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ABSTRACT

More studies have been conducted using gene ex-
pression similarity to identify functional connections
among genes, diseases and drugs. Gene Set En-
richment Analysis (GSEA) is a powerful analytical
method for interpreting gene expression data. How-
ever, due to its enormous computational overhead in
the estimation of significance level step and multi-
ple hypothesis testing step, the computation scala-
bility and efficiency are poor on large-scale datasets.
We proposed paraGSEA for efficient large-scale tran-
scriptome data analysis. By optimization, the overall
time complexity of paraGSEA is reduced from O(mn)
to O(m+n), where m is the length of the gene sets
and n is the length of the gene expression profiles,
which contributes more than 100-fold increase in per-
formance compared with other popular GSEA imple-
mentations such as GSEA-P, SAM-GS and GSEA2.
By further parallelization, a near-linear speed-up is
gained on both workstations and clusters in an effi-
cient manner with high scalability and performance
on large-scale datasets. The analysis time of whole
LINCS phase I dataset (GSE92742) was reduced to
nearly half hour on a 1000 node cluster on Tianhe-
2, or within 120 hours on a 96-core workstation.
The source code of paraGSEA is licensed under the
GPLv3 and available at http://github.com/ysycloud/
paraGSEA.

INTRODUCTION

Genome-wide expression analysis with high-throughput
technologies has become an indispensable tool in compara-
tive transcriptomics (1,2). Affymetrix microarray platform,
Luminex-based multiplex RNA assays and high-resolution

RNA sequencing (RNA-Seq) result in unprecedented accu-
mulations of massive gene expression data from diverse ex-
perimental conditions. Gene expression profile archives (i.e.
LINCS (3), GEO (4), ArrayExpress (5) and TCGA (6)) rep-
resent the gene expression conditions of many diseases, tis-
sues, pathogen invasion, chemical compound and gene mu-
tation status.

The resource of large-scale transcriptomic datasets makes
it possible to mine hidden biological knowledge system-
atically and foster the big data paradigm of biomedi-
cal research. Given the biological phenotype as an an-
notation, relevant expression profiles as reference sources
can be highly informative if scalable, efficient mining and
query methods are properly applied (7–9). For example,
the Library of Integrated Network-based Cellular Signa-
tures (LINCS) project phase I released more than 1.3 mil-
lion whole genome expression profiles, including more than
3000 gene silencing, 5000 chemical molecules and 15 cell
types. In reference to the LINCS database, the biologi-
cal effect of any new chemical molecules can be evaluated
by comparing gene expression profiles against the LINCS
dataset and then identifying the entry with most similar
LINCS profile.

There exist several distributed parallelization approaches
to accelerate large-scale biological data processing and
analysis (10–14). However, an efficient analytical approach
designed for large-scale transcriptome datasets is still not
available.

L1000CDS2 (15) is a web-based search engine applica-
tion using correlation coefficient between an input signa-
ture vector and the LINCS L1000 data to prioritize small
molecules and drugs to either reverse or mimic observed
changes in gene expression. With extended usage, this tool
can also conveniently predict the most likely targets for each
small molecule profiled by the L1000 assay. However, the
L1000CDS2 tool simply uses the overlap or cosine similar-
ity as the metric to estimate the relationship between input
signature vector and the LINCS-L1000 data, which may not
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lead to reliable results with biological meaning in a statisti-
cally rigorous manner.

GSEA (16,17) is a widely accepted knowledge-based met-
ric for interpreting gene expression profiles, mainly using a
rank-based Kolmogorov–Smirnov statistic, and has several
implementations from different perspectives such as GSEA-
P (16,17), SAM-GS (18,19) or GSEA2 (20,21). However,
due to performance and scalability, these tools have dif-
ficulty meeting the time requirement of computationally
intensive analysis when confronting large-scale expression
profiles.

