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Multi-omics characterization of autophagy-
related molecular features for therapeutic
targeting of autophagy

Mei Luo1,2,3,7, Lin Ye1,7, Ruimin Chang1,7, Youqiong Ye 3,4, Zhao Zhang3,
Chunjie Liu 2,3, Shengli Li3, Ying Jing3, Hang Ruan3, Guanxiong Zhang1, Yi He1,
Yaoming Liu3, Yu Xue2, Xiang Chen 1 , An-Yuan Guo 2 , Hong Liu 1 &
Leng Han 3,5,6

Autophagy is a major contributor to anti-cancer therapy resistance. Many
efforts have been made to understand and overcome autophagy-mediated
therapy resistance, but these efforts have been unsuccessful in clinical appli-
cations. In this study, we establish an autophagy signature to estimate tumor
autophagy status. We then classify approximately 10,000 tumor samples
across 33 cancer types from The Cancer Genome Atlas into autophagy score-
high and autophagy score-low groups. We characterize the associations
between multi-dimensional molecular features and tumor autophagy, and
further analyse the effects of autophagy status ondrug response. In contrast to
the conventional view that the induction of autophagy serves as a key resis-
tance mechanism during cancer therapy, our analysis reveals that autophagy
induction may also sensitize cancer cells to anti-cancer drugs. We further
experimentally validate this phenomenon for several anti-cancer drugs in vitro
and in vivo, and reveal that autophagy inducers potentially sensitizes tumor
cells to etoposide through downregulating the expression level of DDIT4. Our
study provides a comprehensive landscape ofmolecular alterations associated
with tumor autophagy and highlights an opportunity to leverage multi-omics
analysis to utilize multiple drug sensitivity induced by autophagy.

Autophagy, also known as macroautophagy, is an evolutionarily con-
served lysosomal degradation catabolic process, by which cells main-
tain cellular homeostasis via recycling nutrients from damaged
organelles and proteins1,2. Autophagy, as a crosstalk of multiple

biological processes, can affect cancers through multiple layers of
molecular alterations, from genomics to transcriptomics and pro-
teomics. For example,monoallelic deletion of the autophagy regulator
BECN1 contributes to tumorigenesis in many cancers, such as breast,
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prostate, and lung carcinomas3,4. Overexpression of BECN1 suppresses
cell proliferation in synovial sarcoma cells5. Downregulated expression
of autophagy-related gene 5 (ATG5) promotes the carcinogenesis of
early-stage cutaneous melanoma6. Proteomics analysis has shown that
inhibition of both APE1 and autophagy can overcome resistance to
cisplatin in the lung adenocarcinoma cell line A549 by enhancing
apoptosis7. Moreover, a multi-dimensional molecular regulatory net-
work constructed by miRNAs and transcription factors (TFs) plays a
crucial role in the autophagy process. ThemiRNA-181a targets ATG5 to
regulate starvation- and rapamycin-induced autophagy8, and miRNA-
30a inhibits autophagy and sensitizes tumor cells to imatinib by
downregulating BECN1 expression in gastrointestinal stromal tumors9.
Massive studies have demonstrated that FOXO members of TFs con-
tribute to promoting the expression of genes involved in autophagy10.
FOXO1, a member of FOXO TFs, can induce autophagic flux by inter-
acting with ATG7, leading to increased apoptosis in tumors11. FOXO3
activation modulates multiple steps to promote autophagic flux,
including increasing WIPI puncta formation and inducing ULK2 and
LC3 colocalization12. FOXO3 can inhibit FOXO1 to negatively regulate
autophagy in cancer cells13. These studies suggest a complicated
interplay involved in the autophagy process. However, there is cur-
rently a comprehensive multi-omics analysis to elaborate on
autophagy-related molecular alterations in cancer yet.

Recent studies have demonstrated robustness in estimating
autophagy through LC3-based assays, SQSTM1/p62-based assays, and
direct observation of autophagy-related structures and fate by electron
microscopy14. However, noneof these approaches are currently feasible
underhumanphysiological andpathological conditions.Despite a large
number of autophagy-related genes that have been identified and col-
lected in several databases, including MSigDB15, Autophagy Database16,
THANATOS17, HADB18, HAMDB19, and ncRDeathDB20, there is no gene
signature applied to cancer samples to estimate the autophagy status.
In this study, we utilize single-sample gene set enrichment analysis
(ssGSEA)21, a widely usedmethod22–25, to estimate autophagy status in a
large number of cancer samples, followed by a comprehensive analysis
to understand molecular alterations in autophagy.

Furthermore,many studies have shown that autophagy serves as a
key resistance mechanism to anticancer therapy, and that autophagy
inhibition can improve drug sensitivity26. For example, tioconazole,
targeting ATG4, can inhibit autophagy to enhance chemotherapeutic
cytotoxicity in multiple cancer cell lines27. In vivo evidence has further
demonstrated that autophagy inhibitors inhibit the growth of estab-
lished tumors and improve the response to cancer therapy1. Based on
this promising evidence, dozens of clinical trials involving autophagy
inhibitors are ongoing, e.g., chloroquine or hydroxychloroquine, in
combination with other drugs, such as the mTOR inhibitor
temsirolimus28, the proteasome inhibitor bortezomib29, and the his-
tone deacetylase inhibitor vorinostat30. The combination of the
autophagy inhibitor pantoprazole with docetaxel has also been
investigated in metastatic castration‐resistant prostate cancer31. Most
efforts focus on inhibiting autophagy topromote the efficacyof cancer
therapy.

In this work, we estimate the tumor autophagy status for ~10,000
tumor samples across 33 cancer types from TCGA. We further char-
acterize the associations between multi-dimensional molecular fea-
tures and tumor autophagy, and demonstrate the effects of autophagy
status on drug response. Through this comprehensive landscape of
molecular alterations associated with tumor autophagy, our study
provides biological insight into the therapeutic targeting of autophagy

Results
Identification of a gene signature to estimate autophagy status
across cancer samples
To estimate the autophagy status, we first collected autophagy-related
genes from six databases (MSigDB, HADB, HAMDB, ncRDeathDB,

THANATOS, and Autophagy)15–20, and also collected six independent
datasets with known autophagy status (GSE107600, GSE117189,
GSE129204, GSE106175, GSE90444, and GSE31397). We then used the
ssGSEA21 algorithm to calculate the autophagy scores based on
autophagy-related genes in each database throughout all six inde-
pendent datasets. The ssGSEA scores based on autophagy-related
genes from 4 databases (MSigDB, HADB, HAMDB, and ncRDeathDB)
can accurately distinguish the cell lines in autophagy-high status vs.
autophagy-low status in at least 4 independent datasets (marked in red
in Fig. 1a). We integrated rigorous autophagy gene sets, using genes
(n = 37) overlapping in all four databases in this study (Fig. 1b, Sup-
plementary Data 1). Thirty-two out of 37 genes are directly involved in
the key steps of autophagy. For example, they are involved in the
initiation (e.g., ULK1, ULK2, ATG13, RB1CC1, also known as FIP200),
nucleation (e.g., PIK3C3, also known as VPS34, BCL2, UVRAG, and
ATG14), elongation (e.g., ATG3, ATG5, ATG7, ATG12, ATG16L1, GABAR-
APL1, MAP1LC3A, and MAP1LC3B), cargo loading (e.g., SQSTM1 and
CALCOCO2), and fusion of AV and lysosomes (e.g., LAMP1; Supple-
mentary Data 1)1,16,32,33. Notably, the 37-gene set was further con-
sistently confirmed in 6 public datasets, including 5 different cancer
types for which samples with high autophagy levels showed sig-
nificantly higher autophagy scores than samples with low autophagy
levels (Fig. 1c). Moreover, the autophagy score calculated for
approximately 10,000 tumor samples across 33 cancers from The
Cancer GenomeAtlas (TCGA) based on this 37-gene signature is highly
consistent with the score based on those genes from MSigDB, HADB,
HAMDB, and ncRDeathDB (Fig. 1d), suggesting the robustness of the
37-gene signature to define autophagy status across cancer samples.

