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1  | INTRODUC TION

In an era of unprecedented climate change, the adaptive poten-
tial of populations has become an increasingly important topic to 

conservation biologists, raising questions of landscape partitioning 
of adaptive variation and management strategies to maintain pop-
ulation viability. Given the rapid rate of climate change, new bene-
ficial mutations are expected to play a limited role for species with 
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Abstract
Uncovering the genetic basis of local adaptation is a major goal of evolutionary biol-
ogy and conservation science alike. In an era of climate change, an understanding 
of how environmental factors shape adaptive diversity is crucial to predicting spe-
cies response and directing management. Here, we investigate patterns of genomic 
variation in giant sequoia, an iconic and ecologically important tree species, using 
1,364 bi-allelic single nucleotide polymorphisms (SNPs). We use an FST outlier test 
and two genotype–environment association methods, latent factor mixed models 
(LFMMs) and redundancy analysis (RDA), to detect complex signatures of local ad-
aptation. Results indicate 79 genomic regions of potential adaptive importance, with 
limited overlap between the detection methods. Of the 58 loci detected by LFMM, 
51 showed strong correlations to a precipitation-driven composite variable and seven 
to a temperature-related variable. RDA revealed 24 outlier loci with association to 
climate variables, all of which showed strongest relationship to summer precipitation. 
Nine candidate loci were indicated by two methods. After correcting for geographic 
distance, RDA models using climate predictors accounted for 49% of the explained 
variance and showed significant correlations between SNPs and climatic factors. 
Here, we present evidence of local adaptation in giant sequoia along gradients of 
precipitation and provide a first step toward identifying genomic regions of adaptive 
significance. The results of this study will provide information to guide management 
strategies that seek to maximize adaptive potential in the face of climate change.
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low mutation rates and long generation times. Therefore, adap-
tive evolution under climate change for many species will depend 
on standing genetic variation (Aitken, Yeaman, Holliday, Wang, 
& Curtis-McLane, 2008; Barrett & Schluter, 2008) that may vary 
across the landscape and include alleles that gain adaptive value as 
selection pressures change (Olson-Manning, Wagner, & Mitchell-
Olds, 2012). Reliance on standing genetic variation is likely to be par-
ticularly true for long-lived sedentary species, such as forest trees 
that are characterized by adaptive constraints that can limit their 
evolutionary response to rapid environmental change: extended 
generation times that result in local persistence, increased rates 
of genetic drift associated with overlapping generations (Rogers & 
Prügel-Bennett, 2000), and limited rates of migration due to long 
generation times. For these species, understanding the distribution 
of adaptive diversity in relation to recent or past climatic gradients is 
a critical first step in promoting the adaptive potential of populations 
in hopes of maintaining future viability (Aitken & Whitlock, 2013; 
Holderegger, Kamm, & Gugerli, 2006).

The rich history of field research on phenotypic traits in plants 
(common gardens and reciprocal transplant studies) provides evi-
dence for abundant heritable variation for quantitative traits that are 
organized along environmental clines (Morgenstern, 1996; Savolainen, 
Pyhäjärvi, & Knurr, 2007). Until recently, determining the molecular 
basis of this variation has been less tractable. However, the rapid 
advancement of genome sequencing, including methods that use re-
duced genomic complexity (e.g., genotyping by sequencing (GBS), re-
striction-site associated DNA sequencing (RADseq)), has opened the 
door to more comprehensive assessments of population-level diver-
sity and allowed for the detection of regions under selection. Although 
some instances of strong selection on single or few gene loci have 
been noted (Akey, 2009; Linnen, Kingsley, Jensen, & Hoekstra, 2009; 
Sella, Petrov, Przeworski, & Andolfatto, 2009), many traits of adap-
tive importance in plants are believed to be polygenic in nature 
(Holland, 2007; Le Corre & Kremer, 2012; Pritchard & Di Rienzo, 2010; 
Yeaman et al., 2016). Under selection, these traits can exhibit subtle 
changes in frequency across many loci of small effect. Further, de-
mographic processes can shape genetic diversity in ways that mimic 
selective gradients, as geographic distance and climatic gradients are 
often autocorrelated. As a result, imprints of selection within the ge-
nome can be difficult to detect (Yeaman, 2015), and it is necessary to 
parcel out the contribution of geographic space in order to success-
fully identify regions of functional importance (Excoffier, Hofer, & 
Foll, 2009; Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 2015).

By coupling genome-wide markers with landscape genomics analyses, 
many researchers have successfully uncovered patterns of adaptive varia-
tion and identified potential genomic regions under selection across a wide 
variety of species (Benestan et al., 2016; De Kort et al., 2014; Dudaniec, 
Yong, Lancaster, Svensson, & Hansson, 2018; Harrisson et al., 2017; Lind 
et al., 2017; Pais, Whetten, & Xiang, 2016). FST outlier tests, that scan for 
highly differentiated loci as candidates for divergent selection, have proven 
useful in detecting regions under selection but often cannot detect weak 
or polygenic selection (Lotterhos & Whitlock, 2015; Narum & Hess, 2011; 
Pritchard & Di Rienzo, 2010). Genotype–environment association (GEA) 

tests have demonstrated high power to detect signals of adaptive evo-
lution under varying demographic scenarios (Forester, Lasky, Wagner, & 
Urban, 2018; Lotterhos & Whitlock, 2015; de Villemereuil, Frichot, Bazin, 
François, & Gaggiotti, 2014). Univariate association methods that test for 
single-locus–single-predictor correlation after accounting for population 
structure are powerful tools to accurately detect even weak signatures 
of adaptation (Frichot, Schoville, Bouchard, & François, 2013; Gunther 
& Coop, 2013; Lotterhos & Whitlock, 2015; Rellstab et al., 2015; de 
Villemereuil et al., 2014). However, a shortcoming of assessing each locus 
independently is a potential failure to detect signals of polygenic selection 
(Forester et al., 2018). Multivariate approaches can fill this gap by assess-
ing the combined effects of multiple loci and predictors (Capblancq, Luu, 
Blum, & Bazin, 2018; Forester et al., 2018; Rellstab et al., 2015), which 
is perhaps more reflective of real-life evolutionary pressures. Given the 
advantages of each method, combining outlier tests with GEA can in-
crease the likelihood of detecting complex patterns of selection (Rellstab 
et al., 2015).