To overcome this bottleneck in large-scale GSEA appli-
cation, we proposed paraGSEA, a fast parallel implementa-
tion of GSEA for large-scale transcription profiles to accel-
erate querying, all-pairs comparison and global clustering
analysis on transcriptomic datasets. We implemented the
GSEA algorithm in an efficient parallel strategy with MPI
and OpenMP first. The computational overhead of stan-
dard enrichment score (ES) calculation procedure by pre-
sorting, filtering, inverted indexing and prefix sum removing
was reduced. Meanwhile, a global permutation method was
used to eliminate the redundant overhead in estimation of
the significance level step. Second, we expanded GSEA’s ap-
plication to quickly compare two groups of gene profiles to
get an ES matrix of all gene expression profile pairs. This im-
plementation can be effectively applied to the Connectivity
Map project (22,23), which aims to discover the functional
connections among diseases, genetic perturbation and drug
action. In this part, in addition to the previous optimiza-
tion strategies, our implementation allows generating a sec-
ond level of parallelization by creating multiple threads per
MPI process. Through reasonable data partitioning and ef-
ficient global communication mechanism, we can achieve a
better load balance, maximal data locality and minimal disk
I/O. Third, we clustered the gene profile based on the previ-
ous ES matrix to demonstrate how to perform a landscape
analysis on the whole LINCS dataset phase I in a scalable
and efficient way. In this part, ES serves as a metric to mea-
sure the similarity between two gene expression profiles. We
implemented a general clustering algorithm like k-mediods
(24), which is an improved version of k-means algorithm. It
is more robust to noise and outliers than k-means because
it minimizes the sum of pairwise dissimilarities instead of
the sum of squared Euclidean distances. Also, the algorithm
converges and output corresponding results quickly.

In general, paraGSEA optimizes and implements a scal-
able parallel algorithm to accelerate GSEA for large-scale
datasets and exploits the computational power of current
high performance workstations and clusters by employ-
ing both MPI and OpenMP. As a highly reliable and scal-
able tool with remarkably low execution time, paraGSEA
is greatly suitable for large-scale transcriptome analysis of
gene expression profiles.

MATERIALS AND METHODS

With the ‘para’ standing for parallel, paraGSEA follows a
classical expression profile analysis pipeline with Gene Set
Enrichment Analysis (Figure 1A). This flowchart shows the
design of paraGSEA framework, consisting of four layers.
Layer 1 represents data pre-treatment. Original gene ex-

pression profiles from LINCS are parsed and pre-sorted by
L1000 Analysis Tools, which is an open source project for
parsing LINCS datasets published on GitHub. Given dif-
ferent treatment conditions such as cell lines, perturbations,
concentration and duration of treatment, different output
file parsed from profiles will be generated and taken as input
to layer 2 along with the user-provided gene set. Layer 2 rep-
resents GSEA core operation. This part contain two com-
ponents: Quick Search for computing most similar and dis-
similar gene expression profiles to input gene set, and Com-
paring Profiles by pairwise ES matrix computation in par-
allel. Layer 3 represents the first level result. Quick search
module output Top-N results consist of ES, P-value and
normalized ES. At the same time, the ES matrix is exported
by Comparing Profiles module in a distributed way. Layer
4 represents gene expression profiles clustering. Two algo-
rithms are implemented to cluster gene expression profiles
based on similarity matrix. The module aggregates the fi-
nal clustering result, including clustering labels and corre-
sponding profile list. More details will be described in the
following sections.

LINCS data

The original input data come from LINCS, which evolved
from the Connectivity Map project. The data are stored in
the HDF5 file format with a gctx or gct extension. To use
and analyze the data, we used l1ktools to parse them and ex-
tract the information we needed. We can set different treat-
ment conditions as data filters such as cell lines, perturba-
tions, concentration and duration of treatment, and then we
will get different parsed text files with profiles conforming
to the treatment conditions we set. In this process, when we
found the correct profiles, we first numbered every gene of
them starting with one and then ordered them according to
their differential expression. Finally, we will write out these
ranked lists to a text file, which can be easily used as an input
to subsequent calculations.

The corresponding column ID list of each profile will
be pre-sorted for efficiency, which identifies the profile se-
quence number in the original HDF5 file. The pre-sorting
operation is necessary because once written, the file can be
used multiple times to avoid repeating work. The version of
l1ktools we used implemented with MATLAB can simply
and efficiently support this work. Meanwhile, gene name list
file is also generated as an annotation, in which each line is
a gene name corresponding to the gene sequence of every
profile in LINCS dataset. When users input a gene name,
we can get its sequence number by searching this file, which
is only needed in subsequent calculations.

It should also be noted that the sample condition list file
need to be pre-processed by a two-level indexing technique
for fast filtering. Each line in sample condition list is a sam-
ple condition description, which includes cell lines, pertur-
bations, concentration and duration of treatment. Each de-
scription represents a profile in LINCS dataset and keeps
the same order. When we get a sequence number of a pro-
file by calculating, we can also get its treatment condition
by searching this file. By two-level indexing, we are able to
quickly locate specific line and get the treatment condition
without loading all the file into memory.