Global landscape of multi-omics autophagy-associated altera-
tions across multiple cancer types
To understand the global pattern of molecular alterations associated
with the autophagy process, we classified these samples from TCGA
into autophagy score-high, score-intermediate, and score-low groups
using the distribution of score tertiles. In total, 24 cancer types with
more than 30 samples in the autophagy score-high group and autop-
hagy score-low group were used for subsequent analysis. To identify
the molecular alterations associated with autophagy, we applied the
propensity score matching (PSM) algorithm22,34–38, which has been
widely used in previous studies, to minimize the effects of clinical
confounders (e.g., sex, age at initial pathologic diagnosis, tumor pur-
ity, pathologic stage, and histological type; Supplementary Fig. 1). We
summarize the overall analysis in Fig. 2a.

In this study, we tested 5 different molecular features including
20,288 mRNAs, 218 proteins, 2435 miRNAs, 3785 mutations, and
450 somatic copy number alterations (SCNAs) in 24 cancer types
(Fig. 2a). We identified significant numbers of molecular alterations
associated with autophagy status (Fig. 2b) and the alterations sig-
nificantly varied across different cancer types. For example, mRNA
expression showed the largest number of variations (8531 mRNA var-
iations), ranging from58genes in esophageal carcinoma to 3632 genes
in thymoma (THYM; Fig. 2b). In contrast, somatic variation showed
minimum variation, with only 51 mutations in eight cancer types,
ranging from 1mutation in lung squamous cell carcinoma (LUSC) to 32
mutations in stomach adenocarcinoma (STAD). The frequency of each
molecular feature in different molecular profiles varied greatly across
cancers. For example, several cancer types, including THYM, testicular
germ cell tumor (TGCT), and skin cutaneous melanoma (SKCM),
showed a larger number of variations between the autophagy score-
high and autophagy score-low groups (Fig. 2b).

Associations between autophagy andmRNA/protein expression
and signaling pathways
To investigate the associations between autophagy and mRNA
expression, we focused on the significantly altered mRNAs across 24
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cancers. These altered genes were enriched in 16 pathways from the
Kyoto Encyclopedia of Genes and Genomes (KEGG), which were enri-
ched with more than 10 genes in at least two cancer types (p value
<0.05; Fig. 3a, Supplementary Data 2). These pathways include some
autophagy-related pathways, such as the PI3K-AKT signaling pathway,
MAPK signaling pathway, and Phagosome (Supplementary Data 2),

which are frequently reported to modulate the autophagy process in
multiple cancers39,40.

Functional proteomics data of reverse-phase protein arrays cover
key cancer-related total and phosphorylated proteins22,37. To further
understand the potential effects of autophagy on protein expression,
we compared the pathway scores between the autophagy score-high

Fig. 1 | Identification of a gene signature to estimate autophagy status across
cancer samples. a Autophagy status was evaluated by autophagy scores based on
gene lists from 6 databases in the 6 public datasets. ‘Yes’ (check mark) indicates a
gene list validated for autophagy status; ‘No’ (x) indicates a gene list invalidated.
b Venn diagram of autophagy-related gene lists from the 4 better-performing
databases. c Autophagy scores of 6 datasets based on 37-gene set signature in the
autophagy score-high group (red) and autophagy score-low group (blue). Two-
sided student’s t test was used to assess the difference; P <0.05. d Correlations
between autophagy scores based on the 37-gene set and gene sets from MSigDB,
HADB, HAMDB, and ncRDeathDB among TCGA tumor samples. Color intensity
indicates Spearman correlation coefficient (Rs); rectangle size indicates FDR for
Spearman correlation; FDR <0.05; the absence of the rectangle means non-
significance (FDR >0.05). The Benjamini &Hochbergmethodwasused formultiple
hypothesis testing. Abbreviations: ACC Adrenocortical carcinoma, BLCA Bladder
Urothelial Carcinoma, BRCA Breast invasive carcinoma, CESC Cervical squamous

cell carcinoma and endocervical adenocarcinoma, CHOL Cholangiocarcinoma,
COAD Colon adenocarcinoma, DLBC Lymphoid neoplasm diffuse large B-cell
lymphoma, ESCA Esophageal carcinoma, GBMGlioblastoma, HNSCHead and Neck
squamous cell carcinoma, KICH Kidney chromophobe, KIRC Kidney renal clear cell
carcinoma, KIRP Kidney renal papillary cell carcinoma, LAML Acute Myeloid Leu-
kemia, LGG Brain lower grade glioma, LIHC Liver hepatocellular carcinoma, LUAD
Lung adenocarcinoma, LUSCLung squamous cell carcinoma,MESOMesothelioma,
OV Ovarian serous cystadenocarcinoma, PAAD Pancreatic adenocarcinoma, PCPG
Pheochromocytoma and paraganglioma, PRAD Prostate adenocarcinoma, READ
Rectum adenocarcinoma, SARC Sarcoma, SKCM Skin Cutaneous Melanoma, STAD
Stomach adenocarcinoma, THCA Thyroid carcinoma, TGCT Testicular germ cell
tumors, THYM Thymoma, UCEC Uterine Corpus Endometrial Carcinoma, UCS
Uterine carcinosarcoma, UVM Uveal melanoma, CML Chronic myelogenous
leukemia.
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group and the autophagy score-low group based on protein expres-
sion in 10 cancer signaling pathways, which are defined based on the
reverse-phaseprotein array fromTCGA41–44. Notably, we found that the
mTOR pathway was significantly enriched in the autophagy score-low
group in three cancers (LUSC: false discovery rate [FDR] = 0.032;
SARC: FDR=0.004, thyroid carcinoma (THCA): FDR =0.009; Fig. 3b),
which was consistent with previous observations that the mTOR
pathway inhibits autophagy1. Moreover, we found that the RAS-MAPK
pathway, as the activator of autophagy, was enriched in the autophagy
score-high group in two cancers (glioblastoma multiforme: FDR =
0.017; PRAD: FDR =0.041; Fig. 3b). The enrichment of epithelial-
mesenchymal transition (EMT) in the autophagy score-high group of
STAD and TGTC suggests associations between autophagy and EMT
(Fig. 3b)45.

