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ABSTRACT
Background: A possible driver of obesity is insensitivity (pas-
sive overconsumption) to food energy density (ED, kcal/g);
however, it is unclear whether this insensitivity applies to all
meals.
Objectives: We assessed the influence of ED on energy intake
(kcal) across a broad and continuous range of EDs comprised of
noncovertly manipulated, real-world meals. We also allowed for the
possibility that the association between energy intake and ED is
nonlinear.
Methods: We completed a secondary analysis of 1519 meals
which occurred in a controlled environment as part of a study
conducted by Hall and colleagues to assess the effects of food ultra-
processing on energy intake. To establish the generalizability of
the findings, the analyses were repeated in 32,162 meals collected
from free-living humans using data from the UK National Diet and
Nutrition Survey (NDNS). Segmented regressions were performed
to establish ED “breakpoints” at which the association between
consumed meal ED and mean centered meal caloric intake (kcal)
changed.
Results: Significant breakpoints were found in both the Hall et al.
data set (1.41 kcal/g) and the NDNS data set (1.75 and 2.94 kcal/g).
Centered meal caloric intake did not increase linearly with consumed
meal ED, and this pattern was captured by a 2-component (“volume”
and “calorie content” [biologically derived from the sensing of fat,
carbohydrate, and protein]) model of physical meal size (g), in which
volume is the dominant signal with lower energy-dense foods and
calorie content is the dominant signal with higher energy-dense
foods.
Conclusions: These analyses reveal that, on some level, humans
are sensitive to the energy content of meals and adjust meal
size to minimize the acute aversive effects of overconsumption.
Future research should consider the relative importance of volume
and calorie-content signals, and how individual differences impact
everyday dietary behavior and energy balance. Am J Clin Nutr
2022;116:581–588.
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Introduction
Food energy density (ED, kcal/g) refers to the energy content

(kcal) of a specified weight of food (g) and can differ considerably
between foods. For example, cucumber and pecan nuts have
an ED of 0.15 kcal/g and 7.26 kcal/g, respectively. From the
early 1980s, the literature has linked excess energy intake (kcal)
to an inability to “compensate” for differences in meal ED by
selecting smaller meals with increasing ED (1–3). Two main
methodologies, 1) energy intake during ad libitum meals (4) and
2) test meals following a food or beverage preload (preload test-
meal paradigm) (4), assess the effects of ED on energy intake via
compensatory changes in meal size. However, these 2 methods
produce different findings regarding sensitivity to food energy
content.

With respect to satiation, many well-designed ad libitum meal
studies find little or no sensitivity to ED within a meal (i.e.
the same weight of food is consumed irrespective of ED). In
most of these studies, ED was covertly manipulated over a
short period of time (e.g. <10 total exposure days) (1–3, 5, 6).
In other words, differences in meal caloric content have little
impact on the amount of food ingested, and this insensitivity
can persist over several days (2, 3). This effect of ED on energy
intake, particularly in the case of high-fat food consumption, is
sometimes referred to as “passive overconsumption” (7).

By contrast, studies of satiety (preload test-meal paradigm)
provide strong evidence that calories in a preload can influence
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subsequent energy intake, highlighting a variable degree of short-
term compensation in response to covertly manipulating the
preload ED, even including sugar in a beverage (8–14). These
studies demonstrate that calories can influence behavior and
subsequent food intake after a meal has ended. Furthermore,
partial compensation to the manipulation of ED is found in ad
libitum studies that expose participants to covertly manipulated
diets over long periods of time (e.g. >10 total exposure days)
(15–17). Compensation in these various studies represents an
“unlearned” response to the satiating effect of calories (single or
first exposure) (9, 18) as well as a potentially learned response
(repeated exposure) (9, 18–21).

In relation to these apparently contradictory findings and a
separate finding of a nonlinear relation between absolute ED and
its effect on behavior, specifically portion size selection (22),
we set out to re-evaluate the association between meal ED and
meal energy intake. Importantly, we did this using a broad and
continuous range of EDs and “real-world” foods, rather than
covertly manipulated test meals.

We analyzed data from a recent study investigating the
effects of ultra-processing on energy intake over time and under
controlled conditions (23), and assessed whether the association
between energy intake and ED is nonlinear. To investigate
the generalizability of these findings, we then performed the
same analysis on data collected from free-living humans in the
UK (24). Based on our results, we developed a unifying “2-
component model” which explains the previous findings from ad
libitum and preload test-meal studies and the relation we observe
between ED and energy intake.