PAGE 3 OF 11 Nucleic Acids Research, 2017, Vol. 45, No. 17 e155

GSEA optimization

Once standard data are parsed from the original input
HDF5 file, paraGSEA will read it and keep on mak-
ing subsequent calculations. There are several implementa-
tions in three versions: serialized version, MPI version and
OpenMP version. The MPI version can run on multiple
compute nodes to handle larger amounts of data. Moreover,
it supports parallel I/O for access dataset on disk simul-
taneously. The OpenMP implemented a more lightweight
version of parallel computing, and there is no extra over-
head of communication between compute nodes. The se-
rialized version is provided for basic computational envi-
ronment without MPI or OpenMP installation. If memory
is big enough to store all data in a single shared-memory
compute node, one can use the multi-threaded implemen-
tation with OpenMP. It can be more efficient than the MPI
version because thread model is more lightweight than the
process model in parallel programming. However, in most
of the time, the data are too big to store in a single node or a
cluster with many cores need to use, we need to use the MPI
multi-process implementation correspondingly. In fact, if
communication between nodes is relatively stable and un-
blocked, performance will not change dramatically because
the efficient parallel MPI I/O routines allow us to paral-
lelize the reading of the input dataset, which is not provided
with OpenMP.

For each pair of gene expression profiles, we compute
the ES using a rank-based Kolmogorov–Smirnov statistic
(16,17). Two optimization techniques have been applied to
the standard procedure to calculate the ES. First, we calcu-
late a hitting vector, which marks the location of each gene
in a gene set that appears in the profile. A straightforward
resolution is a traverse gene set and profile alternately. Its
cost will be a product of the size of the gene set and profile.
Instead of this method, we first established an inverted in-
dex by scanning the profile. It will be completed very quickly
because in the pre-treatment stage, we used unique figures
to represent the profile. Then we can obtain the hitting vec-
tor by just scanning the gene set one time. Therefore, the
final overhead depends on the sum of both sizes. In general,
this optimization reduces the time complexity of iteratively
scanning from O(mn) to O(m+n) by creating a hit locus in-
dex only once, where m is the length of gene sets and n is the
length of gene expression profiles.

The second optimization is prefix sum removing. This
step aims to find the maximum deviation between the hit-
ting vector and the corresponding missing vector. Actually,
the maximum deviation will only appear around the hitting
points. Through a detailed analysis of conditions in these
points, we can also get the correct result. Hence, Instead
of standard GSEA processing with time complexity O(n),
paraGSEA reduced it to O(log m)+O(m) = O(m), The extra
O(log m) is a sorting operation on the hit locus. Obviously,
in practical application, the size of the profile will be much
larger than a gene set. Therefore, this optimization strategy
is very worthwhile.

The whole process of standard ES calculation and our
optimization are summarized in the pseudocode shown in
Algorithms 1 and 2.

Estimation of the significance level of ES is a crucial and
time-consuming step of the GSEA approach. The goal is
to measure the reliability of the ES by statistical methods.
However, the biggest challenge lies in the permutation op-
eration. Actually, in the statistical domain, we usually need
to carry out the permutation operation thousands of times
before we can analyze their statistical meaning. So, if we
want to get a statistical index like P-value, we need to cal-
culate new ESs of random permutated profile thousands of
times. This will directly expand the computational overhead
thousands of times, which is inefficient and unaffordable for
large-scale analysis.

To solve this problem, we adopt a global permutation and
random sampling strategy to wipe out the redundant over-
head and manage computing expenses. In fact, permutation
simply means changing the hitting position in the hitting
vector. For the same gene set, it is unnecessary to gener-
ate all possible permutations for each expression profile. In-
stead, we just need to do permutation many times and get
their ESs to generate the Global Enrichment Scores Pool
(GESPool) only at the beginning. Once we get ES of each
gene set and profile pair, we only need to extract more than
thousands of results from GESPool to carry out the follow-
ing statistical analysis. That means, it results in a thousand-
fold decrease in time overhead. The results of this strategy
are consistent with the original strategy within the error al-
lowable range.

All-pairs comparison

Given two text files from the pre-treatment stage as the
input, we can quickly compare them to get an ES ma-
trix of every gene profile pair. For each profile–profile pair,
we compute an ES for the probe sets representing the up-
or downregulated signature genes separately using a rank-
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based Kolmogorov–Smirnov statistic (22). The scores from
up- and downregulated genes are combined into a single
connectivity score for each profile pair combination.