To further explore the association between biological pathways
and drug response, we calculated the correlations between the mRNA
expression of genes in multiple cancer-related pathways and the area
under the dose–response curve (AUC) of 252 anticancer drugs in
Genomics of Drug Sensitivity in Cancer (GDSC)46 across cancer cell
lines. We found that 197 differentially expressed autophagy-associated
genes in 16 cancer signaling pathways are highly associated with the
drug response to 119 anticancer drugs in at least three cancer types (|Rs|
> 0.3, FDR<0.05), and the majority of genes (91.1%; n = 180) are asso-
ciated with the sensitization of anticancer drugs (Fig. 3c). These path-
ways include some autophagy-associated pathways, such as the PI3K-
AKT signaling pathway, MAPK signaling pathway, and mTOR signaling
pathway (Fig. 3c). For example, the PI3K signaling pathway, which has
been reported to be an inhibitor of the chemosensitivity47, was

Fig. 2 | Overview of five molecular features across cancer types. a Integrated
analysis of multi-omics and drug response across different cancer types. bNumber
of each altered molecular feature (mRNA, miRNA, mutation, protein, and SCNA)
and total altered molecular features in autophagy score-high (red) and autophagy

score-low (blue) groups fromTCGA tumor samples. TheMagentapoint denotes the
percentage of significant features over the total features in each cancer. SCNA,
somatic copy number alterations.
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Fig. 3 | Associations between autophagy and mRNA/ protein expression and
signaling pathways. a Enriched pathways with gene counts >10 in at least two
cancers by significantly altered mRNAs in the comparison of the autophagy score-
high group vs. the autophagy score-low group. Barplot indicates the enriched
genes; barplot color intensity indicates the significance of the enriched pathways.
Enrichment of pathways was evaluated with “clusterProfile” package. b Altered
signaling pathways based on functional proteomics data of reverse-phase protein
arrays in the autophagy score-high group vs. the autophagy score-low group for

multiple cancers. Color indicates the difference in pathway score; point size indi-
cates FDR for pathway score. c Spearman correlation between mRNA expression
levels of autophagy-associated genes in different signaling pathways and area
under the curve across 1074 cancer cell lines. Barplot denotes the number of drugs
targeting each gene; the orangepoint shows the drug’s targeted pathway; the point
size indicates the number of genes correlated with drug sensitivity (|Rs| >0.3,
FDR <0.05).
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significantly varied in both mRNA and protein profiling. We found that
79 genes in the PI3K signaling pathway are associated with the sensiti-
zation of 11 anticancer drugs (Rs < −0.3, FDR<0.05; Supplementary
Fig. 2a), and 34 genes in the PI3K signaling pathway are associated with
the resistance of nine anticancer drugs (Rs >0.3, FDR<0.05; Supple-
mentary Fig. 2a). Regulation of MAPK signaling pathway enhances the
drug sensitivity of cancer cells in multiple cancer types48,49. We found
that 36 genes in the MAPK signaling pathway are associated with the
sensitization of 11 anticancer drugs (Rs < −0.3, FDR<0.05; Supple-
mentary Fig. 2b), and four genes in the MAPK signaling pathway are
associated with the resistance of nine anticancer drugs (Rs >0.3,
FDR<0.05; Supplementary Fig. 2b). Previous studies have also indi-
cated that regulating the mTOR signaling pathway can sensitize cancer
cells to anticancer drugs50,51. We found that 26 genes in the mTOR
signaling pathway are associated with the sensitization of two antic-
ancer drugs (Rs < −0.3, FDR<0.05; Supplementary Fig. 2c), and 10
genes in themTOR signaling pathway are associatedwith the resistance
of nine anticancer drugs (Rs >0.3, FDR<0.05; Supplementary Fig. 2c).
These results provide a comprehensive view for exploring therapeutic
strategies via targeting genes in signaling pathways.

Regulatory network among autophagy-related miRNAs, target
genes, and TFs
To further understand the regulatory network in autophagy, we
identified 36 autophagy-related miRNAs in at least four cancers and
constructed a miRNA-target regulatory network to explore the effects
of miRNAs on autophagy. We identified 4062 edges between 36 miR-
NAs and 1994 genes with significant expression alterations in at least
three cancers (Fig. 4a). These genes targeted bymiRNAswere enriched
in multiple autophagy-related pathways, including the PI3K-AKT and
MAPK signaling pathways (Fig. 4a, FDR <0.05; Supplementary Fig. 3a,
Supplementary Data 3). For example, in the PI3K-AKT signaling path-
way, miR-106a, miR-17-5p, and miR-93-5p have lower expression in the
autophagy score-high group in at least four cancers (Fig. 4a; Supple-
mentary Fig. 3b). Previous studies have shown that miR-106a, miR-17-
5p, and miR-93-5p, as members of the miR-17 family, can inhibit
autophagy by targeting autophagy-related genes52–54. These varied
miRNAs and interactions provide crucial insights into the regulatory
mechanisms of autophagy involved in cancer.

TFs are crucial regulators of gene expression. We found that 94
TFs were significantly altered in at least nine cancers, and this TFs
targeted 1759 significantly varied mRNAs (Fig. 4b). The mRNAs tar-
geted by TFs were enriched in 9 signaling pathways, including the
autophagy-related PI3K-AKT signaling pathway (Fig. 4b, Supplemen-
tary Fig. 3c; Supplementary Data 4). The genes of the PI3K-AKT sig-
naling pathway were targeted by 66 TFs, which included FOXA3,
FOXJ1, FOXL1, and FOXH1 (Supplementary Fig. 3c). These TFs, as
members of the forkhead TF (FOX) family, were significantly down-
regulated in the autophagy score-high group of multiple cancer types
(Fig. 4b), which is consistent with previous knowledge that knock-
down of FOXA3 enhances the autophagy process55. Interestingly, we
also observed alterations in several other FOX family members under
autophagy status. For example, FOXP2 was upregulated in the autop-
hagy score-high group of 7 cancer types (Fig. 4b), and the nonsense
mutant of FOXP1, as the same subclass of FOXP2, can induce
autophagy56. FOXA2 was downregulated in the autophagy score-high
group of 4 cancer types, and FOXA2 was regulated by autophagy
activity in ovarian cancer stem cells57. Taken together, our results
suggest that TFs play a significant regulatory role in autophagy, which
provides biological insights for further investigations.

Association between autophagy and somatic copy number
alterations
SCNAs can affect the expression level of genes inmultiple processes of
autophagy across various cancer types. For example, 5q copy number

gain leads to the overexpression of SQSTM1, an autophagy cargo, in
kidney cancer58. Copy number amplification at 2q37 leads to elevated
expression levels of ATG16L1, a key component of a large autophagy-
related protein complex in prostate cancer59. To explore the roles of
SCNAs across multiple cancers, we evaluated and identified 82 SCNAs
significantly altered in 14 cancer types (Fig. 5a), ranging from 1 SCNA in
prostate adenocarcinoma (PRAD) to 33 SCNAs in BRCA. These regions
covered 850 genes, ranging from 1 gene inPRAD to 341 genes in kidney
renal clear cell carcinoma (KIRC; Fig. 2b). For example, we identified a
total of 69 deletions in 13 cancer types (Fig. 5a), with coverage of 588
genes in these regions. We identified only 36 amplifications in 10
cancer types (Fig. 5a), with 267 genes located in these regions.

