs [56].
4. Conclusion
In conclusion, our results suggest that, besides activity-

dependent mechanisms, the A-P targeting and axonal

identity of OSNs is also regulated by mechanisms that do

not rely on cAMP production. That ORs can regulate axonal

wiring via cAMP-independent mechanisms is yet another

surprising feature of these highly pluralistic proteins. How

do ORs, which are present in olfactory axons [5,57], support

axonal wiring without relying on canonical G-protein signal-

ling? Based on our contextual model of axonal coalescence

[6], we previously proposed that a possible mechanism of

axonal identity is through ORs providing structural identity

(a key) to as yet unidentified cofactors, which would mediate

homotypic interactions. Recent work also suggests that ORs

can instruct adhesive properties in cells [58]. Alternatively,

other G-proteins that do not couple via the DRY motif or

non-canonical signalling pathways (e.g. Perk) may be

involved. These will be interesting starting points for future

investigations.
5. Material and methods
5.1. Gene targeting and experimental animals
Targeting constructs for M71(RDY)-lacZ, M71(RDY)-caGs-GFP,

MOR23(RDY)!M71-caGs-Tomato and M71-M71-GFP were

generated by modifying the described M71 TV [5]. The O/E2-

M71-GFP targeting construct was generated by modifying the

described O/E2 TV [45]. The RoMo-control and RoMo-dnGs

targeting vectors were generated by modifying the described

Gateway-compatible ROSA26 locus targeting vectors [59].

5.1.1. M71(RDY)-lacZ, M71(RDY)-caGs-GFP, M71-caGs-GFP,
MOR23(RDY)! M71-caGs-Tomato

Starting from the 9.2 kb M71 genomic sequence [5], we first

generated an M71(RDY)-ACNF and an MOR23(RDY)!
M71-ACNF TV. For M71(RDY)-ACNF, this included four

point mutations in the M71 coding region (GACCGC!
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CGCGAC), resulting in the D121R;R122D substitutions. For

the MOR23(RDY)!M71 swap, the 930 bp M71 coding

region was replaced with the 930 bp MOR23 coding region,

which again harboured four point mutations (GATCGT!
CGTGAT) resulting in the same D121R;R122D substitutions.

An FseI and an AscI restriction site was inserted three nucleo-

tides after the stop codon of the M71(RDY) or MOR23(RDY)

CDS, and was followed by an ACNF cassette, which is a neo
selection cassette, that is self-excised during transmission

though the male germ line [60]. The IRES-taulacZ, IRES-

caGs-IRES-tauGFP or IRES-caGs-IRES-tautdTomato cassettes

were subsequently inserted via directional cloning using

the FseI and AscI sites, generating the M71(RDY)-

taulacZ-ACNF, M71(RDY)-caGs-tauGFP-ACNF and the

MOR23(RDY)!M71-caGs-tautdTomato-ACNF targeting

vectors. The constitutively active Gas mutant (Q227L) is pre-

viously described [61]. The M71-caGs-GFP strain was derived

by screening targeted M71(RDY)-caGs-GFP embryonic stem

(ES) cell clones via restriction fragment length polymorphism

and sequencing to find clones in which the 5’ homologous

recombination event was after the DRY! RDY mutation.

For M71-M71-GFP, an IRES-M71-IRES-tauGFP-LNL cassette

was inserted via PacI, three nucleotides after the stop codon

of M71 CDS. The LNL neo cassette was removed by crossing

to EIIA-Cre mice [62].

5.1.2. O/E2-M71-GFP

The O/E2-M71-GFP targeting construct was generated by

ligating an AscI M71-IRES-tauGFP-ACNF fragment into the

O/E2 TV [45]. This AscI fragment was constructed using

the Tg3’D construct without the 405 bp MOR23 promoter

and with the 930 bp MOR23 CDS replaced with the 930 bp

M71 CDS followed by a PacI site. In addition, an IRES-

tauGFP-ACNF PacI cassette was cloned into the AscI cassette.

5.1.3. Romo-control and RoMo-dnGs

To generate the RoMo-control and RoMo-dnGs TVs, we modi-

fied the previously described attL4-pCAGG-loxP-Bgeo-3xpA-

loxP-attR1 Gateway-compatible entry clone (pCAGG entry

clone) [59], which was obtained via the BCCM/LMBP

Plasmid Collection. A loxN-taumTurquoise-WPRE-pA-

lox2272-loxN-tautdTomato-WPRE-pA-lox2272-attL3 (for

RoMo-control) or loxN-taumTurquoise-WPRE-pA-lox2272-

loxN-tautdTomato-IRES-dnGs-WPRE-pA-lox2272-attL3 (for

RoMo-dnGs) cassette was inserted into the pCAGG entry

clone via kpnI and NotI directional cloning, which also

removed the attR1 site. This entry clone was subsequently

inserted into the pROSA26-DV3 destination vector [59] pro-

vided by BCCM/LMBP using Gateway cloning (LR reaction

between attL3-attR3 and attL4-attR4). LR reactions were per-

formed using the Clonase Enzyme Mix (Invitrogen) following

the supplier’s instructions. b-geo-STOP is a b-galactosidase–neo-
mycin fusion gene, followed by three pA sequences, that allows