Methods

Overview of the Hall et al. study on food ultra-processing
and energy intake

Hall et al. (23) assessed a potential causal association between
the consumption of ultra-processed foods, ad libitum energy
intake, and subsequent changes in body weight. Twenty (10 male
and 10 female) weight-stable adults (mean ± SE, age = 31.2 ±
1.6 y, BMI = 27 ± 1.5 kg/m2) resided in a metabolic ward in
the NIH Clinical Center for 28 d (ethical approval was provided
by the Institutional Review Board of the National Institute
of Diabetes & Digestive & Kidney Diseases [clinicaltrials.gov
identifier NCT03407053]). Participants were randomly assigned
to receive either an ultra-processed or an unprocessed diet for 2
wk, followed immediately by the alternate diet for another 2 wk.
Specific details regarding this study’s methodology, including the
diet composition of the 2 7-d rotating menus can be found in the
Hall et al. (23) article.

In summary, participants were provided with 3 daily meals
(breakfast, lunch, and dinner) plus snacks; however, our sec-
ondary analysis focuses only on the data from the meals. The
2 diets were matched for a variety of characteristics: total
calories, energy density (including beverages), macronutrients,
fiber, sugars, and sodium. However, the meals differed in their
level of processing based on the NOVA classification scheme
(25). Additionally, the participants rated the diets as equally
pleasant and familiar, and the 3 daily meals plus snacks were
provided in large portions (twice the individual’s estimated
energy requirements for weight maintenance). Importantly, on

average, the “presented meals” (i.e. the meals served to the
participant) differed in their nonbeverage ED based on diet type
(ultra-processed meals: 1.96 kcal/g, unprocessed meals: 1.06
kcal/g). This provided the rare opportunity to assess ad libitum
energy intake across a broad and continuous range of EDs using
familiar foods in a highly controlled environment.

Secondary analysis of the Hall et al. data set on food
ultra-processing and energy intake (kcal)

To determine whether the relation between meal ED and meal
energy intake is linear (as would be predicted if people did not
compensate for energy content by changing meal size [g]), the
consumed meal caloric intake (kcal), meal size (g), and ED
of each meal was calculated. Meals were collapsed across diet
types (i.e. unprocessed or ultra-processed), and we excluded
meals that were “plate cleaned” (i.e. >95% of the served portion
was consumed) (n = 159 meals) and all calorie and noncalorie
containing beverages. In a few meals (5% of meals served to each
participant), cereal or oatmeal were presented alongside milk. In
these cases, we did not exclude milk because neither cereal nor
oatmeal were consumed without milk. However, we cannot rule
out the possibility that a proportion of the milk was consumed
separately, as a beverage.

To control for both individual (participant level) and “meal
type” (breakfast, lunch, and dinner) differences in energy intake,
we mean centered meal caloric intakes for each participant and
for each meal type across the 28 d (20 participants × 3 meal
types × 28 d = 1680 total centered meals). So, for example,
for participant 1, there were 28 centered meal caloric intakes for
“breakfast,” 28 centered meal caloric intakes for “lunch,” and 28
centered meal caloric intakes for “dinner.” Centered meals with
Z-scores < or > ± 3.29 were treated as outliers and removed,
resulting in a final data set with 1519 meals (Supplementary
Figure 1).

Overview of the UK National Diet and Nutrition Survey

The 2000–2001 UK National Diet and Nutrition Survey
(NDNS) comprises dietary data obtained between July 2000 and
June 2001 (24). The aim of the survey was to provide a cross-
sectional record of the eating habits and nutritional status of the
UK population. A multi-stage random-probability design was
used to invite participants; 152 postal sectors were selected during
the first stage, and from each sector, 40 addresses were randomly
chosen. Individuals who were neither pregnant nor breastfeeding,
and those aged between 19 and 64 y were eligible for inclusion.
All provided written informed consent and the NDNS received
ethical approval from a Multi-center Research Ethics Committee
(MREC) and National Health Service Local Research Ethics
Committees (LRECs).