Determining the presence of adaptively important genetic varia-
tion and its distribution across a species range is crucial to predicting 
species' responses to global climate change and directing biodiver-
sity conservation and management efforts (Aitken & Whitlock, 2013; 
Alberto et al., 2013; Funk, McKay, Hohenlohe, & Allendorf, 2012; 
Sgrò, Lowe, & Hoffmann, 2011; Sork et al., 2013). This has become 
an urgent challenge in California, where a protracted drought has 
resulted in massive tree mortality (USDA, 2016). The Sierra Nevada 
of California is a high mountain range that collects precipitation from 
the Pacific Ocean mostly in the form of winter rain and snowfall. 
The slow release of water from snowmelt in the spring is an im-
portant source of moisture for seedling growth and establishment. 
Sierra snowpack has declined in recent years (Fyfe et al., 2017) and 
high-resolution regional climate models suggest that spring snow 
water equivalent will decline by 73% by the end of the century, with 
midelevations (1,500–2,500 m) experiencing the greatest declines 
(Sun, Berg, Hall, Schwartz, & Walton, 2018).

This elevational range includes the extant groves of the iconic, 
long-lived conifer, giant sequoia (Sequoiadendon giganteum [Lindl.] 
Buchholz) that occur in a highly disjunct range consisting of ~70 
groves spanning approximately 400 km north to south (Figures 1 and 
2). Currently, most giant sequoia populations are in protected areas 
as this species is valued both culturally and for ecotourism. However, 
despite this protected status, a key question is whether popula-
tions of giant sequoia will remain viable under changing climate. 
Our previous work has shown very restricted gene flow (DeSilva & 
Dodd, 2020), suggesting that natural dispersal outside of existing 
groves will be unlikely. Long generation times (~305 years; Dodd & 
DeSilva, 2016) will slow the expansion of new variants that may arise 
through mutation, which underscores the role of standing genetic 
variation in determining the future viability of giant sequoia popula-
tions. In our landscape genetics study of microsatellite variation, we 
found some evidence for isolation by environment (IBE), linking ge-
netic divergence at putatively neutral loci to dissimilarity in precip-
itation, and temperature-related variables (DeSilva & Dodd, 2020). 
Although IBE is consistent with local adaptation, it is dependent on 
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a reduction of gene flow from divergent habitats due to selection 
against nonadapted immigrants, and therefore, patterns of IBE may 
not be reflective of local adaptation when gene flow is low or absent 
(Nosil, Vines, & Funk, 2005; Wang & Bradburd, 2014), as is likely the 
case in sections of giant sequoia range (DeSilva & Dodd, 2020). A re-
cent common garden study reported provenance variation in growth 
performance, providing support for the existence of adaptive ge-
netic variation across the species' range (Valness, 2016). Yet, to date, 
no studies have investigated local adaptation in giant sequoia using 
genomic data. Our ultimate goal was to detect populations that may 
be genetically responsive to anticipated climate change, so here, we 
build upon this earlier work by reporting on genomic signatures of 
selection using a range-wide genotyping-by-sequencing dataset. 
Specifically, we utilize an FST outlier test and gene–environment 
association methods (LFMM and RDA), to find signatures of local 
adaptation among giant sequoia populations and locate potential ge-
nomic regions under selection.

2  | METHODS

2.1 | DNA extraction, GBS library preparation, and 
data processing

Foliage was collected from 6 to 9 trees within each of 18 popula-
tions of giant sequoia distributed throughout the range (Figure 2). 

To reduce the potential of sampling related individuals, we aimed to 
sample individual trees >40 m apart. However, this was not possible 
in some small and highly clustered populations. In this latter case, 
we attempted to maximize the distance between sampled individu-
als, with the exception of the PLAC population, where all individuals 
were sampled. Our goal was to maximize the capture of variation 
across the range of our study species. Thus, we prioritize increased 
sampling of populations across the S. giganteum range, with the 
trade-off of limited sampling within each population. Appropriate 
permits were obtained for all sampling.

High-purity genomic DNA from 143 individuals was isolated from 
leaf tissue using Plant/Fungi DNA Isolation kits (Norgen Biotek). We 
constructed three sequencing libraries using a double-digest restric-
tion enzyme-associated genotyping-by-sequencing (GBS) protocol 
outlined in Peterson, Dong, Horback, and Yong-Bi (2014). Genomic 
DNA was digested using SbfI and EcoRI restriction enzymes (New 
England Biolabs). The resulting product was ligated to barcoded 
adapters and purified, and 46–48 individuals per library were then 
pooled and subjected to PCR amplification using Phusion High-
Fidelity PCR Kit (New England Biolabs) and an automated size selec-
tion for fragments between 430 and 570 bp using Pippen Prep. The 
resulting three libraries were sequenced on an Illumina HiSeq 4000 
platform using 150 bp pair-end reads. Sequence data were then de-
multiplexed using the process_radtags module within the STACKS 
pipeline (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013), 
during which reads with a phred quality score < 10 were removed. 
Sequences were then aligned to the giant sequoia reference genome 
v1.0 (Redwood Genome Project, 2019), using the software Bowtie 2 
and SAMtools (Langmead & Salzberg, 2012; Li et al., 2009). Variable 
sites were called using FreeBayes (Garrison & Marth, 2012) and fil-
tered to remove low-quality reads, potential sequencing errors, and 
paralogs. Data filtering steps included removing loci with uneven 
mapping quality and those with average read depth >200, requiring 
a minimum read depth of 5× and a minor allele count >3, removal 
of loci with more than 80% missing data, and a thinning step that 
retains one SNP per DNA fragment to remove potentially linked loci 
(Appendix S1). This filtering protocol resulted in a final dataset of 
1,364 bi-allelic SNPs used for outlier tests and environmental asso-
ciation analyses and to obtain genetic diversity statistics.