Besides the optimization strategies we have described, our
implementation will also allow generating a second level
of parallelization by creating several threads per MPI pro-
cess. The assignment of tasks to threads or processes is per-
formed through a strict load balancing strategy, which de-
pends on the way the data are partitioned to give each pro-
cess equal amounts of gene expression profiles. Typically,
for many profile–profile pairs, the list of first profiles is di-
rectly distributed among the processes, so that for each pro-
cess, the number of profiles will be the same or have a dif-
ference no greater than one. However, we must make sure
that each process holds whole second profiles. Otherwise,
we will not be able to get the ESs of every pair. Therefore,
the problem is how we read and distribute second profiles
to achieve better performance. We offer three strategies for
solving this problem.

As a first strategy, we duplicates second profiles for all
nodes in a cluster, so that each process can directly read
them locally. In this way, there will be no communication
among nodes but with a huge IO overhead. Instead, as a
second strategy, we can assign a root process to read en-
tire second profiles and then send it to other processes. In
this method, IO overhead is greatly reduced, and there will
be no more duplications, but it will be followed by a mass
communication. Actually, due to the parallelization of MPI
IO in the first strategy, the second strategy often leads to
worse performance. Finally, a compromise solution is to
make each process take a different part of second profiles,
then gather and redistribute them to each other. There will
be less IO overhead and less communication. Due to a rel-
atively efficient global communication mechanism is pro-
vided by MPI, the final strategy often achieves better per-
formance.

After the completion of each calculation, processes will
write the results to their own nodes in parallel. The overall
of this part is shown in Figure 1B.

Fast clustering

Clustering is a kind of very common and useful method in
data mining to analyze large-scale biological data (25,26).
Also, some tools provide a convenient web interface for inte-
grated clustering of multi-dimensional biological data (27)
or extract some knowledge-based characterizations of bio-
logical data to facilitate the clustering process (28). How-
ever, a more efficient clustering algorithm is needed for
large-scale transcriptome analysis.

We implemented a new scalable parallel clustering algo-
rithm like k-mediods, which clusters the gene profiles based
on the ES matrix as similarity matrix, and also supports a
second level of parallelization we have already described.
The difference lies in the way to find new clustering cen-
ters in each iteration. It is more robust to noise and outliers
compared to k-means because it minimizes a sum of pair-
wise dissimilarities instead of a sum of squared Euclidean
distances. Hence, in our implementation, instead of using
the average vector of each cluster as the new clustering cen-
ter, we use a profile with the greatest average similarity of

other profiles in the same cluster as the new clustering cen-
ter. This strategy offers two advantages. First, this method
has computational efficiency. Since no new profiles are in-
troduced, there is no need to recalculate ESs. Second, this
method can reduce the effects of noise points and improve
the compact degree of clusters for a better clustering result.

The implementation of this part is shown in Figure 1C.
We can see that in each iteration, every process just holds
several lines of ES matrix by parallel IO and strict load bal-
ance strategy, which provides the basis for the efficient sec-
ond level of parallelization in Steps 2 and 3. Only three small
vectors will be communicated among the processes, the im-
pact on performance is extremely limited. Therefore, we can
expect that this implementation is a very efficient parallel
clustering strategy.

However, like the shortcomings of k-means, k-mediods
also need to determine the initial cluster centers artificially.
Different initial cluster centers may lead to a completely dif-
ferent clustering result. To solve this problem, we improved
the algorithm again and provided an implementation of
k-mediods++ to ensure that the mutual distance between
initial cluster centers is as far as possible. Nevertheless, it
will take more time to determine the initial clustering cen-
ters. Therefore, one should decide which implementation is
needed.

Once the clustering centers do not change, the program
outputs the final clustering result with clustering label and
corresponding profile list to the root node. Actually, the al-
gorithm converges quickly and then outputs corresponding
result.

Benchmark

To evaluate the performance, we first benchmarked
paraGSEA against current GSEA implementations:
GSEA-P-R.1.0 (16,17), pygsa-1.1, which is a Python ver-
sion of SAM-GS (18,19), and gsea2, which is a MATLAB
version of GSEA2 (20,21). Because these software do not
have an efficient parallel behavior to support multi-node
cluster architecture, all the tests were performed in serial
mode with a single-node workstation.

All the tests were performed on both: a workstation and
a cluster. The workstation used in the test is a 96 core
high performance workstation with 8 Intel® Xeon® E7–
8850@2.3GHz*12 v2 processors, 1TB memory and Cen-
tOS release 6.5 installed. The cluster is on Tianhe-2 super-
computer consists of 16 000 compute nodes, each of which
equips two Intel® Xeon® E5–2692@2.2GHz*12 v2 pro-
cessors and three Intel® Xeon Phi™ 31S1P coprocessors
and remains 64 GB memory, 32, 000 Intel® Xeon® pro-
cessors and 48 000 Intel® Xeon Phi™ coprocessors in total.

