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GMStool: GWAS‑based marker 
selection tool for genomic 
prediction from genomic data
Seongmun Jeong1,3, Jae‑Yoon Kim1,2,3 & Namshin Kim1,2*

The increased accessibility to genomic data in recent years has laid the foundation for studies to 
predict various phenotypes of organisms based on the genome. Genomic prediction collectively 
refers to these studies, and it estimates an individual’s phenotypes mainly using single nucleotide 
polymorphism markers. Typically, the accuracy of these genomic prediction studies is highly 
dependent on the markers used; however, in practice, choosing optimal markers with high accuracy 
for the phenotype to be used is a challenging task. Therefore, we present a new tool called GMStool 
for selecting optimal marker sets and predicting quantitative phenotypes. The GMStool is based 
on a genome-wide association study (GWAS) and heuristically searches for optimal markers using 
statistical and machine-learning methods. The GMStool performs the genomic prediction using 
statistical and machine/deep-learning models and presents the best prediction model with the optimal 
marker-set. For the evaluation, the GMStool was tested on real datasets with four phenotypes. 
The prediction results showed higher performance than using the entire markers or the GWAS-top 
markers, which have been used frequently in prediction studies. Although the GMStool has several 
limitations, it is expected to contribute to various studies for predicting quantitative phenotypes. The 
GMStool written in R is available at www.githu​b.com/JaeYo​onKim​72/GMSto​ol.

Genomic prediction (GP) based on single nucleotide polymorphism (SNP) markers has become a powerful tool 
for various human healthcare as well as conventional plant and animal breeding programs1, 2. With the recent 
dramatic decreases in sequencing and genotyping costs, GP is more readily accessible than ever and has enabled 
the efficient prediction of genetic disease risks, genomic breeding values, and complex quantitative phenotypes 
directly from genomic data. GP can be performed using either all SNPs or only subset SNPs from whole-genome 
sequencing (WGS) or SNP array data. Generally, since many SNPs are used, using all SNPs from WGS data is 
expected to result in higher GP accuracy than using SNPs from array data. However, in practice, this increase in 
accuracy is rarely observed in real data3, and little differences, or even a decrease in accuracy, have been reported 
in previous studies4, 5. This is because WGS data retains more SNPs relating to a phenotype of interest, but the 
number of relevant SNPs accounts for a relatively small proportion of the total number of SNPs used, and the 
considerable number of remaining SNPs are phenotypically neutral6. To avoid these burdens due to the large 
number of uninformative SNPs, approaches using an adequate subset of SNPs have been proposed6, and multiple 
studies have reported that SNP subsets improved GP accuracies compared to using all or numerous SNPs. For 
example, Ni et al. improved GP accuracy using only SNPs in or around genes from WGS data7, and Brondum 
et al. increased GP accuracy using both SNPs associated with quantitative trait loci and SNPs significantly 
detected in a genome-wide association study (GWAS)8.

A GWAS identifies SNP markers associated with a phenotype. Thus, it is utilized as a useful approach to 
construct a subset of SNP markers for GP. Usually, significant SNPs detected below the p-values of 1 × 10–6 or 
5 × 10–8 are used as a subset, and simulation studies have reported that improved accuracy is attained when using 
GWAS-significant SNPs and their surrounding SNPs9. However, these predictions using the GWAS-significant 
and/or surrounding SNPs have not always been successful10. This is likely because the significant SNPs explain 
only a small percentage of the total genetic variation for a phenotype11, and each SNP also accounts for a small 
portion of the phenotypic variance12. Thus, identifying more robust methods to select the optimal subset of SNPs 
for GP has focused on multiple studies. Bermingham et al. and Filho et al. reported that using the top 100–10,000 
GWAS SNP markers as subsets could increase GP accuracy compared to using only GWAS-significant SNPs13, 14. 
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Yilmaz presented an algorithm that selects subsets of markers considering SNP–SNP interactions from a GWAS 
result and confirmed that using these subsets improves accuracy compared to using only top GWAS SNPs15. These 
studies have demonstrated that the selection of SNP subset has a considerable effect on GP accuracy; however, 
the GWAS top SNP-based approaches have difficulty selecting an appropriate number of top SNPs with high GP 
accuracy and require numerous attempts each time for each phenotype. The interaction-based GWAS approach 
requires information on the interactions between SNPs, in addition to the GWAS result. Furthermore, if the 
interaction information is incomplete, this approach can construct a biased subset that can hinder GP accuracy15. 
Therefore, there is a need for a new approach that selects an optimal subset of SNPs to maximize GP accuracy 
while considering the single and interaction effects of markers.

In this study, we have developed an implemented GWAS-based marker selection tool named GMStool. 
GMStool searches for SNP markers in order of the lowest p-value in the GWAS result and constructs the opti-
mal marker set by accumulating SNP markers that increase the phenotype’s prediction accuracy. Subsequently, 
GMStool performs GP modeling and presents the best prediction model with the optimal marker set. Statistical, 
machine, and/or deep learning methods are used, and the interaction effects of the SNP markers are considered 
indirectly through modeling. The R package and execute scripts of GMStool are available at www.githu​b.com/
JaeYo​onKim​72/GMSto​ol with detailed usage instructions.