Analysis of data from the UK NDNS

Participants (N = 1724; 958 females, 766 males; mean ± SE,
age = 42.10 ± 0.29 y; BMI = 26.83 ± 0.13) used a diet diary to
record all of the food and drink that they consumed over 7 d. For
eating events occurring at home, each food item was individually
weighed and recorded, and any uneaten food was subtracted from
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the initial portion. For out-of-the-home eating events, participants
recorded approximate amount or quantities served, and noted
any leftovers. We removed all calorie and noncalorie containing
beverages using a purpose-written script in R which excluded
beverages using food codes from the User Guide provided by the
UK Data Service. Remaining beverages which were not identified
in the User Guide were manually removed by the lead author
on 5 separate instances. We did not exclude milk when it was
consumed with cereal or porridge or water when it was used to
prepare a powdered soup. Lastly, we calculated the consumed
eating event size (g), eating event caloric intake (kcal), and eating
event ED for each of the 60,777 recorded eating events.

Our aim was to make the NDNS data set comparable to the Hall
et al. data set which only included data from meals. We therefore
excluded eating events where <200 kcal had been consumed
and where the eating event ED was >4 kcal/g (26). The 200
kcal cut-off corresponds with previous research using the NDNS
data set suggesting the average caloric content of snacks to be
∼200 kcal (27). The NDNS provides no information about meal
type (i.e. breakfast, lunch, or dinner) and so we use the term
“meal” to refer to all eating events that were not excluded. Meal
caloric intakes were mean centered within each individual and
centered meals with Z-scores < or > ± 3.29 were removed
from the analyses. The final data set comprised 32,162 meals
(Supplementary Figure 2).

Statistical analysis

Initially, we plotted centered meal caloric intakes by consumed
meal ED for visual inspection of any evidence for nonlinearity
and the remaining analyses were conducted in the R statistical
environment (28) with several helper packages (29, 30). To
quantify whether a nonlinear fit may better explain the data, a
Ramsey Regression Equation Specification Error Test (RESET)
was conducted following the procedure outlined by Ramsey (31)
and using the R package “lmtest” (32). If the Ramsey RESET
returned a significant result, then a segmented regression was run
on the centered meal caloric intake data following the procedure
described by Muggeo (33) and using the R package “segmented”
(34). A segmented regression or “broken stick” regression is an
iterative approach which establishes the existence of 1 or multiple
breakpoints. First, a simple linear model (without a breakpoint)
is computed and evidence for a breakpoint is assessed. If a
breakpoint is identified (P < 0.05), then a segmented regression
is used to establish the location. The process then repeats until no
further breakpoints are identified. This approach also constrains
the segments to be “continuous” (adjacent regression lines begin
and end at the same location) (33). To confirm that a segmented fit
is superior to a linear fit, we used the Akaike’s and the Bayesian
information criterion (“stats” package, [28]).

Results

Secondary analysis of the Hall et al. data set: evidence for a
nonlinear association between consumed meal ED (kcal/g)
and mean centered meal caloric intake (kcal) in a controlled
setting

Visual inspection of the plot containing centered meal caloric
intake by consumed meal ED (Figure 1) indicated a potential

FIGURE 1 Centered meal caloric intake (kcal) by consumed meal energy
density (kcal/g) in the Hall et al. data set (n = 1519). Meals were centered
within each participant and meal type. Meals which were plate cleaned (i.e.
more than 95% of the served portion consumed) and meals with Z-scores <

or > ± 3.29 were removed. In this scatterplot, each point represents 1 meal.

nonlinear pattern in the data. Centered meal caloric intake
appeared to increase with increasing ED until ∼1.5 kcal/g and
then decreased slightly. The Ramsey RESET (F[2, 1515] =
99.32, P < 0.001) indicated that a nonlinear fit would better
explain the data, and the segmented regression returned a 1-
breakpoint solution (“0 compared with 2,” P < 0.001; “1
compared with 2,” P = 0.08) at 1.41 kcal/g (SE = 0.04),
demonstrating a significant change in the relation between
consumed meal ED and centered meal caloric intake at this point
(Table 1, Figure 2). Respectively, we observed a significant
positive and negative association below and above 1.41 kcal/g
(Table 1). Tests of the Akaike’s and Bayesian information
criterion supported a segmented fit (Supplementary Table 1).
We also noted that the increase in centered meal caloric intake
before the 1.41 kcal/g breakpoint and subsequent decrease after
the breakpoint was also observed in the raw meal caloric intake
data (Supplementary Figure 3). To assess the robustness of
this evidence for nonlinearity, we conducted sensitivity analyses,
once including 1) plate cleaned meals and again using 2)
presented meal ED (to account for possible spurious correlations
between consumed meal ED and centered meal caloric intake).
Here, for both analyses, 2-breakpoint solutions were returned 1)
1.08 and 2.89 kcal/g and 2) 1.02 and 1.84 kcal/g (Supplementary
Figures 4 and 5). Regardless, evidence for nonlinearity was
preserved.