2.2 | Environmental data

To characterize the climatic conditions for each population, we used 
the spatial centroid of each population to extract and compile twenty-
one environmental variables at a spatial resolution of approximately 
1 km2. Nineteen climate variables were obtained from the WorldClim 
database (Fick & Hijmans, 2017), and elevation and climate water defi-
cit (CWD) were obtained from the California Basin Characterization 
Model (Flint, Flint, Thorne, & Boynton, 2013). CWD provides an indi-
cation of aridity that is important for Mediterranean climate systems, 
such as in California (Stephenson, 1998). We conducted a princi-
pal component analysis (PCA) on the full environmental dataset (21 

F I G U R E  1   A giant sequoia tree in Giant Forest, Sequoia and 
Kings Canyon National Park, CA, USA
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variables) after standardization, to reduce dimensionality in the climate 
data. We retained the first two axes (hereafter PC1 and PC2), which 
together explained 82% of the climate variation (Appendices S2 and 
S3). PC1 was driven predominantly by temperature and elevation vari-
ables, with a small contribution from annual and winter precipitation, 
whereas PC2 was determined mostly by precipitation-related variables 
and CWD with a minor contribution from variables related to tempera-
ture seasonality (Appendices S2 and S3).

2.3 | Genetic diversity

Genetic diversity and differentiation statistics were calculated using 
both the “diveRsity” package in R and GenoDive (Keenan, McGinnity, 
Cross, Crozier, & Prodöhl, 2013; Meirmans & Van Tienderen, 2004). 
Calculated statistics included observed and unbiased expected het-
erozygosity (Ho and uHe, respectively), the inbreeding coefficient 
(FIS), and the pairwise fixation index (G′ST). Since the removal of rare 
alleles (minor allele count filtering) can bias genetic diversity esti-
mation, we also calculated genetic diversity statistics without this 
filtering step for comparison. To further investigate the partitioning 

of genetic variation, we used AMOVA with 10,000 permutations to 
estimate FST across all populations as well as between northern and 
southern regions which previous evidence suggested were divergent 
(DeSilva & Dodd, 2020; Dodd & DeSilva, 2016). For regional diver-
sity comparisons, groves north of GRNT were grouped as northern 
populations and groves from GRNT to the south as southern popula-
tions (Figure 2; DeSilva & Dodd, 2020).

2.4 | Genomic signatures of selection: FST 
outliers and gene–environment association tests

To detect FST outliers that are candidates for selection, we utilized the 
Bayesian likelihood approach implemented in BayeScan v.2.1 (Foll & 
Gaggiotti, 2008). This method scans the genome for highly differenti-
ated SNPs that potentially have been subjected to divergent selection 
while accounting for neutral genetic structure (Narum & Hess, 2011). 
BayeScan was run using the false discovery rate (FDR) set to 0.05 
under the following parameters: 20 pilot runs of 5,000 with an ad-
ditional burn in of 50,000 iterations and a subsequent run with 5,000 
iterations and a thinning interval of 10. The prior odds for the neutral 

F I G U R E  2   Range map of giant 
sequoia (black) showing the gradient 
of precipitation of driest quarter (mm) 
across a section of California. Sampled 
populations indicated by a population 
code
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model were increased to 100 (default is 10) as raising this value has 
been shown to reduce false positives with little effect on false nega-
tives (Lotterhos & Whitlock, 2014). Loci with log10 values of the poste-
rior odds >1.0 were retained, as the program documentation suggests 
these loci show “strong” evidence for selection (Foll, 2010).

To test for associations between genomic variation and envi-
ronmental factors, we utilized latent factor mixed models (LFMMs; 
Frichot et al., 2013), as implemented in the LEA package in R (Frichot 
& François, 2015a). LFMM is a univariate approach that treats each 
individual locus as a response variable with climate data (PC1 and 
PC2 separately) as the explanatory variable, while incorporating 
neutral structure using latent factors (Frichot et al., 2013). In sim-
ulation studies, LFMM has demonstrated a good balance between 
high power and low false-positive rate (Frichot et al., 2013; de 
Villemereuil et al., 2014). As suggested by Frichot et al. (2013) and 
Frichot and François (2015a), we used two methods to determine 
the optimal number of latent factors (K value) that correct for the 
neutral genetic structure of our data. First, we ran a principal com-
ponent analysis on the individual allele frequencies. We then deter-
mined the number of components that explain the genetic variance, 
based on the Tracy–Widom test on the eigenvalues, as an estimate 
of K (Frichot & François, 2015a). Second, we utilized the Bayesian 
clustering algorithm STRUCTURE that estimates the number of ge-
netic clusters (K) without prior information about geographic origin 
(Pritchard, Stephens, & Donnelly, 2000). The best K value was deter-
mined using the ∆K statistic as suggested by Evanno, Regnaut, and 
Goudet (2005). We used four replicates and a burnin of 300,000 and 
1,000,000 MCMC repeats after burnin for K = 2–12.