Methods
GMStool scheme: preparation.  GMStool consists of three phases: preparation, marker selection, and 
final modeling (Fig. 1A). In the preparation phase, GMStool requires four inputs: genotype, phenotype, GWAS 
result, and test sample list files. The genotype file consists of markers (rows) and samples (columns), and geno-
types are coded as − 1, 0, 1, and 2 for missing, homozygous reference, heterozygous, and homozygous alternative 
genotypes, respectively. The phenotype file is similar to the genotype file, but its rows and columns consist of 
samples and phenotypes. The GWAS result file consists of four columns: marker name, chromosome number, 
physical position, and p-value columns. The test list file consists of a single column with the names of the test 

Figure 1.   Scheme of GMStool. (A) Overall workflow. GMStool consists of three phases: preparation, marker 
selection, and final modeling. The dotted rectangles indicate the options that users can choose: whether to 
define pre-selected markers and which model to use for the marker selection and final modeling phases. (B) A 
brief algorithm for the marker selection phase. "preset marker” in the first conditional statement means the "pre-
selected markers” in the overall workflow. Abbreviations ‘Set. corr.’ ‘Target corr.’, and ‘val. corr.’ mean ‘correlation 
rate of marker set’, ‘target correlation rate’, and ‘correlation rate of validation set’, respectively.

http://www.github.com/JaeYoonKim72/GMStool
http://www.github.com/JaeYoonKim72/GMStool
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samples. As an option, a list of markers that must be included in the final modeling can be passed to GMStool. 
If this file named by ’preset marker’ is not defined, the top n markers based on GWAS p-values are selected and 
used for the initial analysis (default 1). Note that GWAS must be performed using only a training set (exclud-
ing the test set) to completely exclude information on the test set that may cause bias in the training result16. 
Although the GWAS does not include the test set, both genotype and phenotype files must include all samples of 
the training and test set, since GMStool automatically converted the test set into input files for the final modeling 
phase.

GMStool scheme: marker selection.  The marker selection phase applies the forward selection method 
of regression analysis and sequentially selects SNP markers that increase the correlation rate between observed 
and predicted phenotypes on the validation set (Fig. 1B). The optimal marker set for the final modeling phase 
is gradually constructed by accumulating SNPs one by one. The metric is used as the Pearson’s correlation rate 
instead of accuracy due to the continuous phenotypes. Depending on the forward selection method, SNPs that 
have not been selected once are not selected again in the selection process. The ridge regression best linear unbi-
ased prediction (RRB) and bootstrap trees (BTS) methods are provided as learning models, and either one or 
both models can be used. If both methods are selected, BTS is calculated sequentially after RRB, and the union 
of the SNP markers derived from the two methods is presented as an optimal marker set. The overall workflow 
of the marker selection phase is as follows (Fig. 1A):

(1)	 Divide the input data into training and test sets, using the information of the test set defined by the user.
(2)	 Divide the training set into k groups for cross-validation (CV; default 5), and perform marker selection in 

each group. All k groups are executed simultaneously through multi-threading. The process of selecting 
markers in each group is as follows (Fig. 1B):

A.	 Consider one sub-group as a validation set and the remaining sub-groups as a training set.
B.	 Build the prediction model using all the markers in the training set, according to the user’s selection 

model. Then, calculate the correlation rates on the training and validation sets, respectively (optional).
C.	 Select the top n initial markers from GWAS results ordered by p-values (default 1), and consider them 

as an initial marker set. If ‘preset marker’ is defined, consider these preset markers as the initial marker 
set instead of selecting the top markers. Build the prediction model using the initial markers of train sets 
and predict the correlation rate on the validation set. Place the initial markers into the selected marker 
set (yellow parallelogram in Fig. 1B; ‘Marker set’) and the initial correlation rate into the correlation 
rate for the selected marker set (gray hexagon in Fig. 1B; ‘Set corr.’).

D.	 If the top n initial markers were selected, select the next marker (n + 1), and if preset markers were 
defined, select the top one from GWAS, ordered by p-values. Add this marker to the selected marker 
set formed in step C. Build the prediction model using the marker set, and calculate the current correla-
tion rate on the validation set. If the difference of the correlation rate between ‘current’ and ‘previous 
(Set corr.)’ is greater than or equal to the increment value δ (default 0.00005), place the marker into the 
selected marker set (‘Marker set’) and update the previous correlation rate to the current correlation rate 
(’Set corr’); otherwise, the marker is discarded from the selected marker set, and the current correlation 
rate is ignored.