Furthermore, 16 clinically actionable genes were harbored in
these altered SCNAs (Fig. 5b), and they were targeted by 37 anticancer
drugs of four categories, including target therapy and immunotherapy
(Fig. 5c). For example, 2q37.3 deletion is themost frequent SCNA in the
autophagy score-high group of four cancers (OV, BRCA, LGG, and
KIRP; Fig. 5a). The programmed cell death protein 1 (PDCD1), as the
target of pembrolizumab and nivolumab for cancer immunotherapy60,
is located in the 2q37.3 region in BRCA and LGG (Fig. 5b).MTOR, as one
of the most well-known components targeting the autophagy process
in drug development, is located in the 1p36.13 deletion region in
autophagy score-high samples of KIRC and BRCA (Fig. 5b). Notably,
MTOR was targeted by the mTOR inhibitors temsirolimus and ever-
olimus (RAD001; Fig. 5c), whichhave been reported inmultiple studies
as promising drugs to improve the sensitivity of combination therapy
by mediating autophagy status28,61. These results suggest that
autophagy-associated SCNAs can affect the sensitivity of anticancer
drugs, including drugs for both target therapy and immunotherapy.

Functional effects of autophagy status on drug response
Massive studies have demonstrated that autophagy can promote
tumorigenesis, and that autophagy inhibition can sensitize resistant
tumor cells to chemotherapy, radiation therapy, and targeted
therapy62,63. We comprehensively depicted the associations between
autophagy status and drug response (Supplementary Fig. 4). We first
calculated the correlation between the autophagy score and imputed
drug data of 138 drugs in TCGA64. We found that the number of drugs
associated with autophagy varied from 7 in ACC to 73 in TGCT (Sup-
plementary Fig. 4a; FDR <0.05). Among thesedrugs, a total of 41 drugs
targeted 32 clinically actionable genes (CAGs),which are targetedby 13
Food and Drug Administration (FDA)-approved drugs. These CAGs
were altered in four different molecular layers (mRNA expression,
protein expression, SCNA, and somatic mutation) of 20 cancer types
(Fig. 6). For example, the clinically actionable geneARwas significantly
changed at the mRNA and protein levels in 10 cancer types, including
PRAD. The AR targeted by the anti‐androgen bicalutamide (Fig. 6) has
consistently been reported to promote autophagy in prostate cancer
cells65,66. Furthermore, we observed that paclitaxel was more resistant
in patients with LUAD and autophagy score-high (Supplementary
Fig. 4a), which is consistent with the previous observation that
3-methyladenine (3-MA), an autophagy inhibitor, will leadA549 cells to
be more sensitive to paclitaxel67. Surprisingly, autophagy score-high
cancer samples are more sensitive to many drugs, including erlotinib
in seven cancer types (Fig. 6 and Supplementary Fig. 4a). This finding
contrasts with the traditional view that autophagy will lead to drug
resistance, suggesting complicated effects of autophagy on the drug
response.

Autophagy sensitizing drug response in vitro and in vivo
Melanoma is one of the top cancer types (THYM, TGCT, SKCM) with
the largest number of variations affected by autophagy status (Fig. 2b),
and it is more common than the other two cancer types. We thus
examined the drug response sensitized by autophagy in melanoma.
We selected five drugs (BMS708163, CMK, BMS536924, DMOG,
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Fig. 4 | miRNA-target and TF-target regulatory networks in autophagy.
a Significant KEGG pathways enriched by mRNAs in the miRNA-target regulatory
network. Green dots: genes; red circles: enriched KEGG pathways with FDR <0.05;
barplot denotes the number of cancer types with altered miRNAs. Y-axis denotes |

fold change|. b Significant KEGG pathways enriched by mRNAs in the TF-target
regulatory network. Green points: genes; red circle: enriched KEGG pathways with
FDR <0.05; barplot denotes the number of cancer typeswith altered TFs. The y axis
denotes |fold change|.
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etoposide) predicted to be sensitive to SKCM on high autophagy sta-
tus (Fig. 7a), excludingCGP.082996due to unavailability. Among these
drugs, both A375 and SK-MEL-28 cell lines became significantly sensi-
tive to etoposide and BMS536924 under the rapamycin-induced
autophagy conditions (Fig. 7b). We examined the autophagy status
of melanoma cells on different conditions by western blot of LC3A/B
and p6268, confirming the activation of autophagy by rapamycin
treatment (Fig. 7c). Therefore, etoposide and BMS536924were chosen

for further experiments in this study. We conducted drug sensitivity
assays on selected drugs in three different melanoma cell lines (A375,
SK-MEL-28, and SK-MEL-5) under a rapamycin-induced autophagy
condition versus a control condition. Our experiments showed that
three melanoma cell lines are more sensitive to etoposide and
BMS536924 under rapamycin-induced autophagy conditions (Fig. 7b
and Supplementary Fig. 5a). Considering other potential anticancer
effects of rapamycin on melanoma cell lines, we further utilized

Fig. 5 | Association between SCNAs and autophagy across multiple cancers.
a Summary characteristics of SCNAs across multiple cancers. The upper bar
denotes the number of cancer types with amplifications (purple) or deletions (dark
green); the right bar denotes the number of amplifications (purple) or deletions
(dark green) in each cancer. Circles indicate the autophagy score-high; triangles
indicate the autophagy score-low. b Chromosome plot displays locations of

autophagy-associated SCNAs with significant alterations or harbored genes in the
autophagy score-high group vs. the autophagy score-low group. Red indicates
amplification; blue indicates deletion in the autophagy score-high group. Pink
indicates amplification; light blue indicates deletion in the autophagy score-low
group. The orange label shows CAGs. c FDA-approved drugs targeting CAGs in
autophagy-associated SCNAs.
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starvation (instead of rapamycin) to induce autophagy, and observed
that A375, SK-MEL-28, and SK-MEL-5 cells are more sensitive to eto-
poside andBMS536924 (Fig. 7d and Supplementary Fig. 5b).Moreover,
we performed the cell death assays and observed that etoposide and
BMS536924 killed more melanoma cells in rapamycin-induced/star-
vation-induced autophagy conditions (Supplementary Fig. 5c–g).
These results suggest that autophagy induction is likely to cause drug
sensitivity.

To further confirm the effects of autophagy on the drug response
in vivo, we chose etoposide, an anti-tumor drug used in the clinic69, to
create a xenograft model with the A375 cell line, which has a highly
similar pattern to SK-MEL-28 in drug sensitivity (Fig. 7b, d). We utilized
etoposide alone or in combination with the autophagy inducer rapa-
mycin to treat BALB/C-nu/nu mice inoculated with A375 cells every
threedays (Fig. 7e). Allmicewere sacrificed, and the tumorwasexcised
on the 18th day (Fig. 7f). Western blot analysis of autophagy markers,
including both LC3A/B and p62, showed that the autophagy status of
tumor tissues was elevated by rapamycin (Fig. 7g). We observed that
the tumor growth was significantly inhibited by etoposide with the
autophagy inducer rapamycin (Fig. 7f), as evaluated by tumor volume
at different time points (Fig. 7h), and tumor volume (Supplementary
Fig. 5h) and tumor weight (Supplementary Fig. 5i) at the time point
when mice were sacrificed.