We ran LFMM to test for associations between SNP′s and two 
composite climate variables (PC1 and PC2) using ten independent 
replications at 50,000 iterations after a burnin period of 25,000 with 
the number of latent factors (K) ranging from 8 to 12, as the methods 
outlined above suggested K equal to 10 and 9, respectively. We chose 
high run length parameters because of the relatively small number of 
individuals and loci. LFMM uses the z-scores to indicate the strength 
of the gene–environment association (Frichot & François, 2015b). As 
suggested by the authors, we calculated the median z-score from 
ten replicate runs, re-adjusted the p-values, controlled for FDR using 
the q-value of 0.05, and determined candidate SNPs based on the 
Benjamini–Hochberg procedure (Frichot & François, 2015b).

We also utilized RDA, a multivariate GEA method, to test for 
more subtle polygenic signatures of adaptation and detect outlier 
loci as candidates of functional importance. Redundancy analysis 
(RDA) is an extension of multiple regression to multivariate response 
variables (Legendre & Legendre, 2012). In finding the ideal combi-
nation of predictor and explanatory variables, RDA has shown high 
power to detect potential signals of polygenic adaptation (Forester 
et al., 2018; Harrisson et al., 2017). For these analyses, Hellinger-
transformed allele frequencies (Legendre & Gallagher, 2001) were 
treated as response variables. Because RDA models do not allow miss-
ing data, we imputed allele frequency data using probabilistic princi-
pal component analysis (ppca) as implemented in the “pcaMethods” 
package in R (Stacklies, Redestig, Scholz, Walther, & Selbig, 2007). 

Ppca uses a decomposition of SNP frequencies to create principal 
components; the components with the largest eigenvalues are then 
used to impute the missing data. We evaluated space and climate 
as explanatory variables. Space was defined by distance-based 
Moran's eigenvector maps (dbMEMs; Borcard & Legendre, 2002; 
Dray, Legendre, & Peres-Neto, 2006) based on Euclidean distances 
between all giant sequoia groves (sampled and unsampled) and ex-
tracting the values that correspond to our sample sites. Then, we 
conducted backward model selection, using the “ordistep” function 
within the vegan package for R (Oksanen et al., 2013), to reduce the 
number of dbMEM vectors. For climate, we reduced the twenty-one 
untransformed environmental variables described above, first by 
removing highly correlated environmental variables, (|r| < 0.7), and 
subsequently by using the “ordistep” function for backwards model 
selection to remove variables lacking explanatory power. The above 
process resulted in climate being represented by “isothermality” 
(ISO), a measure diurnal and annual temperature fluctuation, “pre-
cipitation of driest quarter” (PDQ), a measure of summer precipita-
tion in Mediterranean climates, and “climate water deficit” (CWD), a 
measure of aridity, in all RDA models, and space represented by two 
dbMEM vectors, MEM3 and MEM5. All variables were centered and 
standardized before use in each model.

We set up multiple RDA models to determine the relative amount 
of variation in allele frequency explained by climate after correcting 
for geographic space as a signature of local adaptation (Harrisson 
et al., 2017; Lasky et al., 2012; Sork et al., 2016). First, to elucidate the 
major factors shaping genetic variation and to detect potential signals 
of local adaptation, we set up three models for comparison: a full RDA 
model where allele frequencies were associated with both climate 
and spatial explanatory variables, a partial RDA in which the effects 
of climate were conditioned on geography (dbMEMs), and a second 
partial RDA, where the effects of geography were conditioned on cli-
mate. Next, to detect outlier loci, allele frequencies were associated 
with climate predictors after removing the effects of spatial predictors 
(Forester et al., 2018; Harrisson et al., 2017; Lasky et al., 2012). Using 
the first constrained axis, we identified candidate SNPs of potential 
adaptive importance as those with loadings in the tails of a 95% confi-
dence interval from the mean or 2.0SD from the mean loadings. One 
risk of using such a low cutoff is an elevated rate of false positives. 
However, we chose this to maximize the number of SNPs detected, as 
we did not expect to find single loci that would be under very strong 
selection for climate variation in the range of giant sequoia. Moreover, 
we also identified the climate predictor with the highest correlation to 
each indicated SNP. In all RDA models, we assessed model and con-
strained-axis significance using 999 permutations.

2.5 | Genomic context of outlier loci

To gain insights into the potential adaptive significance of outlier 
loci, we obtained the flanking sequence of each outlier SNP locus 
from the giant sequoia reference sequence (Redwood Genome 
Project, 2019). Since the giant sequoia reference genome is not 
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annotated, functional annotation was performed using the online 
BLAST (Basic Local Alignment Search Tool) database. Using a 601-
bp sequence (300 bp upstream and downstream of the SNP site), we 
searched the NCBI database using BLASTn with an e-value cutoff set 
to 1 × 105 and the requirement of >70% sequence similarity.

3  | RESULTS

3.1 | Genetic diversity and differentiation

Genetic diversity and differentiation differed substantially across 
the eighteen sampled populations (Table 1). Observed heterozy-
gosity (Ho) ranged from 0.09 to 0.17 and was lowest in PLAC and 
highest in ATWL and FMAN (Table 1). Unbiased expected heterozy-
gosity (uHe) was also lowest in PLAC (0.07) and highest in ATWL 
(0.21) (Table 1). Average pairwise population differentiation (G′ST) 
varied from 0.09 to 0.32 and was lowest for GFOR and highest for 
PLAC (Table 1). Average G′ST was significantly higher in the north-
ern populations than in the southern populations (G′ST N = 0.235, 
G′ST S = 0.109, Prob G′ST N ≠ G′ST S = 0.017). Diversity analysis of 
SNPs without minor allele count (MAC) filtering yielded significantly 
different results: Ho and uHe were lower and ranged from 0.08 to 
0.15 and 0.06 to 0.18, respectively (p < .001, p = .01 respectively, 
Table 1), whereas G′ST was slightly higher in the dataset without 
MAC filtering (G′ST 0.09–0.34, p = .003, Table 1).