E.	 Iterate step D, while adding markers one by one. If the correlation rate of the selected marker set on 
the validation set reaches the target correlation rate defined by the user (‘Target corr’; default 1.0), stop 
marker selection and return the final marker list. As a stop condition, if the validation set’s correlation 
rates do not improve p times in a row, that is, if the markers are not selected p times in succession, stop 
the marker selection and return the results up to that point. Here, p is a number corresponding to x% 
of the total number of input markers and is automatically calculated according to the x defined by the 
user (default 20).

(3)	 Integrate the selected marker lists of k groups into one final marker list of all k CVs. Using both RRB and 
BTS methods, one final marker list is generated by combining all marker lists derived from these two 
methods. Subsequently, the input files for the final modeling phase are made based on the final marker list.

GMStool scheme: final modeling.  The final modeling phase performs prediction modeling using RRB, 
random forest (RF), deep neural network (DNN), and convolution neural network (CNN) models (Fig. 1A). All 
four models, or a subset of them, can be used. Prediction modeling for each model is conducted by repeating p 
times (default 50), and in each p, training and validation sets are randomly constructed at a ratio of 8:2 from the 
training set derived from the marker selection phase. Of all the p modeling iterations in each model, the model 
with the highest correlation rate on the validation set is considered the final prediction model. After modeling, a 
final prediction is performed on the test set, and its correlation rate between the observed and predicted pheno-
types is presented with the saved model file and summary plots. If more than one model is selected, the model 
with the highest correlation rate on the validation set is presented as the best model.

Models of GMStool: RRB.  RRB, a statistical model, assumes that marker effects follow a normal distribu-
tion with constant variance and all effect sizes are small and similar. This model is implemented using the “rrB-
LUP” library17 in R18, and is used in GMStool as follows: y = µ+ Xβ + e, where y is an n× 1 vector of pheno-
type values (n; samples), µ is an n× 1 mean vector of phenotype values, X is an n× p matrix of genotype markers 
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(p; markers), β is an n ×1 vector of marker effects, and e is an n ×1 vector of error effects with e ∼ N(0, Iσ 2
e). 

Here, the loss function is L(β) =
(
y − Xβ

)T(
y − Xβ

)
+ �βTβ , and β is derived as β̂ =

(
XTX + �I

)−1
XTy . 

The penalty parameter � is estimated from the training data under the RRB model19. The β values estimated from 
the training set are used to predict phenotype values for the validation and test datasets.

Models of GMStool: RF and BTS.  RF, a decision tree-based machine learning model, provides an explicit 
representation of markers’ interactions without needing to pre-define the interactions. Thus, RF can reflect 
SNP-SNP interactions when modeling genotype data20. The RF for regression trees in GMStool is implemented 
through the “randomForest”21 library in R18 and used in the final modeling phases as follows:

(1)	 Generate 1000 bootstrap datasets by sampling the training samples with a 0.632 ratio.
(2)	 Construct regression trees by sampling 1/3 of the total input markers for each dataset.
(3)	 Grow the regression trees by splitting markers, with the loss function of the root mean square error.
(4)	 Derive the predicted phenotypes of the validation and test sets by averaging the phenotype values predicted 

from the 1000 trees.

In the RF model, it is possible that none of the specific markers will be included in every tree due to marker 
sampling. Therefore, the marker selection phase uses the BTS model, an RF model that excludes the marker 
sampling function, and only the sample bootstrap function remains. The BTS model uses 100 trees sampled at 
a 0.632 ratio from the training samples and grows the trees without marker sampling. Then, in the same way as 
RF, the BTS model calculates the validation set’s predicted phenotypes.

Models of GMStool: DNN and CNN.  DNN and CNN, two deep learning models, are implemented using 
the "tensorflow”22 and "keras”23 libraries in R18. These two models can take SNP-SNP interactions into account 
during modeling and computed at high speed through a graphics processing unit (GPU)24. The DNN model in 
GMStool has a 256-128-64-32-16-1 architecture: one input layer with the number of neurons equal to marker 
size, five fully connected layers with 256, 128, 64, 32, and 16 neurons, respectively, and one output layer with one 
neuron (Fig. 2A). The architecture of the CNN is constructed as a 32-16-8-64-32-16-1: one input layer with the 
number of neurons equal to marker size, three convolution layers with 32, 16, and 8 kernels, one sampling layer, 
three fully connected layers with 64, 32, and 16 neurons, respectively, and one output layer with one neuron 
(Fig. 2B). To prevent overfitting, dropout layers are applied to the DNN and CNN models. Parameters are opti-
mized using the AdaMax algorithm25 with a learning rate of 0.001 on DNN and 0.003 on CNN, through a maxi-
mum of 1000 epochs. Batch sizes are set to one-twentieth of the input samples, and the loss function is the mean 
squared error. During optimization, an early stop of 30 epochs and a learning rate decay of 0.0003 are applied to 
reduce the computational time and avoid overfitting. In using the CNN, input markers are automatically sorted 
in ascending order according to chromosome and physical numbers to consider the interactions between adja-
cent markers effectively. The other models, including DNN, uses input markers sorted in the most selected order 
among all CVs. After modeling, phenotype predictions are performed on the validation and test sets.