The test dataset is LINCS phase I dataset (GSE92742)
with 1 319 138 transcriptome profiles. Some of these imple-
mentations have their own test datasets but do not have the
same scale to enable comparison. To ensure a fair experi-
ment, we set up a benchmark on an artificial dataset, which
has the same scale with LINCS to keep 978 genes of each
profile. We set the permutation at 1000 times or none at all
(no statistical analysis), and different number of profiles re-
spectively to carry out this benchmark. Note that when we
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Figure 1. paraGSEA technical diagrams. (A) The paraGSEA pipeline. Schematic outline of paraGSEA mainly illustrates input/output data files, data flow
and algorithm steps. The original inputs are expression profile files from LINCS in the HDF5 file format with a gctx or gct extension. The core modules
consist of Quick Search, Compare Profiles and Parallel Cluster. The first two can be performed independently, but the third module depends on the results
of the Compare Profiles module. Only the first module prints the results to the command line window. The other two modules all write out the results to
external text files, because the result is too huge to show in the command line window. (B) Data partitioning and output strategies in comparison to the
profiles module. Profiles are divided into several nodes, and each MPI process is in charge of different nodes. All processes read the input file in a parallel
manner with efficient MPI I/O routines. After each reading stage is completed, the processes communicate and exchange data to ensure each process
holds the entire second file. Then tasks will be divided equally between several threads in all processes, and similarity matrix calculation can be carried
out in a parallel manner with a strict load balancing strategy. Finally, each process writes a part of the ES matrix into an output text file. (C) The parallel
k-mediods’ clustering process in one iteration. Schematic outline of parallel k-mediods in one iteration includes five steps. Step 1: generating initial centers.
The algorithm first needs to generate some clustering centers in a specified number to continue, which is a simple random number generation process but
must be carried out in one process and then broadcast to all processes to make sure that every process holds the same clustering centers. Step 2: classifying
all profiles. This step is a second level of parallelization. Every process just holds several lines of the ES matrix, in which their scale is substantially equal,
by reading the results of the Comparing Profiles step, and they can classify a part of profiles to get a local class flag vector respectively by multi-threads
method using OpenMP. Then we gather all local results to form a global class flag vector to all processes. Step 3: calculating the average similarity vector.
This step is also a second level of parallelization, which is very similar to Step 2, but calculates and forms a global average similarity vector to root process.
Step 4: calculating new clustering centers. This step is only carried out on root process in a serial manner. Through comparing class flag vector and average
similarity vector, we can find these profiles with the greatest average similarity of other profiles in the same cluster. Step 5: write out or move on. If the new
centers are different than the old centers, they will replace the old centers and move on to the next iteration. Otherwise, the algorithm will stop and write
out the cluster result.

change the number of profiles, the length of the gene set re-
mains 50.

RESULTS

The result of benchmark with different numbers of profiles
is shown in Figure 2. The paraGSEA implementation of-
fers significant advantages in performance of every condi-
tion over others. We can see paraGSEA is up to two orders
of magnitude faster than original GSEA implementations
even on a single core CPU. There are some reasons for this
phenomenon. First, because of the global permutation and

random sampling strategy, the permutation of 1000 times
no longer has a significant impact on computational perfor-
mance for paraGSEA. In contrast, the other three imple-
mentations take approximately a hundred times longer to
complete GSEA calculation tasks, which includes statistical
analysis. Second, through various optimizations to improve
the performance of ES calculation, such as establishing an
inverted index or removing the prefix sum, the overall time
complexity is reduced from O(mn) to O(m+n), where m is
the length of gene sets and n is the length of gene expres-
sion profiles. Since m is much smaller than n, n may deter-
mine their performance to a greater extent. Because of the
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Figure 2. Runtime of four GSEA implementations. (A) Runtime of four GSEA implementations with 1000 times permutations, 50 gene sets versus different
numbers of expression profiles. (B) Runtime of four GSEA implementations with no permutations and 50 gene sets versus different numbers of expression
profiles.

fixed length of profiles in LINCS dataset, which always con-
tains 978 genes of each profile, paraGSEA achieves nearly a
thousand times better performance comparing to the other
three implementations. Of course, the innate performance
advantages of C compared to other script languages such
as Python, R or MATLAB also contributes to this result.

All-pairs comparison

To measure the efficiency of the parallel algorithm of com-
paring profiles, the runtimes are recorded about different
stages of the second level of parallelization. All experiments
were performed on Tianhe-2 supercomputer within 1 h and
96-core workstation within 120 h. We used all the transcrip-
tome profiles of LINCS phase I dataset to build a complete
connectively map quickly while analyzing the runtime of
different stages of the second level of parallelization. Fig-
ure 3A and B show these results.