Hierarchical AMOVA found a small, but significant variance due 
to regions (Fct = 0.02, p = .000) and a larger portion of genomic 

variation distributed among populations (FST = 0.15, p = .000; Appendix S4). 
Population clustering (STRUCTURE) at K = 9 indicated strong differentia-
tion among many of the northern populations (north of GRNT) with little 
admixture (Figure 3, Appendix S5). In addition, populations NELD, GFOR, 
ATWL, GRNT, MCTR, and FMAN were assigned to the same cluster and 
the four southernmost populations, LMDW, CNHM, PKSD, and DCRK, 
consisted of two clusters with PKSD as a transitional population exhibiting 
admixture from both clusters (Figure 3). Finally, RMNT and GRNT show 
admixture between the neighboring GFOR, ATWL, GRNT, MCTR, FMAN, 
cluster, and the geographically separate LMDW, CNHM, cluster (Figure 3).

3.2 | FST outliers

BayeScan indicated seven FST outliers, six demonstrating evidence 
for divergent selection with FST values ranging from 0.55 to 0.72 
(Table 2, Appendix S6) and one showing signs of balancing selection 
(locus 1,114, FST = 0.04). Since our focus here is on patterns of spa-
tially varying selection, no further discussion is presented for locus 
1,114. A BLAST search found one of these loci exhibited functional 
significance (Locus 828; Table 2).

3.3 | Candidate genomic regions associated with 
climate variables

Univariate environmental association analyses (LFMM with K = 9) 
indicated a total of 58 loci with strong correlations to composite 

TA B L E  1   Population information and genetic diversity summary statistics calculated for each population. Diversity statistics calculated 
without minor allele filtering are noted within parentheses.

Grove name
Population 
code GPS location

Sample 
size Ho uHe FIS Mean G′st

Placer PLAC 39.06, −120.57 6 0.09 (0.08) 0.07 (0.06) 0.00 (0.01) 0.32 (0.34)

North Calaveras CALN 38.28, −120.30 8 0.14 (0.13) 0.19 (0.16) 0.17 (0.17) 0.17 (0.17)

South Calaveras CALS 38.24, −120.25 8 0.16 (0.14) 0.18 (0.16) 0.13 (0.13) 0.15 (0.15)

Tuolumne TUOL 37.77, −119.81 8 0.16 (0.14) 0.17 (0.14) −0.04 (−0.04) 0.24 (0.25)

Merced MERC 37.75, −119.84 8 0.16 (0.14) 0.17 (0.15) 0.00 (−0.01) 0.21 (0.21)

Mariposa MPSA 37.51, −119.60 8 0.13 (0.11) 0.14 (0.12) 0.11 (0.11) 0.20 (0.20)

Nelder NELD 37.43, −119.59 8 0.16 (0.15) 0.20 (0.17) 0.13 (0.11) 0.13 (0.14)

McKinley MKLY 37.03, −119.11 8 0.15 (0.13) 0.17 (0.15) 0.07 (0.06) 0.17 (0.17)

Grant GRNT 36.75, −118.97 8 0.12 (0.10) 0.13 (0.11) 0.17 (0.18) 0.14 (0.15)

Redwood Mountain RMNT 36.60, −118.92 8 0.12 (0.10) 0.11 (0.10) 0.17 (0.18) 0.13 (0.13)

Giant Forest GFOR 36.57, −118.76 8 0.15 (0.14) 0.20 (0.18) 0.18 (0.17) 0.09 (0.09)

Atwell ATWL 36.47, −118.67 8 0.17 (0.15) 0.21 (0.18) 0.08 (0.08) 0.11 (0.12)

Mcintyre MCTR 36.13, −118.58 8 0.13 (0.11) 0.11 (0.09) 0.10 (0.11) 0.12 (0.13)

Freeman Creek FMAN 36.14, −118.52 8 0.17 (0.12) 0.19 (0.16) 0.08 (0.07) 0.10 (0.11)

Long Meadow LMDW 35.96, −118.60 8 0.12 (0.11) 0.11 (0.10) 0.16 (0.15) 0.15 (0.16)

Cunningham CNHM 35.92, −118.57 9 0.16 (0.15) 0.17 (0.16) 0.00 (0.00) 0.16 (0.16)

Packsaddle PKSD 35.93, −118.59 8 0.15 (0.13) 0.15 (0.13) 0.08 (0.08) 0.16 (0.16)

Deer Creek DCRK 35.88, −118.61 8 0.16 (0.14) 0.18 (0.16) 0.05 (0.04) 0.16 (0.16)
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F I G U R E  3   Results of population structure analyses from STRUCTURE. Vertical bars represent a sampled individual, color-coded for 
assigned cluster at K = 9

Locus ID
Detection 
method

Associated 
variable* (FST)