Evaluation data and GWAS.  Rice (Oryza sativa) and soybean (Glycine max) data were used to evalu-
ate the performance of GMStool (Table  1). The rice data for both genotypes and phenotypes were obtained 
from www.riced​ivers​ity.org26. The soybean data for genotypes were obtained from www.soyba​se.org/data/publi​
c/Glyci​ne_max/Wm82.gnm2.div.L78C27, and its phenotype data was shared from our previous study28. In the 
present study, the rice genotype data consisted of 413 samples with 44,100 SNPs, and the soybean genotype data 
consisted of 1928 samples with 170,223 SNPs. SNPs with a minor allele frequency (MAF) of < 1% were filtered 
out, and 36,901 and 95,776 SNPs with missing rates of 0.043 and 0.005 were obtained from the rice and soybean 
datasets, respectively. Imputation was then conducted on both datasets using BEAGLE v5.129. For the phenotype 
data, the days to flowering time (DTF), protein content (PC), and plant height (PH) were used for rice, and DTF 
was used for soybean.

Prior to the GWAS, the test sets of each dataset were randomly selected at a rate of 20% (Table 2). For the 
DTF, PC, and PH of rice, the test sample sizes were 61, 76, 78, and the training sample sizes were 244, 307, and 
315, respectively. Soybean, the larger dataset, consisted of 1489 training and 372 test samples. The test set samples 
were representative of the genomic diversity of the total samples, as shown by their even distribution without a 
bias in the principal component analysis based on population structure (Supplementary Fig. S1).

GWASs were conducted for each training set using a mixed linear model of GAPIT v3, which adjusts the kin-
ship and population structures30 (Fig. 3 and Supplementary Table S1). Considering the number of MAF-filtered 
markers, statistically significant p-values were set at 5 × 10–6 and 5 × 10–8 in the rice and soybean datasets. All her-
itabilities were measured as the proportion of the total phenotypic variance explained by the genotypic variance.

Results
GWAS.  In the rice data, PH showed one GWAS-significant SNP with a high heritability of 0.763, while DTF 
and PC showed no significant markers with relatively low heritabilities of 0.317 and 0.523, respectively (Fig. 3). 
Unlike rice-DTF, soybean-DTF had a high heritability of 0.652 and showed 105 GWAS-significant SNPs. In 
terms of heritability, these GWAS results confirmed that soybean-DTF and rice-PH are greatly affected by 
genetic effects and have the potential for GP with relatively high accuracy. Rice DTF and PC were confirmed to 
have low genetic effects, but they were used to compare differences in GP with heritability.

http://www.ricediversity.org
http://www.soybase.org/data/public/Glycine_max/Wm82.gnm2.div.L78C
http://www.soybase.org/data/public/Glycine_max/Wm82.gnm2.div.L78C
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Figure 2.   Architectures of the DNN and CNN regression models for the final modeling phase. (A) DNN model 
has five fully connected layers, and (B) CNN model has three convolution layers and three fully connected 
layers. The drop-out rates and kernel sizes are indicated in parentheses at the right of the figures. FC full 
connection and Conv convolution, respectively.
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Marker selection.  Marker selection for each phenotype was performed based on the genotype, phenotype, 
test sample list, and GWAS result files. Considering the training sample sizes, CV values of 3 and 5 were set for 
the rice and soybean datasets, respectively. The training and validation sizes in each CV were 163 and 81 in rice-
DTF, 205 and 102 in PC, 210 and 105 in PH, and 1,191 and 298 in soybean-DTF, respectively (Table 2). Other 
selection options were adopted as follows: 1.0 target correlation rate, 0.00005 increment, and one initial marker 
(− c, − d, and − is; 1.0, 0.00005, and 1). In addition, the stop option was applied, which terminates the selection 
if SNPs are not continuously selected as many as a number corresponding to 20% of the total input markers 
(− x; 20). All selection methods were adopted for the method option for comparisons (− m; RRB, BTS, and 
RRB_BTS). As a result, the number of selected markers for the three methods were 746-120-817, 805-114-873, 
and 620-115-675 in the rice DTF, PC, and PH phenotypes, respectively, and 2126-224-2256 in the soybean DTF 
phenotype (Table 2 and Supplementary Table S2). When both RRB and BTS were used, the largest number of 
markers were selected, and in a separate method, more markers were selected when using RRB than BTS. In the 
case of rice, the higher the heritability, the fewer markers tended to be selected. The correlation rates between the 
observed and predicted phenotypes of the validation sets ranged from a minimum of 0.839 (rice-DTF and BTS) 
to a maximum of 0.992 (PH and RRB). Although some of the correlation rates were not relatively high, each 
selection method selected as many potential markers as possible under the target correlation rate of 1.0. During 
the rice phenotypes selection process, the BTS method read all 36,901 input markers for all CVs, and the RRB 
method read all markers for 1 or 2 CVs (out of 3 CVs). The rest of the CVs were stopped according to the stop 
condition since their markers were not selected 7380 times in succession. In soybean DTF, this stop condition 
was applied to all 5 CVs of both methods because their markers were also not selected 19,155 times consecutively 
in all CVs. As for the average calculation time per CV, RRB took from 4 h 52 m (rice-DTF) to 15 h 6 m (soybean-
DTF), and BTS took from 4 h 25 m (rice-DTF) to 8 h 2 m (soybean-DTF), using the Intel Xeon E5-2680 central 
processing unit (CPU) (Supplementary Table S3). Using both methods took a minimum of 9 h 24 m (rice-DTF) 
and a maximum of 23 h 32 m (soybean-DTF). The calculation time of RRB took longer than that of BTS, and 
they all tended to require more time with larger sample sizes.