We can see that loading time is relatively small compared
to other stages (Figure 3A), which indicates that the paral-
lel read strategy is quite efficient. Among them, the collec-
tive communications showed the best loading performance
(Figure 3B). Also, the writing file operation uses the num-
ber of processes as a benchmark. Therefore, the output time
is approximately the same among all the conditions with
the different number of processes. The test results indicate
paraGSEA has well scalability with increasing number of
processes.

Then we performed experiments on the 96-core high per-
formance workstation to focus on the most computation-
ally expensive stage. Figure 3C reflects a strong scalability
in computing ES matrix stage on whole LINCS phase I
dataset. Basically, running time is reduced to half while the
number of cores doubles which is largely due to the good
load balancing strategy. Finally, paraGSEA built a com-
plete connectively map on this dataset with 424 385 s, ∼117
h and gained a speedup of around 96 times. The result is also
showed in Supplementary Table S4 in Supplemental Mate-
rials.

To ensure that this condition can be maintained with the
continued increase in the number of cores and the scale
of dataset, we used different proportion of LINCS phase

I dataset, including 5, 10, 20, 40, 60, 80 and 100% respec-
tively, as input to comparative analysis by using different
number of nodes on Tianhe-2 supercomputer. Each node
made full use of its computing potential and kept running
all the 24 cores on a node. The result is showed in Supple-
mentary Table S5 and 6 in Supplementary Materials. We
can see the brief visual comparison in Figure 3D. The re-
sults show that parallel efficiency can be achieved with an
increase in the number of cores while the size of dataset is
increasing, which means our tools have very good scaled
speedup when applied to large-scale data. As each node
only have 64 GB memory and the scale of complete con-
nectively map will increase dramatically with the increase
of input dataset, we can also find that when we used few
nodes, some big datasets cannot get any result. Therefore,
we need more nodes to share the memory pressure and per-
form large-scale comparison. However, we are surprised to
find that the analysis time of whole profiles, involving more
than 1 trillion calculations of ESs, can be further reduced
within 1843 s, nearly half hour on a 1000-node cluster on
Tianhe-2 with a near-linear speedup.

Fast clustering

Because of the randomness of initial cluster centers, con-
vergence steps and total runtime is not the same when we
execute it repeatedly under the same parameters. Therefore,
we cannot use the total runtime to evaluate the algorithm’s
performance. However, the runtime of each iteration will be
consistent when we use the same number of cores. Thus, we
use the ES matrix of front 20 000 and 50 000 expression
profiles extracted from phase I dataset as input separately
to quickly carry out comparative analysis. The single itera-
tion parallel efficiency of two clustering algorithms shown
in Figure 4A. The detail data can also be seen in Supple-
mentary Table S7 in Supplemental Materials.

The results reflect good scalability in finding new clus-
tering centers of each iteration. Specifically, the algorithm
can maintain a high level of parallel efficiency in the early
stages. By the way, k-mediods and k-mediods++ basically
remained close in runtime and parallel efficiency in the same
dataset because they differ only in the discovery of the ini-
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Figure 3. Performance evaluation diagrams of Comparing Profiles. (A) Runtime of Comparing Profiles in each stage. (B) Runtime of Comparing Profiles
in each stage except calculating ES matrix. The ‘Cores’ in coordinate axis means the degree of second level of parallelization where ‘P’ means the number
of processes and ‘T’ means the number of threads per process. (C) Runtime and Speedup of Comparing Profiles in computing ES matrix stage of whole
LINCS phase I dataset. (D) Runtime and Speedup of Comparing Profiles in computing ES matrix stage of different proportion of LINCS phase I dataset
on Tianhe-2 supercomputer. The ‘Nodes’ in coordinate axis means the number of node in Tianhe-2 supercomputer used in calculation. Each node made
full use of its computing potential and kept running all the 24 cores.

tial cluster centers. Also, we can easily find that parallel ef-
ficiency will be better maintained with the increase in the
number of cores for larger datasets, which means our clus-
ter tools will also be well applied to large-scale data with
enough cluster support.

A good clustering algorithm should make the process of
clustering rapidly converge. To evaluate the convergence of
our algorithm, we test our clustering tools by setting differ-
ent numbers of clusters. The result is shown in Figure 4B
and C. The detail data can also be seen in Supplementary
Table S8 in Supplemental Materials. By the way, we use 60
cores to finish this work.