Adjusted 
p-value

| Axis 1 
Loading | Annotation

828 BayeScan (0.58) Unknown mRNA

1,123 BS, LFMM PC1(0.66) 1.72E-04 —

186 LFMM PC1 7.39E-06 — Unknown mRNA

218 LFMM PC1 5.50E-05 — Unknown mRNA

452 LFMM PC1 5.30E-05 — Unknown mRNA

251 LFMM PC2 1.91E-05 — Unknown mRNA

722 LFMM PC2 1.52E-03 — Unknown mRNA

870 LFMM PC2 9.48E-04 — Unknown mRNA

1,029 LFMM PC2 6.56E-06 — Unknown mRNA

1,062 LFMM PC2 1.66E-04 — Unknown mRNA

1,214 LFMM PC2 1.52E-03 — Magnesium 
transporter 
MRS2-4-like

1,253 LFMM PC2 2.91E-04 — Unknown mRNA

1,313 LFMM PC2 5.87E-06 — Pleiotropic drug 
resistance 
protein 1-like

368 LFMM, RDA PC2, PDQ 2.35E-05 0.21132 —

421 LFMM, RDA PC2, PDQ 9.56E-05 0.19423 —

471 LFMM, RDA PC2, PDQ 2.03E-05 0.19892 —

515 LFMM, RDA PC2, PDQ 1.46E-03 0.21181 —

679 LFMM, RDA PC2, PDQ 3.51E-04 0.22348 —

827 LFMM, RDA PC2, PDQ 9.12E-04 0.20579 Kinesin-like 
protein KIN-13A 
mRNA

1,229 LFMM, RDA PC2, PDQ 1.65E-03 0.17822 Pollen allergen 
gene

1,286 LFMM, RDA PC2, PDQ 4.41E-07 0.26369 —

338 RDA PDQ — 0.18769 Wall-associated 
receptor kinase-
like 1

612 RDA PDQ — 0.24267 Arogenate 
dehydratase 
gene

617 RDA PDQ — 0.17057 Unknown mRNA

940 RDA PDQ — 0.23536 Signal peptidase 
I AT2G30440 
mRNA

1,066 RDA PDQ — 0.19520 Unknown mRNA

TA B L E  2   Functional significance, 
detection method, and associated variable 
for highly supported outlier loci
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environmental variables (Figure 4; Appendix S6). Of these, 51 were 
correlated with PC2 that was predominantly driven by precipita-
tion, and seven were correlated with the temperature-driven PC1 
(Figure 4; Table 2; Appendix S6). An examination of the adjusted 
P-values from all runs (K set from 8–12) provided additional sup-
port for K = 9 (Appendix S7; Frichot & François, 2015b). Our BLAST 
analysis was successful in finding functional annotation for three loci 
that were strongly associated with PC1 and 11 loci that were associ-
ated with PC2 (Table 2).

We used the partial RDA model to detect outlier loci as candi-
dates of importance in selection in a multivariate context, where 
allele frequencies were associated with climate after removing the 
effect of spatial predictors. Using the SNP loadings on the first 
RDA axis, we identified 24 outlier loci beyond the 95% confidence 
that demonstrated strong correlations to environmental variation, 
all of which were most correlated with precipitation of the driest 
quarter (PDQ) (Figure 5; Appendices S6 and S8). Our annotation 
procedure supported functional importance for seven of the 24 
loci (Table 2).

3.4 | Concordance among tests for 
signatures of selection

Overall, eight loci were detected as outliers by both RDA and LFMM. 
All of these loci were most associated with precipitation-related var-
iables (PC2 in LFMM and PDQ in RDA). Annotation through BLAST 
identified two of these loci as having a putative function (Table 2). 
Overlap was found between a BayeScan (FST outlier) and LFMM at 
one locus (1,123; Table 2).

3.5 | Partitioning variation between climate and 
geographic space

The full RDA model explained 45% of the total variation in allele 
frequency and supported an influence of climate and/or space in 

shaping allelic variation (p = .001; adjusted R2 = .22). The first two 
canonical axes from the full RDA model were significant (p = .002, 
and 0.013 respectively) and together accounted for 77% of the ex-
plained variation (Figure 5). The partial RDA model, with climate con-
ditioned on space, was significant (p = .019; adjusted R2 = .09) and 
constrained 49% of the variance explained by the full model. The 
first partial RDA axis was significant at the 0.1 level (p = .098) and ac-
counted for 45% of the variation. The partial RDA model with space 
conditioned on climate accounted for 24% of the explained varia-
tion and was nonsignificant (p = .207). The remaining 27% of the ex-
plained variation was confounded between climate and geography.

4  | DISCUSSION

Giant sequoia is a paleoendemic of California that has likely suffered 
from a long-term demographic decline (Dodd & DeSilva, 2016). 
Today, it is limited to a number of restricted groves in the Sierra 
Nevada mountain chain. Small grove sizes and limited gene ex-
change among populations (DeSilva & Dodd, 2020) might be ex-
pected to limit its adaptive potential through inbreeding effects 
and genetic drift. However, through different approaches we have 
found evidence for a signal of spatially varying local adaptation as-
sociated with climate variables and, in particular, along gradients 
dominated by precipitation. We report here that population ge-
netic structure in giant sequoia has been shaped by local adapta-
tion overlain on historical population processes. From our study of 
genomic variation, we detected 79 loci as either FST outliers or loci 
with strong associations to climate as candidate regions of adap-
tive importance. Of these, we highlight 26 SNPs, found from mul-
tiple methods, or that correspond with functional annotation, as 
prime candidates for additional research. We emphasize that these 
outlier loci may include false positives and that experimental stud-
ies are needed to demonstrate functional significance of putative 
adaptive genomic regions (Barrett & Hoekstra, 2011; Kawecki & 
Ebert, 2004). Here, we present a first step toward understanding 
local adaptation in an iconic forest tree.

F I G U R E  4   Adjusted p-values from LFMM for association with PC1 and PC2. Outliers are outlined in blue
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4.1 | Population divergence and structure