The potentialmechanismof autophagy inducer sensitizing drug
response
To expound how autophagy inducer sensitized tumor cells to etopo-
side, we performed the RNA sequencing (RNA-seq) analysis for A375
and SK-MEL-28 cells incubated with etoposide versus etoposide +
rapamycin. PCA analysis showed that the samples were well clustered
(Supplementary Fig. 6a). We identified 946 differentially expressed
genes between etoposide versus etoposide + rapamycin in A375 cells,
and 782 differentially expressed genes in SK-MEL-28 cells (Supple-
mentary Fig. 6b). Among these genes, there were 290 overlapping
differentially expressed genes between etoposide versus etoposide +
rapamycin in both A375 and SK-MEL-28 with |fold change| >1.5 and
adjusted p value <0.05 (Supplementary Fig. 6c, Supplementary
Data 6). Basedon these 290overlapping differentially expressed genes
(Supplementary Fig. 6b), we further performed KEGG pathway
enrichment analysis, and noticed that several downregulated genes
(EGF, FGF1, BINP3, DDIT4, PPP2R2B, SFN) were frequently observed in
pathways related to cancer or autophagy, such as the PI3K-AKT sig-
naling pathway and mTOR signaling pathway (Supplementary Data 7).
We further examined these function-related genes by RT-PCR, and we
found that the relative expression of the DDIT4 was the lowest in the
rapamycin + etoposide group compared to rapamycin or etoposide
alone (Supplementary Fig. 6d), which was consistent with tumor

Fig. 6 | Effects of molecular alterations in clinically actionable genes on drug
response. Sensitivity of drugs targeting clinically actionable genes with any
alterations at the mRNA, protein, mutation, and SCNA levels. The point in the left
panel indicates the Spearman correlation between imputed drug data and

autophagy scores in multiple cancers (red: positive, drug-resistant; orange: nega-
tive, drug-sensitive). Different shapes in the right panel represent different types of
molecular signatures. Red point: autophagy score-high group; blue point: autop-
hagy score-low group.
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volumes of four groups in a xenograft model (Fig. 7h). RNA-seq
showed that DDIT4 was significantly downregulated in A375 (fold
change = −1.60, adjusted p value = 1.32 × 10−13) and SK-MEL-28 (fold
change = −2.34, adjusted p value = 2.60 × 10−39) when treated with
etoposide and rapamycin compared to etoposide alone (Fig. 8a),
which was confirmed in A375 and SK-MEL-28 with RT-PCR (Fig. 8b).
Moreover, we also observed that the expression of DDIT4 was

decreased by rapamycin in a public data from GSE2778470 (Supple-
mentary Fig. 7a).

To examine the functional role of DDIT4 in autophagy inducer
sensitizing melanoma cells to etoposide, we transfected three DDIT4
siRNAs (si-DDIT4) into A375 and SK-MEL-28 cells treated with etopo-
side, respectively. The DDIT4 expression was decreased in the etopo-
side + si-DDIT4-2 or si-DDIT4-3 and the etoposide + rapamycin cells, as
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shown by western blot (Fig. 8c). The relative cell viability of A375 and
SK-MEL-28was significantly inhibitedwith etoposide and si-DDIT4-2 or
si-DDIT4-3 (Fig. 8d). In addition, A375 and SK-MEL-28 cells treatedwith
etoposide and rapamycin were infected with DDIT4-OE lentivirus or
negative control lentivirus, and the relative expression of DDIT4 was
increased in etoposide + rapamycin +DDIT4-OE lentivirus-treated cells
compared to etoposide + rapamycin + negative control lentivirus-
treated cells, as shown by western blot (Fig. 8e). The cell viability was
restored when DDIT4 was overexpressed (Fig. 8f). The efficiency and
specificity of DDIT4 siRNAs were examined in A375 and SK-MEL-28
(Supplementary Fig. 7b), and the autophagy status of cells whenDDIT4
was knocked down was also examined (Supplementary Fig. 7c). The
efficiency of DDIT4-OE lentivirus was examined in A375 and SK-MEL-28
(Supplementary Fig. 7d), and the autophagy status was also examined
(Supplementary Fig. 7e).

Moreover, we inhibited autophagy by transfecting three ATG5
siRNAs (si-ATG5) into A375 and SK-MEL-28 cells treated with etopo-
side, respectively, and the efficiency of ATG5 siRNAs was examined by
western blot (Supplementary Fig. 7f). The relative cell viability of A375
and SK-MEL-28was significantly increasedwith etoposide and si-ATG5-
1 (Fig. 8g). The expression of DDIT4 was also significantly increased
when si-ATG5-1 was transfected into A375 and SK-MEL-28 cells treated
with etoposide, respectively (Fig. 8h). Taken together, our results
suggest thatmelanoma cells may bemore sensitive to etoposide when
present with an autophagy inducer, and this pattern may be mediated
through DDIT4 (Fig. 8i).

Discussion
Autophagy can promote tumorigenesis and is associated with the cell
response to immunotherapy, hormone therapy, and target therapy. A
comprehensive analysis of multi-omics and therapeutic responses
associated with autophagy will significantly contribute to cancer
therapy. Despite the critical roles of autophagy, there are no applicable
methods for estimating autophagy status in a largenumber ofpatients.
In this study, we proposed to define the autophagy status of patients
based on an autophagy gene signature, which facilitates the investi-
gation of the functional roles of autophagy in patients. We then clas-
sified all TCGA cancer samples into autophagy score-high groups and
autophagy score-low groups based on the autophagy signature. To
explore the effects of autophagy on biological molecules in cancers,
we applied a propensity score algorithm to minimize the disturbance
of various confounding factors: tumor purity, sex, ethnicity, age at
diagnosis, and smoking status. We identified multiple autophagy-
related molecular features across 24 cancer types, including mRNA,
miRNA and protein expression, somatic mutations, and SCNAs. In
addition, we explored the influence of the regulatory network among
different molecules on the autophagy process, which is the most
comprehensive landscape thus far. This comprehensive map will pro-
vide strong biological insights for future investigations, which has

been demonstrated by previous rigorous analysis of large-scale data,
including TCGA and ICGC22,34,37,38,41,71–77. Our integrative analysis sug-
gests that autophagy status can impact the alterations of molecular
features in multi-omics layers in diverse tumors.

Notably, we found a total of 32 CAGs were significantly altered
across 20 cancer types, and multiple cancer types can be resistant or
sensitive to the drugs targeting these CAGs upon autophagy induction
(Fig. 6). In contrast to the conventional view that autophagy inhibition
confers drug sensitivity, our comprehensive analysis and in vitro/
in vivo experiments highlight an opportunity to leverage personalized
molecular feature analysis to overcome multiple drug resistance
induced by autophagy. It is important to note, however, that only with
single experiments (e.g., single drug or cell line), it will be very chal-
lenging to conclude that autophagy may drive the drug sensitivity for
an appreciable number of anticancer drugs. Our analysis further sug-
gested that DDIT4 is a potential target to mediate the autophagy
induction to sensitize tumor cells to etoposide. Recent studies have
shown that the immune system is weakened by autophagy inhibition
due to decreased degradation of immune metabolites78,79, which fur-
ther highlights the need for caution when utilizing autophagy inhibi-
tors, especially in immunotherapy. Therefore, the combination of
autophagy inducers and immunotherapy may provide an alternative
direction for cancer therapy.