Because of the randomness of the initial cluster centers,
the runtime and convergence steps we got are average results
after testing repeatedly. The bigger the number of clusters
we set, the slower the speed of convergence we will get. Since
we calculate the initial centers to make them as far apart as

possible in the k-mediods++ algorithm, it can be faster con-
vergence when the number of clusters is bigger compared to
the k-mediods algorithm (Figure 4B). Also, it may have a
better clustering effect.

Given the predefined number of clusters, we can also see
that the larger the data we use, the faster the speed of conver-
gence we can get (Figure 4C). For further optimization, our
implementation remains a list of previous clustering centers
for all iterations before. Once we get a new set of cluster cen-
ters, we will judge whether it is in the list to decide whether
we can stop the process of clustering. Up to 3000 latest his-
torical records will be hold to ensure efficiency and limited
memory consumption, which is also the upper limit of the
number of iterations. We should be aware that the algorithm
is supposed to be able to converge quickly when the number
of centers and the selection of initial centers are appropriate.
In case that the algorithm do not converge after thousands
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Figure 4. Evaluation diagrams of Comparing Profiles. (A) Parallel efficiency of each Iteration. (B) Convergence steps of different numbers of clusters. (C)
Runtime of different numbers of clusters. Note: some data points are not drawn in 320 clusters because the growth of value here is exaggerated.

of iterations, we should stop the algorithm to avoid useless
overhead. It is better to choose to re-run the algorithm from
different initial centers or different number of centers.

Case study

To demonstrate the capacity of paraGSEA to analyze data,
we downloaded a LINCS L1000 file obtained through ex-
periments updated on 03 March 2017 with 1 319 138 pro-
files (GSE92742) from the NCBI GEO (4). Because these
profiles in LINCS did not have category labels and the
combination of different experimental conditions can lead
to a situation in which seemingly very different sample
groups present a similar expression profile formation, it
is difficult for us to observe the explicit clustering results
without controlling the experimental variables. Thus, we
extracted the experimental groups with the perturbation
of small molecule ‘Vemurafenib’ (http://lincs.hms.harvard.
edu/db/sm/10068--101/) and kept the duration 24 h with
‘trt cp’ perturbation type. Then we obtained 254 profiles
from these datasets, and we can expect that the experimen-
tal groups acting on the same cell lines should be clustered
together.

First, to evaluate the performance and accuracy of
paraGSEA, we compared the execution time and results of
paraGSEA and GSEA2 (20,21) on these 254 profiles with

the same gene set example (Supplementary Table S9) and
permutations at 1000 times in the statistical analysis stage.
The execution time shows that GSEA2 must take more than
50 s to complete this work, while the Quick Search Tools
of paraGSEA only need several milliseconds with a single
node. As mentioned, paraGSEA has an absolute advantage
on running performance. On the other hand, the accuracy
of the three main indicators has also been evaluated (Fig-
ure 5A–C). The results indicate that ES maintains absolute
consistency between two tools. Also, due to the randomness
of the permutation, the two tools have a slight error in cal-
culating normalized ES (max error = 0.073, min error < 1.0
× 10−3, average error = 0.018) and P-value (max error =
0.009, min error < 1.0 × 10−5, average error = 0.002). More
experiments show that the error with similar degree will also
occur even if GSEA2 carries out the same tests twice, which
means the accuracy of paraGSEA’s results is unquestion-
able.

Second, after computing ES matrix of these 254 profiles,
we clustered them into five groups based on k-mediods++
(Figure 5D). The first group includes 58 profiles. The exper-
imental groups acting on the cell lines ‘A549.’ ‘HCC515, ’
‘HEPG2’ and ‘PC3’ are significantly enriched in this group.
The second group includes 72 profiles. The experimental
groups acting on the cell lines ‘A375, ’ ‘HS578T’ and ‘HT29’
are significantly enriched in this group. The third group in-

http://lincs.hms.harvard.edu/db/sm/10068--101/
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Table 1. Integrated clustering results from case study in order to Kappa statistic

Expected category 1 Expected category 2 Expected category 3 Expected category 4 Expected category 5

Category 1 51 5 0 2 0
Category 2 18 45 5 2 2
Category 3 0 0 43 0 0
Category 4 1 6 0 57 0
Category 5 0 0 0 1 16