We found evidence for strong population differentiation in our 
genomic data (FST = 0.15), which was close to our earlier estimate 
of FST = 0.14 from microsatellite variation (DeSilva & Dodd, 2020). 
Such high levels of differentiation are unusual in wind-pollinated 
tree species, for which population differentiation is typically low 
and suggests that at least some populations have been isolated for a 
considerable time (McKay & Latta, 2002; Petit & Hampe, 2006). The 
18 giant sequoia populations that we sampled, covering the range of 
the species, could be partitioned into nine clusters. Six of these clus-
ters were restricted to northern isolated groves and the remaining 
three clusters include all southern populations that are somewhat 
more contiguous. Our results confirm the previously report of strong 
population structure among populations north of GRNT based on 
microsatellite data (DeSilva & Dodd, 2020; Dodd & DeSilva, 2016). 
Genetic diversity (unbiased heterozygosity) was no lower in the 
northern fragmented groves than in most populations within the 
range, supporting our earlier inference that northern groves have 
a long evolutionary history (Dodd & DeSilva, 2016). Moreover, es-
timates of uHe (calculated after removing putative adaptive sites; 
see Appendix S9) show consistent patterns across populations as 
previous estimates of He from microsatellite markers (DeSilva & 
Dodd, 2020), although uHe is lower in the SNP dataset. This pat-
tern of population and genetic structure is unusual for north tem-
perate conifers, for which higher latitude populations are commonly 
thought of as “leading edge” colonization following glacial retreat. 
Current groves extend above the lower extent of late Pleistocene 
glaciers (Moore and Moring 2013), so either some short distance 
upward colonization must have occurred, or pockets of unglaciated 
terrain may have served as very local refugia. Given the pattern of 
genomic diversity that we have detected and the long generation 
time (~300 years) of giant sequoia, it seems most likely that extant 
groves have either persisted through many generations or were col-
onized by short distance migrations.

4.2 | Evidence for local adaptation

Despite the strong structure among populations, analysis of our 
genomic data revealed a signal of divergent selection associated 

with climatic variables. BayeScan detected few FST outliers due, in 
part, to the high population structure and increasing the prior odds 
for the neutral model to 100. However, each of these outliers ex-
hibited high levels of differentiation (FST 0.55–0.72; Appendix S6). 
Univariate (LFMM) and multivariate (RDA) environmental associa-
tion approaches identified more loci indicative of local adaptation. 
Although FST outlier approaches have been found to be more ro-
bust with respect to false positives than other methods (Lotterhos 
& Whitlock, 2014), environmental association studies are more suc-
cessful in detecting loci under selection and can provide context for 
selective forces as well (De Mita et al. 2013). Our environmental 
association studies found climate to be an important predictor of 
allele frequency and accounted for the largest portion of explained 
variation after correcting for geographic space, a pattern consistent 
with local adaptation. Signatures of local adaptation to climate are 
prevalent in many tree species, including Picea mariana, Alnus gluti-
nosa, Populus trichocarpa, Cornus florida, and Quercus lobata (De Kort 
et al., 2014; Geraldes et al., 2014; Pais et al., 2016; Prunier, Laroche, 
Beaulieu, & Bousquet, 2011; Sork et al., 2016). Moreover, the associ-
ation of genomic variation with climate in giant sequoia is consistent 
with our previous work that found precipitation-related variables 
play a role in patterns of isolation by environment at neutral genetic 
markers (DeSilva & Dodd, 2020). Here, a genome-wide dataset that 
includes putative functional regions showed a signal of climatic fac-
tors shaping genomic variation, which suggests that local adaptation 
in situ, likely under conditions of limited gene flow, is important in 
this species.

Local adaptation is further supported by nine loci detected by 
multiple methods and 19 candidate loci with functional annotation 
(Table 2). Overlap in the detection of outlier loci has been reported in 
numerous field studies (Harrisson et al., 2017; Hess, Zendt, Matala, 
& Narum, 2016; Sork et al., 2016). A carefully designed simula-
tion study demonstrated that overlap between GEA methods was 
found more often for actual targets of selection rather than false 
positives (Forester et al., 2018). In addition, two of the eight loci 
detected by both RDA and LFMM have relevant functional anno-
tation, (loci 827 and 1,229; Table 2). A BLAST search suggests that 
Locus 827 is a kinesin-like protein, KIN-13A, which has been found 
to be involved in trichome morphogenesis (Lu, Lee, Pan, Maloof, & 
Liu, 2005). In plants, trichome occurrence and density are associ-
ated with increased drought resistance (Galdon-Armero et al., 2018; 

F I G U R E  5   Triplot from Redundancy 
analysis showing how each explanatory 
variable affects the RDA axis with (a) 
representing the full RDA model and (b) 
a partial RDA model with the effects of 
climate conditioned on geography
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Sletvold & Ågren, 2012). Locus 1,229 represents a potential pollen 
allergen gene, which is thought to be involved in plant responses 
to stress (Chen et al., 2016). Although our BLAST search suggested 
functional importance for 20 loci, many of the annotated regions are 
characterized only as mRNA with further functional roles yet to be 
determined (Table 2). The non-annotated outlier loci are promising 
candidates for future research as they may be of unknown impor-
tance, linked to adaptive genes, in regulatory regions, or represent 
false positives. Any future annotation of the giant sequoia genome 
will provide valuable clarity as to the specific role of all outlier loci. 
Yet, we emphasize the candidate loci noted in this study demon-
strate only strong associations with climate and identifying the exact 
targets of selection involves rigorous experimental research. Taken 
together, outlier loci with functional annotation or those detected 
by multiple methods provide strong support for adaptive variation 
across the range of giant sequoia.