UK NDNS data set: similar results in participants in
free-living conditions

Figure 3 shows centered meal caloric intake by consumed
meal ED. Unlike in Figure 1, the large number of superimposed
datapoints made it difficult to determine nonlinearity and
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TABLE 1 Slope parameter estimates, 95% CIs, t values, and P values from a segmented regression
model predicting centered meal caloric intake (kcal) from consumed meal energy density (kcal/g) in
the Hall et al. data set (n = 1519)

Slope parameter 95% CI t value P value

Slope 1 (<1.41 kcal/g) 469.13 396.58, 541.67 13.19 <0.001
Slope 2 (>1.41 kcal/g) –44.42 –71.94, –16.90 –3.02 0.003

potential breakpoints from simple visual inspection. However,
the Ramsey RESET test demonstrated a nonlinear pattern (F[2,
32,158] = 852.77, P < 0.001), and 2 breakpoints (“0 compared
with 2,” P < 0.001; “1 compared with 2,” P = 0.046) were
identified at 1.75 kcal/g (SE = 0.02) and 2.94 kcal/g (SE =
0.15), respectively (Table 2, Figure 4). Again, we observed a
significant positive association below the first breakpoint as well
as a negative association between the breakpoints and above
the second breakpoint (Table 2), and both the Akaike and the
Bayesian information criterion were met (Supplementary Table
1). Regardless of the calorie cut-off used for the inclusion criteria
(e.g. meal caloric intake > 600 kcal), the patterns of results
were broadly similar; meal caloric intake increased until the
first breakpoint and then decreased. A 2-breakpoint solution was
returned when the inclusion criterion for meals was set at both
400 and 600 kcal (i.e. meals <400 or 600 kcal were excluded).
However, when the criterion was set at 800, 1000, and 1200 kcal a
1 breakpoint solution was returned. Regardless of whether a 1 or
2 breakpoint solution was selected, the first breakpoint occurred
between 1.75 kcal/g and 2.30 kcal/g (Supplementary Table 2).

FIGURE 2 Mean centered meal caloric intakes (kcal), predicted from a
segmented regression model relating consumed meal energy density (kcal/g)
to consumed centered meal caloric intake (kcal) in the Hall et al. data set (n =
1519). The breakpoint located at 1.41 kcal/g (SE = 0.04) is represented by a
circle. The dashed and solid lines represent different segments and the shading
around the segments indicates 95% CIs. Segment A indicates the slope of the
segment below the breakpoint (1.41 kcal/g), and segment B models the slope
above the breakpoint (1.41 kcal/g).

Discussion

Evidence for sensitivity to ED

Evidence for a nonlinear association between centered meal
caloric intake and consumed meal ED was found in both the
Hall et al. and the UK NDNS data sets. Centered meal caloric
intake increased with ED until the first breakpoint (segment A)
and decreased thereafter (segment B, and, in the NDNS data
set, segment C [Figure 2 & Figure 4]). It is axiomatic that
the observed trends in caloric intake resulted from participants
consuming different sized meals (g) across the ED range. In
segment A of both data sets, participants consumed similar sized
meals (Supplementary Figure 6 and 7), resulting in the positive
association between consumed ED and centered meal caloric
intake. That is, there was no indication that participants compen-
sated for the increasing ED by reducing their meal size. However,
the negative slopes in segment B of both data sets and segment
C of the NDNS data set reflect a degree of overcompensation;
specifically, participants consumed smaller meals than necessary
to adjust for the increasing meal ED. The overcompensation

FIGURE 3 Centered meal caloric intake (kcal) by consumed meal energy
density (kcal/g) in the NDNS data set (n = 32,162). Meals were centered
within each participant and meals with Z-scores < or > ± 3.29 were
removed. In this scatterplot, each point represents 1 meal. To aid graphical
illustration, centered meal caloric intakes above 1000 kcal or below –500 kcal
are excluded from this figure (0.51% of total meals). They were, however,
included in the reported analyses. NDNS, UK National Diet and Nutrition
Survey.
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TABLE 2 Slope parameter estimates, 95% CIs, t values, and P values from a segmented regression model predicting
centered meal caloric intake from consumed meal energy density in the NDNS data set (n = 32,162)1