Figure 5. Evaluation results of paraGSEA. (A) Comparison between paraGSEA and GSEA2 in calculating ES. (B) Comparison between paraGSEA and
GSEA2 in calculating normalized ES. (C) Comparison between paraGSEA and GSEA2 in calculating P-value. (D) The clustering results of 254 profiles
based on k-mediods++. Because these profiles in LINCS did not have category labels, we think the experimental groups acting on the same cell lines should
be clustered together after controlling some experimental conditions. The profiles are classified into five groups marked by the color of the dendrogram
line. The expected profile classifications are labeled by the color of the font. The figures in parentheses represent the number of profiles for the item.

cludes 43 profiles. The experimental groups acting on the
cell lines ‘BT20’ and ‘MCF7’ are significantly enriched in
this group. The fourth group includes 64 profiles. The exper-
imental groups acting on the cell lines ‘HA1E, ’ ‘MCF10A’
and ‘MDAMB231’ are significantly enriched in this group.
The fifth group includes 17 profiles. Only the experimental
groups acting on the cell lines ‘SKBR3’ are significantly en-
riched in this group. Using the Kappa statistic, we evaluated
inter-observer agreement between this classification and the

manual classification in these profiles. We first integrated
clustering results into an appropriate formation (Table 1),
and then the Kappa index showed a substantial agreement
(Kappa = 0.787, P < 1.0 × 10−5), which means paraGSEA
can achieve an ideal clustering effect.
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DISCUSSION

paraGSEA provides a scalable parallel computational im-
plementation of Gene Set Enrichment Analysis, which is
a widely accepted knowledge-based metric for interpreting
gene expression profiles. It can serve as a fast and efficient
query tool to make full use of previous large-scale expres-
sion profile data to systematically mine the hidden useful
knowledge.

paraGSEA achieves high performance on both clusters
and workstations, and in benchmark experiments, it can be
significantly faster than other popular GSEA implemen-
tations such as GSEA-P, SAM-GS and GSEA2 on single
node serial mode. One reason why paraGSEA appears to
be the fastest tool is that it is designed to adopt many op-
timizations such as pre-sorting, establishing inverted index
or prefix sum removing, so that the overall time complex-
ity to calculate an ES is reduced from O(mn) to O(m+n),
where m is the length of gene sets and n is the length of the
gene expression profiles. Also, we adopt a global permuta-
tion and random sampling strategy in estimating the signif-
icance level of ES step, which measures the reliability of ES
by statistical methods. This strategy prevents the computing
expenses from increasing along with the permutation times.
Therefore, there is no doubt that paraGSEA can achieve
this absolute advantage on running performance.

More importantly, paraGSEA is designed to acceler-
ate large-scale transcription profile querying and clustering
analysis to make up for the lack of tools in parallel com-
puting. Our implementation also allows generating a sec-
ond level of parallelization by creating several threads per
MPI process. Through reasonable data partitioning and an
efficient global communication mechanism, we can achieve
a strict load balance, maximize data locality and minimize
disk I/O. The results of our experiment reflect strong scal-
ability in computing the ES matrix stage, in which we can
see that running time is reduced to half when we doubled
the number of cores. Also, parallel efficiency will be bet-
ter maintained with the increase in the number of cores for
larger datasets, which means paraGSEA can be well applied
to large-scale data with clusters support.

As for clustering analysis, we implemented a general clus-
tering algorithm like k-mediods, which is more robust to
noise and outliers compared to k-means, and we have no
need to recalculate the ES matrix. This step must depend on
the results of comparing profiles. ES is served as a metric of
the similarity between two profiles. To ensure that the mu-
tual distance between the initial cluster centers is as far as
possible, we improve the algorithm and provide an imple-
mentation of k-mediods++, but it will pay more to deter-
mine the initial clustering centers. The results of the experi-
ment also reflect excellent scalability in finding new cluster-
ing centers of each iteration. Moreover, the bigger the num-
ber of clusters we set, the slower the speed of convergence
we will get. However, k-mediods++ algorithm can achieve
faster convergence when the number of clusters is bigger
compared to k-mediods algorithm. Also, to prevent a non-
convergence result, we will retain a list consisting of cluster-
ing centers in all previous iterations, which may consume
more memory with the increase of iteration time. Hence,
there is no recommendation to set too many clustering cen-

ters to lead to lots of iterations. However, the good news is
our parallel cluster tools will also be well applied to large-
scale data with enough clusters support and can achieve an
ideal clustering effect that we saw in the case study.

In general, paraGSEA is a fast parallel implementa-
tion of GSEA to accelerate large-scale transcription pro-
file querying and clustering analysis with support for stan-
dard RNA-Seq and microarray data profiles mainly coming
from LINCS to meet the need for timely computationally
intensive analysis. It can be well applied to large-scale data
with enough clusters support by an efficient second level of
parallelization and strict data partition and communication
strategies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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