Final prediction.  The modeling for GPs was conducted on all the marker sets selected by the three meth-
ods (Table 2), using all four prediction models, RRB, RF, DNN, and CNN (Fig. 4, Table 3). After the modeling, 
the test sets of the four phenotypes, which were not included during the marker selection phase, were used for 
phenotype prediction, and the correlation rates between these predicted phenotypes and their observed phe-
notypes were calculated as the metric of the accuracy for the selected marker sets. In rice, DTF had the highest 

Table 1.   Samples, markers, and phenotypes for the rice and soybean datasets. a Number in front of “/” 
indicates the number of markers filtered with MAF < 1%, and the number behind indicates the number of all 
markers.

Data Samples Markersa Phenotype Samples Median Mean Std

Rice 413 36,901/44,100

DTF 305 74.00 71.77 8.51

PC 383 117.50 116.58 21.09

PH 393 8.45 8.59 0.94

Soybean 1928 95,776/170,223 DTF 1,861 46.00 44.87 6.34

Table 2.   Selected marker sets and correlation rates for all CVs. val. mean validation and corr. correlation rate, 
respectively. a Selected markers were derived from the union of markers selected from all CVs. b Average and 
standard deviation of correlation rates for all CVs.

Data Phenotype Method
Train/val./test
samples Selected/all markersa Train corr (mean ± std.)b Val. Corr (mean ± std.)b

Rice

DTF

RRB 163/81/61 746/36,901 0.994 ± 0.007 0.986 ± 0.011

BTS 163/81/61 120/36,901 0.946 ± 0.016 0.839 ± 0.047

RRB and BTS 163/81/61 817/36,901 0.970 ± 0.028 0.913 ± 0.086

PC

RRB 205/102/76 805/36,901 0.988 ± 0.016 0.990 ± 0.005

BTS 205/102/76 114/36,901 0.951 ± 0.006 0.841 ± 0.024

RRB and BTS 205/102/76 873/36,901 0.970 ± 0.023 0.912 ± 0.105

PH

RRB 210/105/78 620/36,901 0.982 ± 0.013 0.992 ± 0.007

BTS 210/105/78 115/36,901 0.970 ± 0.002 0.883 ± 0.035

RRB and BTS 210/105/78 675/36,901 0.976 ± 0.010 0.938 ± 0.063

SOY DTF

RRB 1,191/298/372 2,126/95,776 0.953 ± 0.014 0.993 ± 0.001

BTS 1,191/298/372 224/95,776 0.922 ± 0.020 0.842 ± 0.040

RRB and BTS 1,191/298/372 2,256/95,776 0.938 ± 0.023 0.917 ± 0.097
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correlation rate of 0.529, using the RRB selection method and the RF prediction model. PC and PH showed the 
highest correlation rates, 0.547 and 0.679, when selecting markers using RRB-BTS and predicting with CNN and 
DNN, respectively. Soybean-DTF had the highest correlation rate, 0.794, under the RRB-BTS selection method 
and CNN prediction model. Excluding rice-DTF, which had the lowest heritability, using the RRB-BTS selec-
tion method and the deep-learning model showed the best prediction performance. Generally, as heritability 
was higher, the correlation rate was also higher, and the predicted phenotypes exhibited stronger linearity with 
the observed phenotypes (Supplementary Fig. S2). In this result, the BTS selection method derives marker sets 
with the smallest number of markers, but its prediction performances were not significantly different compared 
to other selection methods. Under the best prediction models, the number of selected markers was 746, 873, 
675, and 2256 in rice-DTF, PC, PH, and soybean-DTF, respectively (Table 3). These markers were distributed 
throughout the chromosomes, particularly in soybean DTF and PH, with high heritability. The number of mark-
ers for each chromosome was proportional to the GWAS-peak (Fig. 3 and Supplementary Fig. S3). Regarding 
computation time, RRB took the least time, followed by CNN, DNN, and RF (Supplementary Table S3). RRB and 
RF were computed using the Intel Xeon E5-2680 CPU, and DNN and CNN were computed using the Quadro 
RTX 6000 GPU. The larger the marker set, the more time tended to be required for completion.