Slope parameter 95% CI t value P value

Slope 1 (<1.75 kcal/g) 174.86 162.78, 186.94 31.60 <0.001
Slope 2 (1.75 kcal/g – 2.94 kcal/g) –107.91 –118.99, –96.84 –15.54 <0.001
Slope 3 (>2.94 kcal/g) –59.19 –81.12, –37.26 –5.56 <0.001

1NDNS, UK National Diet and Nutrition Survey.

may, in part, be driven by cognitive restraint, specifically the
conscious restriction of meal size due to concerns about effects of
energy-rich meals on body weight (27). This overcompensatory
reduction in the meal size of high energy-dense foods is
important in curbing overall energy intake, given that meals in
the NDNS data set with an ED above the first breakpoint (1.75
kcal/g) contribute ∼60% of total energy intake (Supplementary
Figure 8).

In summary, had participants been insensitive to meal energy
content, then they would have eaten the same amount of food
resulting in a linear increase in centered meal caloric intake
with ED (we found the converse). It should be acknowledged
that the patterns are not identical across data sets, which
may reflect differences in study populations (US compared
with UK) or study conditions (controlled compared with free-
living). Nevertheless, we see evidence for overcompensation

FIGURE 4 Mean centered meal caloric intakes (kcal), predicted from a
segmented regression model relating consumed meal energy density (kcal/g)
to consumed centered meal caloric intake (kcal) in the NDNS data set (n =
32,162). The breakpoints located at 1.75 kcal/g (SE = 0.02) and 2.94 kcal/g
(SE = 0.15) are represented by circles. The dashed and solid lines represent
different segments and the shading around the segments indicates 95% CIs.
Segment A indicates the slope of the segment below the first breakpoint (1.75
kcal/g), segment B indicates the slope of the segment between the 2 break-
points (1.75 kcal/g & 2.94 kcal/g), and segment C models the slope above
the second breakpoint (2.94 kcal/g). NDNS, UK National Diet and Nutrition
Survey.

in higher energy-dense meals in both data sets. Future re-
search should repeat these analyses in data sets from other
countries.

A 2-component model of meal size (g): “volume” and
“calorie-content” satiation signals

These findings can be captured by a 2-component (“volume”
and “calorie content”) model of meal size (similar to Smith
[35] and Deutsch [36]) in which volume is the dominant
signal with energy-dilute foods and calorie content is the
dominant signal with energy-rich foods (Figure 5). The volume
signal is a largely unconditioned response that affects food
intake via gastric distension, whereas the calorie-content signal
(biologically derived from the sensing of fat, carbohydrate, and
protein) reduces meal size based on learned (anticipatory) and
unlearned (immediate) effects of calories. Both the volume and
calorie-content signals can impact meal size via food portion-
size selection (expected satiety) (37, 38) or within a meal directly

FIGURE 5 Two-component model of meal size (g): volume and calorie-
content satiation signals. This is modeled using an 875 kcal meal as an
example and demonstrates perfect compensation. The white section indicates
the dominance of the “volume” signal, the dark gray section the dominance
of the “calorie-content” signal, and the lighter gray section indicates where a
breakpoint might occur which is the location where the relative dominance of
the signals changes.
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(39, 40). Although feedback from the volume signal is constant
across a range of EDs, it is more salient with lower energy-dense
meals. Low energy-dense foods are relatively dilute in calories
and are high in intracellular water content and fiber (41). This
means that there is little feedback from the calorie-content signal,
so the primary determinant of meal size is negative feedback from
the volume signal via gastric distension.

With respect to the above model, which posits 2 signals
influencing meal caloric intake, we can apply the following
reasoning. In both data sets, the positive association between
ED and centered meal caloric intake observed in the lower
energy-dense meals (i.e. segment A) was driven by participants
consuming a similar sized meal across the range of EDs. Thus,
it would appear that feedback from the volume signal reached
a tolerable upper limit, capping lower energy-dense meals at a
similar size.