for selection in ES cells and is expressed in the absence of Cre

recombination. The dominant-negative Gas mutant (a3b5/

G226A/A366S) is previously described [29] and was kindly

provided by Dr Catherine Berlot (Weis Center for Research,

USA). mTurquoise [63] was kindly provided by Dr Theodorus

W. J. Gadella (University of Amsterdam, The Netherlands). The

woodchuck hepatitis virus posttranscriptional regulatory

element (WPRE) was used to increase expression levels [64].
Gene targeting was performed in E14 ES cells as described

[17]. ES cells were injected into C57BL/6 blastocysts. Mice are

in a mixed 129/B6 background. All generated mice will be

made publicly available via the Jackson Laboratory:

M71(RDY)-lacZ: B6;129P2-Olfr151,tm38Mom./MomJ,

stock# 23669; M71(RDY)-caGs-GFP: B6;129P2-Olfr151,

tm39(Gnas*)Mom./MomJ, stock# 23672; MOR23(RDY)!
M71-caGs-Tomato: B6;129P2-Olfr151,tm37 (Olfr16*,-Gnas*,-

tdTomato)Mom./MomJ, stock# 22789; M71-caGs-GFP:

B6;129P2-Olfr151,tm40(Gnas*)Mom./MomJ, stock# 24642;

M71-M71-GFP: B6;129P2-Olfr151,tm39(Olfr151)Mom./

MomJ, stock# 8092; O/E2-M71-GFP: B6;129P2-Ebf3,

tm1(Olfr151)Mom./MomJ, stock# 8094; RoMo-control:

B6;129P2-Gt(ROSA)26Sor,tm3Mom./MomJ; stock# 18670;

RoMo-dnGs: B6;129P2-Gt(ROSA)26Sor,tm2Mom./MomJ,

stock# 18669.

Previously described strains that were used in this study (see

also the electronic supplementary material, figure S5) are: M71-

LacZ, M71-GFP, MOR23!M71-LacZ, V1rb2!M71-LacZ,

M72-LacZ, DM71-LacZ [5], M71-RFP, M71-Cre, OMP-Cre [65],

P2-LacZ [17], MOR23-LacZ and MOR23-GFP [44]. #123-Cre

mice [24], Gnas-E1fl/fl mice [27], R26-STOP-tauGFP (ROSA26-

CAGS-tauGFP) mice [66] and Golf KO mice [48] were kindly

provided by Dr Yoshihiro Yoshihara, Dr Lee Weinstein, Dr

Ulrich Boehm and Dr Leonardo Belluscio, respectively.

5.2. Wholemount staining and imaging
Wholemount X-gal staining was performed as previously

described [17]. The A-P and D-V coordinates of X-gal-stained

glomeruli in wholemounts where determined using IMAGEJ

software. Intrinsic fluorescence in wholemounts was acquired

with an upright Zeiss LSM710 microscope. Images were col-

lected as z-stacks followed by maximum intensity projection to

a single image.

5.3. ISH and IHC
Mice were anaesthetized and perfused with 4% PFA in PBS.

Heads were post-fixed, decalcified, cryoprotected, frozen and

sectioned at 12 mm, as described [40]. IHC was performed as

described [40]. The following antibodies were used: chicken-

anti-bGal (Abcam, ab9361), chicken-anti-GFP (Abcam,

ab13970), rabbit-anti-Dsred (Clontech, 632496), donkey-anti-

rabbit AF555 (Invitrogen, A31572), goat-anti-chicken AF488

(Invitrogen, A11039). Multi-colour ISH was performed as pre-

viously described [67]. For riboprobes that were used, see the

electronic supplementary material, table S1. For quantifying

the percentage of OSNs at distinct maturation states in

figure 5a,b, every 10th section was collected from anterior to

posterior and 42 sections were analysed per mouse.

5.4. Patch-clamp recordings
Animals were allowed access to food and water ad libitum

and were kept on a 12 L : 12 D cycle, with a constant

temperature.