4.3 | Outlier SNPs driven by precipitation

Interestingly, variables associated with precipitation appeared to 
be the major drivers of local adaptation, which perhaps reflects 
the strong gradients of water relations on the western slope of 
the Sierra Nevada. Using gene–environment association methods 
(LFMM and RDA), we found evidence for adaptive differentiation 
across giant sequoia populations in response to gradients in precip-
itation and a more limited signal of local adaptation to temperature. 
LFMM analyses demonstrated seven times as many outliers cor-
related with precipitation-related PC2 than to temperature-related 
PC1 (Figure 4, Appendix S6). Although all RDA outliers were cor-
related with three environmental factors, PDQ, a measure of sum-
mer precipitation, CWD, a measure of aridity, and ISO, a measure 
diurnal and annual temperature fluctuation, outlier loci showed the 
strongest relationship to PDQ (Appendix S8). Thus, both LFMM 
and RDA indicate a subtle signal of adaptation to temperature and 
a stronger signature of divergent selection in response to gradi-
ents in water-related variables. Gradients of water availability are 
important selective agents for many tree species including Picea 
mariana, Cornus florida, Fagus sylvatica, Quercus spp., and Pinus albi-
caulis (Lind et al., 2017; Martins et al., 2018; Pais et al., 2016; Pluess 
et al., 2016; Prunier et al., 2011; Sork et al., 2016). In addition, 
many ecological studies have noted that giant sequoia is sensitive 
to water availability during its establishment phase (Hartesveldt, 
Harvey, Shellhammer, & Stecker, 1975; Rundel, 1972; Shellhammer 
& Shellhammer, 2006; York, Battles, & Heald, 2003). Giant se-
quoia is known to have bursts of reproduction after fire and sub-
sequently experience high seedling mortality due to desiccation 
(Weatherspoon, 1990). Considering the reproductive biology of 
this species, water availability is a highly plausible selective agent. 
For Mediterranean type climates, PDQ is of particular relevance for 
desiccation sensitive species as it equates to summer precipitation, 
which may represent a vital water source for giant sequoia seed-
lings during a vulnerable establishment phase.

4.4 | Limitations, opportunities, and future 
implications

It is important to note that GEA methods can suffer from low 
power or high false-positive rate under some demographic sce-
narios. Although LFMM has been shown to be robust to various 
demographic scenarios, including those that create high levels of 
population structure, this method can have elevated false discov-
ery rates (FDR) under scenarios that create IBD (Forester, Jones, 
Joost, Landguth, & Lasky, 2016; Lotterhos & Whitlock, 2015; de 
Villemereuil et al., 2014). Here, we do not find a significant signal of 
IBD in our data. Yet, the role of IBD or other neutral factors affecting 
population structure in giant sequoia has not been fully elucidated. 
Previous research has indicated isolation by distance (IBD) and/or 
ancient divergence separating the northern and southern popula-
tions of giant sequoia (DeSilva & Dodd, 2020; Dodd & DeSilva, 2016). 
Here, a large portion of the explained variance in our data (27%) was 
confounded between climatic variation and geographic space, which 
is perhaps due, to the strictly north-south range of giant sequoia, 
making it inherently difficult to decouple distance from environmen-
tal gradients that vary latitudinally. Therefore, LFMM results should 
be treated with some caution due to the potential contribution of 
IBD to population structure. In contrast to LFMM, RDA models 
show high power and low false-positive rates under IBD (Forester 
et al., 2016). Simulation studies indicate that the performance of 
RDA also remains high when population structure and selective gra-
dients are explicitly correlated (Capblancq et al., 2018). Yet, RDA is 
not without limitations, as it can have low power under island de-
mographic models (Forester et al., 2018) or when selective pres-
sures are highly clustered (Capblancq et al., 2018). Given that each 
GEA method has particular limitations, we believe the outlier loci 
detected by both LFMM and RDA, as well as outliers with functional 
annotation remain strong candidate regions of adaptive importance.

There is an ongoing need for future studies to provide additional 
clarity on the distribution of adaptive variation and genetic archi-
tecture of local adaptation in giant sequoia. To our knowledge, this 
study represents the first investigation of adaptive variation using ge-
nome-wide data. Yet, the results presented here are based on a small 
subset of the genomic variation within the species, as the giant se-
quoia genome is very large (8.5 Gb, Redwood Genome Project). More 
comprehensive sampling of the genome as well as an incorporation 
of phenotypic information will greatly improve our understanding of 
local adaptation in this species. In addition, future annotation of the 
giant sequoia genome will provide opportunities to better understand 
the genetic underpinnings of many phenotypic traits.

A trend toward increased aridity along midelevation Sierra 
Nevada forests could undermine the long-term persistence of 
giant sequoia. With end-of-century predictions for this region that 
include decreasing snowfall and earlier snowmelt, forests of the 
Sierra Nevada mountains will likely experience an accentuation of 
the summer drought that is typical of Mediterranean climates (Fyfe 
et al., 2017; Stewart, Cayan, & Dettinger, 2004; Sun et al., 2018). 
Considering the evidence presented here, we highlight the potential 
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that increased water stress may create maladaptation of giant se-
quoia populations to their environment. It has been suggested that 
a long-term decline (over the last ~2My) of giant sequoia is tied to 
increasing aridity during the development of current climate regimes 
(Dodd & DeSilva, 2016). Moreover, some giant sequoia populations 
suffered extensive foliage die back during the drought period from 
2012 to 2016 (Stephenson et al., 2018), providing further indication 
of sensitivity of giant sequoia to arid conditions.

5  | CONCLUSIONS

We provide evidence of local adaptation along gradients of pre-
cipitation and highlight genomic regions of potential adaptive 
importance for additional research. This information can aid in de-
termining the best course of action to preserve giant sequoia into 
the future. Locally adapted populations of giant sequoia are facing 
an accentuation of summer drought to which they may be mala-
dapted. Genomic variation currently present in more arid regions 
of the giant sequoia range could include “preadapted” variants 
that might enhance the adaptive response of nearby populations 
(Aitken & Bemmels, 2016; Kremer et al., 2012). Currently, DCRK, 
GRNT, MCTR, and RMNT inhabit areas experiencing the lowest 
levels of summer precipitation (PDQ) and thus may provide po-
tential sources of adaptive alleles. Given the limited gene flow in 
much of giant sequoia range, it is unlikely this variation will spread 
quickly by natural means (DeSilva & Dodd, 2020). Thus, forest 
managers may consider assisting in the movement of genetic re-
sources in order to enhance the adaptive potential of giant sequoia 
populations.
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