Challenges remain in the study of autophagy that requires further
investigation. We estimated the relative autophagy status across
tumor samples, which may be limited in its ability to reflect the real
status of autophagy in patients. Autophagy is a dynamic biological
process, which involves the regulation of various related molecules.
Therefore, it is difficult to evaluate it accurately by the evaluation of
only a small number of autophagy-relatedmarkers, such as LC3 or P62,
etc. Although autophagyflux canbeused tomonitor autophagy status,
this approach is challenging even in cultured cell lines and model
organisms80, not to mention in large-scale (~10,000) patient samples.
Similar to this, there is no direct approach to assess the hypoxia status
in patients, while we can only indirectly access the hypoxia status
through a 15-gene signature22,25,81,82, which can still lead to significant
biological discoveries. Our analysis is based on bulk RNA-seq across
different cell types within a sample. Further efforts should take tumor
heterogeneity into consideration, particularly with advancements in
single-cell profiling technology. Finally, most clinical trials do not have
information on the autophagy status of patients’ cancer samples due
to the technical challenge of monitoring autophagy status in vivo.
Currently, most studies have focused on autophagy inhibition, while
the importance of autophagy induction has been ignored, which leads
to a limited understanding of howmolecular signatures are affectedby
the autophagy microenvironment and a reasonable interpretation of
unexpectedly adverse drug outcomes in anticancer therapy. None-
theless, our study emphasizes the significance of monitoring tumor
autophagy status in future clinical studies.

Fig. 7 | Characterization of the drug response associated with autophagy
in vitro and in vivo. a Drug response associated with the autophagy status in
SKCM. The orange point indicates sensitivity; the red point indicates resistance.
b, d Dose-response curves for the mean value of cell viability of etoposide and
BMS536924 in rapamycin-induced (b) or starvation-induced (d) and non-induced
conditions in the melanoma cell line A375 and SK-MEL-28. Cell viability was nor-
malized to the level of cells treatedwith DMSO (b) or DMEM (d). DMEM: Dulbecco’s
Modified Eagle Medium for control. EBSS: Earle’s Balanced Salt Solution for star-
vation. Error bars indicate the mean ± SD. The drug screen data of different groups
(n = 4)were fitted and comparedby sigmoidaldose-response curves. cWestern blot
of autophagy markers in A375 and SK-MEL-28 cell lines treated with DMSO, rapa-
mycin, etoposide, and rapamycin + etoposide. The ratios of the LC3-II/LC3-I andp62
band intensities normalized to DMSO are displayed below the blots. Similar results
wereobserved in at least three independent experiments. eThedesign of xenograft
experiments. Nude mice were injected with 2 × 106 A375 cells. When the tumor size

reached 50–100mm3, mice were treated with vehicle, 0.75mg/kg rapamycin
intraperitoneally (i.p.), 5mg/kg etoposide (i.p.), or the combination of rapamycin
and etoposide every 3 days (n = 7). Mice were depicted using “mouse-animal-
rodent-mammal-little” (https://pixabay.com/zh/vectors/mouse-animal-rodent-
mammal-little-310756/), available under the Simplified Pixabay License (https://
pixabay.com/zh/service/license/). f Excised tumors to represent the tumor size on
day 18.gWestern blot of autophagymarkers inmouse tissues with the treatment of
vehicle, rapamycin, etoposide, and rapamycin + etoposide. The ratios of the LC3-II/
LC3-I and p62 band intensities normalized to vehicle are displayed below the blots
(n = 3). h Quantitative analysis of tumor volume at different time points with the
treatment (n = 7). Error bars indicate the mean± SD. The difference in multiple
groups was estimated by one-way ANOVA analysis. P values are as follows: p =0.011
(Vehicle vs. Etoposide), p =0.0012 (Vehicle vs. Rapamycin),p =0.026 (Etoposide vs.
Rapamycin+Etoposide), and p =0.00058 (Rapamycin vs. Rapamycin+Etoposide).
c, g See Supplementary Fig. 8 for uncropped data.
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Methods
Identification of a gene signature for estimating autophagy
status across cancer samples
We collected data from six currently widely used autophagy-related
databases, in which autophagy-associated genes were manually col-
lected from the literature related to autophagy. We downloaded six
independent datasets with known autophagy status from the Gene

Expression Omnibus (GEO): GSE10760083, GSE11718984, GSE12920485,
GSE10617586, GSE9044487, and GSE3139788. For each human gene list
from the autophagy-related database, we calculated the ssGSEA score
of samples from six datasets using the GSVA package89. We retained
gene lists for which the score level was consistent with the autophagy
status of samples in at least four validation datasets. We further
obtained the intersection of these four gene lists, which included 37
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autophagy-associated genes (Supplementary Data 1). We confirmed
that the autophagy scores based on the 37-gene list are consistent with
the autophagy status in six datasets from GEO. The autophagy score
for each tumor sample or cancer cell line was defined by the ssGSEA
score based on the 37-gene list.

Classification and multi-omics analysis of tumor samples
from TCGA
The multi-omics datasets (mRNA expression, miRNA expression, pro-
tein expression, somatic mutations, and SCNA) and clinical data (age,
gender, smoking, etc.) from32 tumor typesweredownloaded fromthe
TCGA data portal (https://portal.gdc.cancer.gov/). The tumor purity of
TCGA samples was downloaded from Tumor IMmune Estimation
Resource (http://cistrome.org/TIMER/download.html)90 and https://
doi.org/10.5281/zenodo.25319391 and integrated. The autophagy
scores of tumor samples from 32 tumors were calculated based on the
37-gene autophagy signature. We classified tumor samples based on
the distribution of tertiles, defining the top and bottom samples as
autophagy score-high and autophagy score-low samples, respectively.
We retained a total of 24 cancer types with ≥30 samples in both
autophagy score-high and autophagy score-low groups for further
analysis.

We used the matching weights (MW) method of the PSM algo-
rithm to balance the effects of potential confounders, including age at
diagnosis, gender, tumor purity, race, histological type, and tumor
stage, and examined the balance by comparing the standardized dif-
ference before and after PSM (standardized difference <0.1). The
Benjamini & Hochberg method was used to calculate the FDR in each
cancer type. Subsequently, we compared the molecular difference of
multi-omics data between the autophagy score-high and autophagy
score-low in 24 cancer types with every group’s sample number >30.
To decrease the random noise in feature identification, we repeated
the permutation test 100 times, randomly selecting the autophagy
score-high or autophagy score-low samples. Significant features for
the five molecular types in each cancer type were identified by the
following criteria: mRNA expression |fold change| >2, FDR<0.05;
miRNA expression |fold change| >1.5, FDR <0.05; total protein and
DNA methylation: |difference| >0.2, FDR <0.05; somatic mutation and
SCNA: FDR<0.05.

Pathway enrichment and miRNA-target and TF-target reg-
ulatory networks
We performed KEGG pathway enrichment analysis by using the
“clusterProfiler” package92 with default parameters. The gene list of
human TFs was downloaded from the AnimalTFDB 3.093, TF-target
pairs were downloaded from the hTFtarget database94, and miRNA-
target pairs were downloaded from the FFLtool95. Wematched the TFs
from the altered mRNAs (as targets) and identified the TF-target reg-
ulatory pairs based on the downloaded TF-target pairs. The sig-
nificantly alteredmiRNAs andmRNAs (as targets)wereused to identify

the miRNA-target relationships. Based on the TF-target pairs and
miRNA-target pairs, we constructed TF-target regulatory networks and
miRNA-target regulatory networks, where the nodes are the TFs,
miRNAs, or genes, and the edges are the regulatory pairs.