Performance comparison.  To evaluate the performance of GMStool, additional tests were conducted on 
the whole marker sets, and the marker sets corresponding to the top 0.5%, 1%, 2%, and 3% of the significant 
GWAS hits (Table 4). These additional tests used the same test sets applied in the marker selection and final mod-
eling. For the whole marker sets, the correlation rates of rice-DTF, PC, PH, and soybean-DTF were the highest 
at 0.529, 0.542, 0.631, and 0.763 in the RF, RF, RRB, and DNN prediction models, respectively. In rice-DTF with 
the lowest heritability of 0.317, the correlation rate of all markers was higher than those of GWAS-top markers 
and showed the same value as the correlation rate of the optimal marker set selected from GMStool (Fig. 4). For 
the other phenotypes with a heritability of > 0.5, the correlation rates of all markers were lower than those of the 
GWAS-top 3% markers as well as lower than those of the optimal marker sets. As heritability increases, the com-
binations of the selection-prediction methods with higher correlation rates than the whole marker set tended to 
increase. Among the GWAS-top marker sets, the top 3% marker sets showed the highest correlation rates (except 
rice-DTF), but all of them were lower than the GMStool’s optimal marker sets (Table 4). The optimal marker sets 
of PC and PH showed 1.003- and 1.015-times higher correlation rates with 21% and 39% fewer markers, respec-
tively, and soybean-DTF showed 1.030 times higher correlation rate with 21% fewer markers than the GWAS-

Figure 3.   GWAS results for the soybean and rice datasets. (A) Manhattan plot for soybean DTF. (B–D) 
Manhattan plots for rice DTF, PC, and PH. Statistical significant cut-offs for soybean and rice data are 
− log(5 × 10–8) and − log(5 × 10–6), respectively. The heritabilities of phenotypes are shown at the upper right of 
the figures.
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top 3% marker set. Overall, GMStool formed optimal marker sets with a relatively small number of markers and 
achieved better performance than the whole marker and GWAS-top 3% marker sets.

Discussion
Selecting optimal markers reduces the dimensionality of genomic data for prediction and provides a small num-
ber of model parameters for better generalization in prediction modeling13. The prediction accuracy of an optimal 
marker set depends on how well it reflects the characteristics of the markers involved in a phenotype; thus, it 
is important to construct a marker-set with appropriate markers14. In this respect, many studies have adopted 
approaches that either directly exclude uninformative markers or assign weights to markers according to their 
contributions in a large set of markers31–33. These approaches have contributed to improving the accuracy of the 

Figure 4.   Correlation rates of test sets for four phenotypes, along with selection methods and prediction 
models. (A) Correlation rate of soybean DTF. (B–D) Correlation rates of rice DTF, PC, and PH. The y-axis 
indicates the correlation rate, and above and below the x-axis represents the selection methods and prediction 
models, respectively. The highest correlation rates for each phenotype are shown in bold, and the highest 
correlation rates when using all markers are indicated by a horizontal red line with that prediction model.

Table 3.   Final correlation rates of the selected marker sets on the test sets. Highest correlation rates in each 
phenotype are shown in bold.

Data Phenotype Method Selected markers
RRB (train/val./
test)

RF (train/val./
test)

DNN (train/val./
test)

CNN (train/val./
test)

Rice

DTF

RRB 746 0.997/0.870/0.380 0.976/0.845/0.529 0.932/0.912/0.334 0.948/0.895/0.469

BTS 120 0.849/0.710/0.398 0.969/0.869/0.454 0.920/0.759/0.407 0.902/0.748/0.501

RRB and BTS 817 0.996/0.854/0.394 0.977/0.847/0.508 0.977/0.895/0.388 0.942/0.840/0.424

PC

RRB 805 0.998/0.831/0.509 0.974/0.742/0.520 0.873/0.811/0.450 0.917/0.833/0.480

BTS 114 0.879/0.746/0.457 0.971/0.767/0.528 0.826/0.769/0.408 0.868/0.801/0.506

RRB and BTS 873 0.998/0.845/0.504 0.975/0.745/0.535 0.907/0.802/0.423 0.937/0.854/0.547

PH

RRB 620 0.992/0.924/0.579 0.981/0.915/0.654 0.977/0.932/0.630 0.956/0.909/0.615

BTS 115 0.937/0.862/0.607 0.979/0.918/0.668 0.973/0.930/0.588 0.958/0.925/0.524

RRB and BTS 675 0.992/0.923/0.599 0.981/0.918/0.653 0.922/0.905/0.679 0.943/0.903/0.672

SOY DTF

RRB 2126 0.989/0.936/0.742 0.914/0.897/0.772 0.965/0.928/0.735 0.980/0.838/0.792

BTS 224 0.853/0.821/0.774 0.816/0.820/0.775 0.855/0.839/0.774 0.973/0.823/0.772

RRB and BTS 2256 0.989/0.935/0.743 0.922/0.907/0.750 0.967/0.923/0.741 0.980/0.837/0.794
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GP, but simultaneously, it is difficult to select the appropriate markers to be excluded or the weight values to be 
assigned. In particular, when these approaches are based on GWAS, obtaining robust weights is problematic due 
to marker effects or p-values being calculated differently according to the GWAS methods31. Moreover, these 
approaches often require an amount of computation if they conduct modeling based on the large marker set. As 
a means of solving these problems, this study proposed a new approach tool, GMStool.