With respect to the calorie-content signal, frequently con-
suming a food provides the opportunity to learn from delayed
postingestive experiences (e.g. malaise if overconsumed) (42,
43). High energy-dense foods will provide relatively greater
postingestive caloric feedback via the calorie-content signal. For
the signal to operate effectively, it is critical that the usual relation
between taste and calorie content is preserved. This allows
participants to use previous postingestive experiences to guide the
amount of food consumed either via premeal planning (expected
satiety) (44) or during a meal via “conditioned satiation” (39, 40).
Importantly, the reduction in meal size in response to increasing
ED (segments B and C) is not only present at an individual level,
but might also be reflected on a larger scale, such as in full-service
and fast-food restaurant meals (45).

Finally, the success of the 2-component model is that it
explains complexity in the relation between ED, meal size,
and energy intake. However, it is not exhaustive, and does
not consider a role for individual macronutrients or effects of
moderators such as eating rate (46) and appetition (47).

Reconciling ad libitum and preload test-meal studies with
the 2-component model

Short-term ad libitum studies (e.g. <10 total exposure days)
report ED has little to no influence on meal size. Based on the
model, this insensitivity is seen for 2 reasons. First, ED is often
manipulated covertly, which undermines the learned calorie-
content signal. Second, the meals or diets are often energy dilute
(e.g. <2 kcal/g), which means the volume signal dominates. In
combination, this explains the tendency to consume a consistent
weight of food in many ad libitum studies. Indeed, it has been
previously observed that this tendency might only occur below
a certain low ED (48) and the Volumetrics Eating Plan (49)
illustrates how this strategy can generate sustained weight loss
(50).

By contrast, preload test-meal studies demonstrate some
sensitivity to food ED and reflect an unconditioned calorie-
content signal. Here, an interval exists between the preload and
the test meal. Therefore, the calorie content of the preload,
even when covertly manipulated, can be detected (by the
gut, e.g. Wilbrink et al. [51]) to effect subsequent test-meal
intake. Moreover, for longer-term ad libitum studies, the effects
of ED on meal size could be explained by the capacity of
the calorie-content signal to influence satiation indirectly, via

associative learning. Specifically, the orosensory features of the
food become associated with the postingestive consequences of
its calorie (macronutrient) content which, over time, come to
modify meal size, a phenomenon similar to “expected satiety”
(38, 52).

Differences in sensitivity to ED in food choice and food
intake

It may seem paradoxical that there are contrasting patterns of
sensitivity to ED in studies of food choice and food intake. In
choice studies, a clear linear association (positive) is observed
between ED and preference, but only in lower energy-dense foods
(∼ <1.75 kcal/g) (22, 53). In foods with progressively higher
ED (∼ >1.75 kcal/g), this relation weakens until choice and
ED become unrelated (22). Whereas for food intake, the present
results demonstrate the converse – greater sensitivity to ED in
higher ED meals.

These different findings may reflect an adaptation that
maximizes caloric intake in an environment in which ED varies
substantially, while at the same time avoiding the acute aversive
effects of short-term overconsumption (42, 54). Differences in
the ED of energy-dilute foods matter because stomach capacity
is limited. When only energy-dilute foods are available, choosing
the least energy-dilute (most energy-dense) food will ensure
that energy intake is maximized. By contrast, with energy-rich
options, absolute stomach capacity is relatively unimportant, and
the priority shifts to avoiding acute, negative soporific effects
caused by an overconsumption of calories (42). Accordingly, we
observe a compensatory reduction in meal size with ED, which
as noted above, is driven by a largely learned anticipation of the
effects of the food’s calories on satiety (i.e. the calorie-content
signal).

Conclusion

As ad libitum and preload test-meal studies report contrasting
findings regarding the effects of ED on energy intake, we
explored this association in 2 data sets. Uniquely, we measured
the influence of meal ED on meal energy intake: 1) across a broad
and continuous range of EDs, 2) using noncovertly manipulated,
“real-world” foods, and 3) allowed for the possibility that the
association is nonlinear. We observed a consistent nonlinear
pattern which we explain using a 2-component model comprising
volume and calorie-content signals. This model also reconciles
differing results in ad libitum and preload test-meal studies
investigating covert manipulation of meal ED. Indeed, our
findings challenge the idea of “passive overconsumption” of
energy-rich foods and show that, by contrast, surprisingly, people
show overcompensation.
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Data availability
All analytic code and summary data from the Hall et al.

study will be made available upon request. UK NDNS data were
obtained from the UK Data Service and can be accessed via
application to and approval by the UK Data Service.
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