Patch-clamp recordings were performed as described

earlier [35,68]. Briefly, male or female gene-targeted three to

five-weeks-old mice were anaesthetized by injection of keta-

mine HCl and xylazine (150 mg kg21 and 10 mg kg21 body

weight, respectively), and then decapitated. The head was

immersed in ice cold Ringer’s solution, which contained (in
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millimolar): NaCl 124, KCl 3, MgSO4 1.3, CaCl2 2, NaHCO3

26, NaH2PO4 1.25, glucose 15; pH 7.6 and 305 mOsm. The

pH was kept at 7.4 by bubbling with 95% O2 and 5% CO2.

The nose was dissected out en bloc. The olfactory epithelium

attached to the nasal septum and the dorsal recess was

removed and kept in oxygenated Ringer. Right before start-

ing the recording session, the entire epithelium was peeled

away from the underlying bone and transferred to a record-

ing chamber with the mucus layer facing up. Oxygenated

Ringer was continuously perfused at room temperature.

OSNs’ dendritic knobs were visualized through an upright

microscope equipped with an Olympus DP72 camera and a

40� water-immersion objective. An extra 2-to-4� magnifi-

cation was achieved by a magnifying lens in the light path.

The GFPþ or tdTomatoþ labelled cells were visualized

under fluorescent illumination. Superimposition of the fluor-

escent and bright field images allowed identification of the

fluorescent cells under bright field, which directed the record-

ing pipettes. Electrophysiological recordings were controlled

by an EPC-10 USB amplifier combined with PATCHMASTER soft-

ware (HEKA Electronic, Germany). Perforated patch-clamp

was performed on the dendritic knobs by including 260 mM

nystatin in the recording pipette, which was filled with the fol-

lowing solution (in mM): KCl 70, KOH 53, methanesulfonic

acid 30, EGTA 5, HEPES 10, sucrose 70; pH 7.2 (KOH) and

310 mOsm. The junction potential was approximately 9 mV

and was corrected in all experiments off-line. For odorant-

induced transduction currents, signals were sampled at

20 kHz. Under voltage-clamp mode, the signals were initially

filtered at 10 kHz and then at 2.9 kHz.

A seven-barrel pipette was used to deliver stimuli by

pressure ejection through a picospritzer (Pressure System IIe,

Toohey Company, Fairfield, NJ, USA). The stimulus electrode

was placed approximately 20 mm downstream from the record-

ing site. Distance (approx. 20 mm) and pressure (20 psi) were

adjusted in order to minimize mechanical responses [69].

Single odorant stimuli were prepared in 0.5 M solution in

dimethyl sulfoxide (DMSO) and kept at –208C. Final solutions

were prepared before each experiment by adding Ringer. The

odorant mixture consists of 19 compounds in equal molar con-

centration [40,70]: heptanol, octanol, hexanal, heptanal, octanal,

heptanoic acid, octanoic acid, cineole, amyl acetate, (þ) limo-

nene, (2) limonene, (þ) carvone, (2) carvone, 2-heptanone,

anisaldehyde, benzaldehyde, acetophenone, 3-heptanone and

ethyl vanilline. Odorant mixture was prepared as a 0.1 M sol-

ution in DMSO and kept at 2208C; final solutions at 1025 M

for each odorant were prepared before each experiment by

adding Ringer. Forskolin, an activator of adenylyl cyclase,

was prepared as a 10 mM stock solution in DMSO. IBMX, an

inhibitor of phosphodiesterases, was prepared as a 100 mM

stock solution in DMSO. Final solution containing 200 mM of
IBMX and 20 mM of forskolin was prepared before each

experiment by adding Ringer.

Unless specified, all chemicals were from Sigma-Aldrich

(St-Quentin Fallavier, France). Lyral was provided as a gener-

ous gift from International Fragrances and Flavors (Dijon,

France).

Data were analysed using FITMASTER (HEKA). Maximum

amplitude of the response and kinetics characteristics was

measured. Dose–response curves were drafted and fitted

using ORIGIN software (OriginLabs). Statistical analysis

(ANOVA, non-paramteric Kolmogorov–Smirnov tests followed

by Mann–Whitney U-tests for two independent samples)

were performed using ORIGIN software (OriginLabs).
5.5. NanoString analysis
Total RNA extraction from whole olfactory mucosa was per-

formed as described [71]. One microgram of RNA was used

for each assay. Processing of raw counts and determination

of differential expression was performed as described [72].

The reference genes used were Omp (NM_011010.2),
Gnal (NM_177137.4), Adcy3 (NM_001159537.1), Ano2
(NM_153589.2) and Cnga2 (NM_007724.2). For the list of

examined ORs and axon guidance molecules, see the elec-

tronic supplementary material, table S2. The raw NanoString

counts for the various genes are included in the electronic

supplementary material.
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