Analysis of drug response in autophagy status
TheAUCdata and the gene expressionmatrix for cancer cell lineswere
downloaded from GDSC (http://www.cancerrxgene.org/downloads).
The imputed drug response of 138 anticancer drugs in TCGA cancer
patients was downloaded from a previous study64. The information on
clinically actionable genes targeted by FDA-approved drugs was
downloaded from a previous study96. The drug repurposing informa-
tion with drug target was downloaded from The Drug Repurposing
Hub (https://clue.io/repurposing-app)97. To assess the drug response
in cancer cell lines, we calculated the Spearman correlation between
the AUC and gene expression of cancer cell lines from GDSC for drug
responsiveness (|Rs| >0.3; FDR <0.05). As in our previous study22, a
positive Spearman correlation was defined as drug-resistant, while a
negative Spearmancorrelationwasdefined asdrug-sensitive. To assess
the drug response in TCGA tumor samples, we calculated the Spear-
man correlation between the imputed drug data and autophagy score
to assess the drug response of TCGA cancer samples according to
autophagy status (|Rs| >0.2; FDR <0.05).

Cell Culture
The human malignant melanoma cell lines, A375, SK-MEL-28, and SK-
MEL-5 cell lines were obtained from American Type Culture Collection
(ATCC) and were cultured in Dulbecco’s Modified Eagle Medium
(DMEM; Biological Industries) supplemented with 10% fetal bovine
serum (FBS; Biological Industries) and 1% penicillin and streptomycin
(Biological Industries) at 37 °C in 5% CO2 (v/v). To induce autophagy,
cells were incubated with the starvation medium Earle’s Balanced Salt
Solution (EBSS; E2888, Sigma-Aldrich) instead of the normal medium
for 24 h.

Cell proliferation assay for drug sensitivity
WepurchasedCMK (HY-52101) fromMedChemExpress, and etoposide
(S1225), BMS536924 (S1012), BMS708163 (S1262), DMOG (S7483) and
rapamycin (S1039) from Selleckchem. The effects of the drugs on cell
proliferation were determined using a CellTiter 96® AQueous One
Solution Cell Proliferation Assay kit (Promega) according to the man-
ufacturer’s instructions. We plated 3000 cells in each assay of 96-well
plates. One day later, we treated cells with a range of drug con-
centrations prepared by serial dilution plus 200 uM rapamycin or
dimethyl sulfoxide (DMSO; four replicates per condition). The plates
were incubated at 37 °C and 5% CO2 (v/v). After 2 days, 20μl of the
CellTiter 96® AQueous One Solution Reagent was directly added to the
culture wells, and incubated for 1 h, and then the absorbance was
recorded at 490 nm with Epoch (Biotek). The relative growth was
normalized to the untreated samples in each group.

Fig. 8 | Potential mechanism through the functional characterization ofDDIT4
in vitro. a The mRNA expression of DDIT4 in A375 and SK-MEL-28 by RNA-seq
(n = 3). The boxes show themedian ±1quartile, withwhiskers extending to themost
extreme data point within 1.5 interquartile range from the box boundaries. The
significance (p value) of differentially expressed genes was evaluated with ‘DESeq2’
package. b Relative mRNA expression of DDIT4 in A375 and SK-MEL-28 by RT-PCR
(n = 3). c Western blot of DDIT4 in A375 or SK-MEL-28 cells treated with si-NC or
DDIT4 siRNAs in combinationwith etoposide.DDIT4band intensities normalized to
si-NC + etoposide are displayed below the blots. d The cell viability of A375 or SK-
MEL-28 cells treated with si-NC or DDIT4 siRNAs in combination with etoposide
(n = 4). Pink bars denote the successful knockdown of si-DDIT4 (si-DDIT4-2 and si-
DDIT4-3), while gray bar denotes the unsuccessful knockdown of si-DDIT4 (si-
DDIT4-1). e Western blot of DDIT4 in A375 or SK-MEL-28 cells transfected with
DDIT4-OE lentivirus or vector in combination with etoposide and rapamycin.

DDIT4 band intensities normalized to Vector+Etoposide are displayed below the
blots. f The cell viability of A375 or SK-MEL-28 cells transfected with DDIT4-OE
lentivirus or vector in combinationwith etoposide and rapamycin (n = 4). gThe cell
viability of A375 or SK-MEL-28 cells treated with si-NC or ATG5 siRNA in combina-
tion with etoposide (n = 4). h Western blot of DDIT4 in A375 or SK-MEL-28 cells
treated with si-NC or ATG5 siRNAs in combination with etoposide. DDIT4 band
intensities normalized to si-NC+DMSO are displayed below the blots. i The illus-
tration for the potential mechanism of autophagy inducer sensitizing drug
response. b, d, f, g Data were presented as means ± SD. b, d, f The difference in
multiple groupswas estimatedbyone-wayANOVA analysis.gTwo-sided student’s t
test was used for the estimation of the difference in two groups. *P <0.05;
**P <0.01; ***P <0.001; ****P <0.0001; ns is not significant. c, e, h See Supplemen-
tary Fig. 8 for uncropped data.
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Cell death and flow cytometry
Cell death was quantified by the percentage of propidium iodide (PI;
P4170, Sigma-Aldrich) positive staining cells detected by flow cyto-
metric analysis. 2 × 105 cells per well were seeded in 6-well plates and
treated with indicated drugs. After harvesting the cells, they were
washed with phosphate-buffered saline (PBS) twice and then incu-
bated with antibodies on ice for 30min in the dark. Flow cytometric
analysis was conducted on a FACS LSR II Fortessa (BD Biosciences) and
the FACS data were analyzed with FlowJo software (Tree Star).

RNA isolation and quantitative real-time PCR assay
Total RNA was extracted from cultured cells and tumor tissues using
the MagZol reagent (Magen) following the manufacturer’s instruc-
tions. RNA (1μg) was used to synthesize cDNA using HiScript II Q RT
SuperMix for qPCR (Vazyme), and then cDNAwas amplified byRT-PCR
with specific primers using Quant Studio 3 (Thermo Scientific). All
mRNA expression levels were normalized to GAPDH and calculated
using the 2−△△CT method. Human DDIT4 primer forward sequence: 5′-
TGAGGATGAACACTTGTGTGC-3′, reverse sequence: 5′-CCAACTGGC
TAGGCATCAGC-3′. Human GAPDH primer forward sequence: 5′-
GGAGCGAGATCCCTCCAAAAT-3′, reverse sequence: 5′-GGCTGTTGTC
ATACTTCTCATGG-3′. Human PIK3R3 primer forward sequence: 5′-
TACAATACGGTGTGGAGTATGGA-3′, reverse sequence: 5′-TCATTG
GCTTAGGTGGCTTTG-3′.

Human EGF primer forward sequence: 5′-TGTCCACGCAA
TGTGTCTGAA, −3′ reverse sequence: 5′-CATTATCGGGTGAGGAAC
AACC-3′.

Human FGF1 primer forward sequence: 5′-ACACCGACGGGCTTTT
ATACG-3′, reverse sequence: 5′-CCCATTCTTCTTGAGGCCAAC-3′.

Human BNIP3 primer forward sequence: 5′-CAGGGCTCCTGGGT
AGAACT-3′, reverse sequence: 5′-CTACTCCGTCCAGACTCATGC-3′.