GMStool selects such optimal marker sets more effectively. Based on the prioritization of markers derived 
from a GWAS, GMStool sequentially searches for markers that increase the correlation rate between observed 
and predicted phenotypes and constructs an optimal marker set by accumulating these markers individually. 
As selection methods, the RRB model is provided to reflect the additive effects of markers on a phenotype, and 
the BTS model is provided to consider the interaction effects of markers, although indirect due to the use of 
GWAS. GMStool applies a k-fold CV approach with multi-threading and finally delivers an optimal marker set 
with minimal overfitting for a given dataset34. Additionally, to enable the flexible selection of optimal marker 
sets from various phenotypes, GMStool offers various options, such as a pre-selected marker list, initial markers, 
target correlation, increment rate of correlation, selection methods, and CV k-value (the –pre, –is, –c, –d, –m, 
and –cv options, respectively).

Evaluation of the optimal marker sets is essential for presenting them as predictive marker sets. No single 
model best predicts all phenotypes35; thus, to handle diverse phenotypes, GMStool provides four types of models 
in the prediction modeling: RRB, RF, DNN, and CNN. RRB assumes no interaction between markers but can 
predict phenotypes with high accuracy in practice36. RF has the ability to predict phenotypes by considering 
interaction effects as well as the dominance effects of markers37. DNN and CNN learn the global and local geno-
type patterns associated with a phenotype, thus can reflect the complicated relationship between genotype and 
phenotype without requiring predefined rules (e.g., normal distribution, non-zero equal variance)24. The DNN 
and CNN models of GMStool were built only to predict the optimal marker sets (Fig. 2) and are not provided in 
the marker selection phase because of the model complexity with various techniques applied to reduce overfit-
ting (Fig. 2). Among the models provided, the RF, DNN, and CNN models can reflect the interaction effects of 
markers, but the interaction effects in the optimal marker set are considered restrictive since GMStool’s markers 
are selected based on the GWAS.

GMStool showed high performance on real datasets. The optimal marker sets of the rice-DTF, PC, PH, 
and soybean-DTF phenotypes were constructed as 746, 873, 675, and 2256 markers through RRB, RRB-BTS, 
RRB-BTS, and RRB-BTS selection methods, respectively (Table 3). The correlation rates of the test sets were 
0.529, 0.547, 0.679, and 0.794, under RF, CNN, DNN, and CNN prediction models, respectively. In the selection 
methods, BTS selected the smallest number of markers, but their prediction performance was not far behind 
that of RRB (Table 3). Except for the rice-DTF with the lowest heritability, using both the RRB and BTS methods 
(RRB-BTS) showed better prediction performance than using either selection method. In particular, the RRB-
BTS selection method showed the best performance when DNN or CNN was used as a prediction model. Using 

Table 4.   Correlation rates of the GWAS-top 0.5%, 1%, 2%, and 3% marker-sets and whole marker-set. Highest 
correlation rates in each phenotype are shown in bold. a Rows of each phenotype represent the number of 
GWAS top 0.5%, 1%, 2%, and 3%, and all markers in order.

Data Phenotype Selected markersa RRB (train/val./test) RF (train/val./test) DNN (train/val./test)
CNN (train/val./
test)

Rice

DTF

184 0.838/0.777/0.343 0.935/0.641/0.330 0.914/0.727/0.328 0.862/0.686/0.301

369 0.890/0.709/0.480 0.963/0.570/0.464 0.945/0.717/0.412 0.905/0.656/0.410

738 0.919/0.715/0.478 0.968/0.621/0.484 0.962/0.726/0.406 0.925/0.734/0.468

1107 0.940/0.715/0.448 0.968/0.644/0.485 0.966/0.713/0.486 0.931/0.659/0.439

All 0.844/0.412/0.515 0.964/0.398/0.529 0.899/0.366/0.512 0.923/0.363/0.504

PC

184 0.816/0.744/0.366 0.947/0.500/0.376 0.851/0.664/0.304 0.834/0.680/0.308

369 0.871/0.717/0.517 0.960/0.524/0.471 0.844/0.624/0.486 0.872/0.555/0.387

738 0.917/0.761/0.508 0.963/0.513/0.521 0.874/0.619/0.532 0.891/0.708/0.402

1107 0.944/0.760/0.545 0.968/0.495/0.537 0.958/0.776/0.531 0.912/0.732/0.422

All 0.874/0.449/0.473 0.968/0.326/0.542 0.902/0.554/0.521 0.917/0.415/0.400

PH

184 0.914/0.834/0.494 0.971/0.787/0.578 0.931/0.795/0.492 0.944/0.814/0.586

369 0.946/0.859/0.571 0.976/0.808/0.617 0.934/0.823/0.579 0.950/0.772/0.643

738 0.970/0.869/0.566 0.980/0.830/0.646 0.956/0.875/0.527 0.952/0.865/0.527

1107 0.982/0.897/0.636 0.979/0.849/0.661 0.964/0.890/0.603 0.955/0.879/0.669

All 0.985/0.733/0.631 0.972/0.737/0.548 0.912/0.765/0.624 0.972/0.737/0.548

SOY DTF

478 0.641/0.558/0.578 0.744/0.644/0.627 0.663/0.660/0.628 0.566/0.578/0.584

957 0.832/0.795/0.705 0.957/0.778/0.725 0.825/0.763/0.705 0.634/0.636/0.656

1914 0.905/0.840/0.757 0.974/0.775/0.764 0.897/0.825/0.747 0.846/0.804/0.739

2871 0.944/0.872/0.767 0.978/0.809/0.771 0.938/0.850/0.746 0.810/0.804/0.753

All 0.973/0.743/0.753 0.976/0.752/0.760 0.921/0.751/0.763 0.904/0.721/0.748
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a phenotype with a heritability of > 0.5, it is recommended to use the combination of the RRB-BTS selection 
method and the deep-learning prediction model that can consider the complicated relationship between markers 
and phenotype. In PC, PH, and soybean-DTF with a heritability of > 0.5, GMStool’s optimal marker sets showed 
higher prediction performance than those using whole marker sets (Fig. 4). In rice-DTF with a lower heritability 
of 0.317, the prediction performance was the same for the optimal marker set and the whole marker. GMStool’s 
optimal marker sets had a much smaller number of markers but showed at least the same performance as those 
using all markers. However, in the case of using a phenotype with very low heritability, using all markers for 
prediction is recommended. This is because a large number of markers have a very low genetic effect, so a subset 
of all the markers has a fundamental limitation in improving the prediction performance. In comparison with 
GWAS-top markers, GMStool’s optimal marker sets had an average of 27% fewer markers than the GWAS-top 3% 
marker sets and achieved a 1.004- to 1.088-times higher performance than these marker sets (Table 4). Overall, 
the GMStool constructed the optimal marker set well and showed relatively high prediction performance in the 
real datasets evaluated. Although GMStool has a simple algorithm, it is expected to achieve high performance 
on other real datasets.

Nevertheless, GMStool has several limitations. First, marker selection is influenced by the GWAS results. 
GMStool uses the priority of the markers derived from the GWAS result and sequentially selects markers with 
the lowest p-value. This approach has less dependence on the GWAS result than other tools that directly use the 
marker effects or p-values, but it can also derive an inappropriate marker set with low prediction accuracy if the 
GWAS is incorrect. One thing to be aware of when using GWAS results is that GWAS must be performed without 
the test set. Otherwise, an overfitted marker set may result from the reflected information for the test set16. In 
addition, since high levels of linkage disequilibrium (LD) between SNPs can affect prediction performance, it is 
recommended to perform SNP pruning for LD before GWAS or clumping after GWAS. Second, the interaction 
effects of markers on the phenotype considered are indirect. Since GWAS only considers the linear effect of a 
single marker, GMStool based on this result has limited consideration of markers’ interaction effect in RF, BTS, 
CNN, and DNN models. Despite these constraints, the models indirectly considering the interaction effects had 
occasions that showed better performances than the models that considered only linear effects in the evaluated 
data set. Third, the results of GMStool are affected by the input options, such as initial markers, k-CV value, 
increment value, and target correlation rate. Since these options are provided so that the user can flexibly cope 
with various phenotypes, the user should preferentially find optimal options for the target phenotype through 
several pretests combining these options. As for the number of initial markers, the top one GWAS marker was 
used as the default option under the assumption that the GWAS result is reasonable. If the GWAS result is highly 
reliable, the user may designate the initial markers to the markers related to phenotype from the top GWAS mark-
ers; otherwise, it is recommended to directly designate the related markers as initial markers the ‘pre-selected 
marker’ option. The k-value of CV is suggested to be between 3 and 5 depending on the training sample size. The 
increment value for the correlation rate is recommended to be at least 0.00005 to avoid excessive selection of SNPs 
within the same LD block, and this setting is particularly recommended if pre-processing or post-processing 
for LD is not performed. The target correlation rate is suggested to be at least 0.99 so that all potential markers 
can be selected, although the heritability of the phenotype to be used is low. In the case of low heritability, even 
if all potential markers for the train and validation set are selected, the final prediction performance for the test 
set may not be superior to the prediction performance using all markers (Fig. 4B). Despite these limitations, 
GMStool is expected to contribute to many studies predicting various quantitative phenotypes with genotypes.

Data availability
The program GMStool developed in this study is freely available at www.githu​b.com/JaeYo​onKim​72/GMSto​ol, 
with detailed usage instructions and example files.
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