Human PPP2R2B primer forward sequence: 5′-CCATGAACCCG
AGTTCGATTAC-3′, reverse sequence: 5′-GGCCCTCCTCATCTTTCAG
ATT-3′.

Human SFN primer forward sequence: 5′-TGACGACAAG
AAGCGCATCAT-3′, reverse sequence: 5′-GTAGTGGAAGACGGAAAAG
TTCA-3′.

Western blot analysis
Cells were washed twice with PBS and lysed in RIPA buffer (P0013C,
Beyotime) containing 1× Protease Inhibitor Cocktail (B14002, Bimake)
and 1× Phosphatase Inhibitor Cocktail (B15002, Bimake) on ice for
30min. Then, the cells were centrifuged for 10min at 14,000 rpm.
Supernatants were collected and proteins were quantified by a BCA
assay kit (P0010S, Beyotime). Equal amounts of proteins were loaded
onto SDS-PAGE gels. The following antibodies were used: anti-DDIT4
(10638-1-AP, Proteintech, 1:1000), anti-ATG5 (12994T, Cell Signaling
Technology, 1:1000), LC3A/B (12741 S, Cell Signaling Technology,
1:1000), SQSTM1/P62 (8025 S, Cell Signaling Technology, 1:1000), anti-
GAPDH (60004-1-Ig, Proteintech, 1:50,000), HRP goat anti-mouse IgG
(H + L) (AS003, ABclonal, 1:50,000) and HRP goat anti-rabbit IgG
(H + L) (AS014, ABclonal, 1:50,000). Protein bands were evaluated by
Image J. Protein levels were quantified relative to GAPDH in the same
sample, and the relative protein expression was normalized to the
respective control group, which was set to 1.

RNA interference and lentivirus transfection
Human DDIT4 siRNA-1 (5′GAUGAACACUUGUGUGCCATTUGGCACA
CAAGUGUUCAUCTT-3′), Human DDIT4 siRNA-2 (5′GGAAUAGU
GUUUCCCAGGATTUCCUGGGAAACACUAUUCCTT-3′), Human DDIT4
siRNA-3 (5′GUUUGUGUAUCUUACUGGUTTACCAGUAAGAUACACAA
ACTT-3′) and control empty siRNAwere purchased fromGenePharma.
Human ATG5 siRNA-1 (5′GGACGAAUUCCAACUUGUUTTAACAA
GUUGGAAUUCGUCCTT-3′), Human ATG5 siRNA-2 (5′GGAAGCA
GAACCAUACUAUTTAUAGUAGGUUCUGCUUCCTT-3′), Human ATG5

siRNA-3 (5′CCAUCAAUCGGAAACUCAUTTAUGAGUUUCCGAUUGAU
GGTT-3′) and control empty siRNAwere purchased fromGenePharma.
These siRNAswere transfected into cells using TurboFect Transfection
Reagent (R0531, Thermo Scientific) according to the manufacturer’s
instructions, respectively. The humanDDIT4 overexpression lentivirus
vector and control empty lentivirus vector was obtained from Gene-
chem. The stable overexpression cells were selected by adding
puromycin.

Xenograft experiments
Animals were housed under specific pathogen-free conditions. The
housing conditions were strictly following the ethical regulations
(ambient temperature of 22–25 °C; relative humidity of 50–60%; 12 h/
12 h light/dark cycle; ad libitum access to food and water). For the cell
line xenograft models, 4-week-old nude male mice (from the SLAC,
Shanghai, China) were subcutaneously implanted with 2 × 106 A375 cells
on the right of the dorsal midline. Once the tumors reached
50–100mm3, the mice were pooled and randomly allocated into four
groups (n = 7, the vehicle group, the rapamycin group, the etoposide
group, and the etoposide + rapamycin group). Mice were treated with
rapamycin (0.75mg/kg, intraperitoneal injection [i.p.]), etoposide (5mg/
kg, i.p.), combination therapy, or a singledrugonly every 3days. Tumors
were measured by calipers every 3 days, and volumes were calculated
using the formula length ×width2 × 1/2. All animal experiments were
approved by the Animal Care and Use Committee of Central South
University (Changsha,Hunan,China). Themaximal tumor sizepermitted
by the ethics committee was 2000mm3, and it was not exceeded in our
animal experiment. The procedures for all animal experiments were
approved by the Ethical Committee for Animal Research of Xiangya
Hospital, Central South University (Code: 2022020466).

RNA sequencing and differential expression analysis
RNA was extracted from 12 samples from two melanoma cell lines
using MagZol reagent with a standard protocol. The mRNA polyA-
based enrichmentmethodwas performed to establish the RNA library.
RNA sequencing was performed by Illumina NovaSeq 6000 at Novo-
gene-Tianjin, China (SupplementaryData 5). Clean readsweremapped
to the grch38 genome by HISAT (version 2-2.2.0); the Samtools (ver-
sion 1.3.1) was used to convert the SAM to BAM format; the StringTie
(version 2.1.4.Linux_x86_64) was used to estimate the gene expression
by the annotation file “Homo_sapiens.GRCh38.90.gtf”. The differen-
tially expressed genes were detected by the R package “DESeq2”with |
fold change| >1.5 and adjusted p value < 0.05. All RNA-seq data have
been deposited in the GEO (accession: GSE185814). The enrichment
analysis of differentially expressed genes was performed by the
“clusterProfiler” package92 with default parameters.

Statistics and reproducibility
The statistical analysis of experimental data was performed by
GraphPad Prism version 9.0 (GraphPad software). The drug screen
data of different groups were fitted and compared by sigmoidal dose-
response curves. Data were presented as the means ±SD. The differ-
ence inmultiple groupswas estimatedbyone-wayANOVAanalysis and
Student’s t test was used for the estimation of the difference in only
two groups. (*) P <0.05, (**) P <0.01, (***) P <0.001, (****) P <0.0001; ns
is not significant. All data were obtained from at least three indepen-
dent biological replicates.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data of RNA-seq in this study were deposited in Sequence
Read Archive [SRA, https://www.ncbi.nlm.nih.gov/sra/] under
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accession ID SRP341179. The processed RNA-seq dataset was depos-
ited in Gene ExpressionOmnibus [GEO, https://www.ncbi.nlm.nih.gov/
geo/] under accession ID GSE185814. The public expression datasets
were obtained fromGEO, includingGSE27784, GSE107600,GSE117189,
GSE129204, GSE106175, GSE90444, and GSE31397. The multi-omics
datasets (mRNA expression, miRNA expression, protein expression,
somaticmutations, and SCNA) and clinical data (age, gender, smoking,
etc.) from32 tumor typeswere downloaded from theTCGAdata portal
[https://portal.gdc.cancer.gov/]. The tumor purity of TCGA samples
was downloaded from Tumor IMmune Estimation Resource [http://
cistrome.org/TIMER/download.html] and [https://doi.org/10.5281/
zenodo.253193] and integrated. The drug repurposing information
with drug target was downloaded from The Drug Repurposing Hub
[https://clue.io/repurposing-app].Uncropped scans of all blots under-
lying Figs. 7c, g, 8c, e, h and Supplementary Fig. 7b–f are provided as
Supplementary Fig. 8. Intensity values estimated by Image J are pro-
vided in western blots of main figures (Fig. 7c, g, Fig. 8c, e, h) and
supplement figures (Supplementary Fig. 7b–f) Source data are pro-
vided with this paper.
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