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AbstrACt
Objective To systematically review the effect of oral 
intake of bacterial probiotics on 15 variables related to 
obesity, diabetes and non-alcoholic fatty liver disease.
Design Systematic review and meta-analysis.
Data sources Medline, EMBASE and COCHRANE from 
1990 to June 2018.
Eligibility criteria Randomised controlled trials (≥14 
days) excluding hypercholesterolaemia, alcoholic liver 
disease, polycystic ovary syndrome and children <3 
years.
results One hundred and five articles met inclusion 
criteria, representing 6826 subjects. In overweight but 
not obese subjects, probiotics induced improvements in: 
body weight (k=25 trials, d=−0.94 kg mean difference, 
95% CI −1.17 to −0.70, I²=0.0%), body mass index (k=32, 
d=−0.55 kg/m², 95% CI −0.86 to −0.23, I²=91.9%), 
waist circumference (k=13, d=−1.31 cm, 95% CI −1.79 
to −0.83, I²=14.5%), body fat mass (k=11, d=−0.96 kg, 
95% CI −1.21 to −0.71, I²=0.0%) and visceral adipose 
tissue mass (k=5, d=−6.30 cm², 95% CI −9.05 to 
−3.56, I²=0.0%). In type 2 diabetics, probiotics reduced 
fasting glucose (k=19, d=−0.66 mmol/L, 95% CI −1.00 
to −0.31, I²=27.7%), glycated haemoglobin (k=13, 
d=−0.28 pp, 95% CI −0.46 to −0.11, I²=54.1%), 
insulin (k=13, d=−1.66 mU/L, 95% CI −2.70 to −0.61, 
I²=37.8%) and homeostatic model of insulin resistance 
(k=10, d=−1.05 pp, 95% CI −1.48 to −0.61, I²=18.2%). 
In subjects with fatty liver diseases, probiotics reduced 
alanine (k=12, d=−10.2 U/L, 95% CI −14.3 to −6.0, 
I²=93.50%) and aspartate aminotransferases (k=10, 
d=−9.9 U/L, 95% CI −14.1 to -5.8, I²=96.1%). These 
improvements were mostly observed with bifidobacteria 
(Bifidobacterium breve, B. longum), Streptococcus 
salivarius subsp. thermophilus and lactobacilli 
(Lactobacillus acidophilus, L. casei, L. delbrueckii) 
containing mixtures and influenced by trials conducted in 
one country.
Conclusions The intake of probiotics resulted in minor 
but consistent improvements in several metabolic risk 
factors in subjects with metabolic diseases.
trial registration number CRD42016033273.

IntrODuCtIOn 
The high prevalence of obesity, diabetes and 
non-alcoholic fatty liver disease (NAFLD) is 
a global health problem resulting in consid-
erable healthcare costs. Lifestyle changes are 
regarded as cornerstones in the management 
of these tightly linked disorders that progress 
over an individual’s lifetime.

The rapid progression of these diseases 
is linked to changes in a myriad of environ-
mental factors interacting with genetic and 
epigenetic factors. The gut microbiota is a 
key player at the interface between environ-
mental changes and host biology. Metabolic 
traits, such as obesity, diabetes and non-al-
coholic steatohepatitis are associated with 
changes in gut microbiota diversity and 
composition.1 2 Gut microbiota profile is also 
associated with specific dietary patterns3 and 
respond to dietary4 5 and therapeutic inter-
ventions.6 However, until recently, causal roles 
of the gut microbiota in the development and 

strengths and limitations of this study

 ► We underscored food grade bacterial probiotics’ in-
herent effects, analysed a large panel of variables 
and performed subgroup explorations analysis to 
detect a disease stage severity dependence.

 ► We performed, for the first time, subgroup explora-
tions to detect bacterial species contribution.

 ► We integrated both exploratory and secondary out-
comes, 43 trials conducted in one country, trials 
with small sample size, heterogeneous study pop-
ulations, incomplete information on drug treatment, 
dietary and physical activity records.

 ► For some trials, parameters necessary for the esti-
mation of effect sizes were unknown and we had to 
base our calculations on assumptions that could be 
only in part derived from the data at hand.
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maintenance of chronic metabolic disorders is suggested 
mainly based on findings in rodents.7

Probiotics are defined as ‘live microorganisms that, 
when administered in adequate amounts, confer a health 
benefit on the host’.8 In rodents, numerous studies have 
shown beneficial effects of probiotics on energy, glucose 
and lipid metabolism,9 although not consistently.10 In 
humans, the number of studies with probiotics nearly 
doubled over the last 2 years. Several meta-analyses eval-
uated the impact of probiotics on metabolic variables11–17 
but explorations to detect a disease stage severity depen-
dence are scarce. Furthermore, no meta-analysis evalu-
ated the contribution of bacteria used in foods that are 
listed as biological agents under European Food Safety 
Authority qualified presumption of safety list and none 
examined the specific contribution of bacterial species.18

We thus conducted a systematic review and meta-anal-
ysis aiming to investigate the impact of probiotics on 
15 variables related to obesity, diabetes and NAFLD. 
We investigated multiple outcomes, many of which are 
inter-related so that concomitant effects would corrobo-
rate consistent probiotics effects. We aimed at elucidating 
whether there is an overall effect of probiotics on meta-
bolic impairments and, if so, under which conditions the 
effect occurs. These goals were pursued by investigating 
the following questions: (1) What is the effect of probi-
otics on different outcomes related to obesity, metabolic 
syndrome, diabetes and NAFLD? (2) Is there effect 
heterogeneity by gender? (3) Is there effect heterogeneity 
in the following study populations: normal weight (NW), 
overweight (OW), obese (OB), metabolic syndrome, 
impaired fasting glucose (IFG), type 2 diabetes (T2DM), 
gestational diabetes, NAFLD? (4) Is there effect heteroge-
neity by total daily dose, food form and probiotics species 
(or combination of them)?

MEthODs
The search strategy, eligibility criteria and outcomes were 
described a priori (PROSPERO CRD42016033273).

Data sources
We searched PUBMED/MEDLINE, EMBASE and the 
COCHRANE CENTRAL library for eligible articles 
published in English, French, German, Spanish or Portu-
guese between January 1990 and June 2018. We also 
searched the reference list of the identified papers.

study selection
We included human intervention studies that fulfilled the 
following inclusion criteria: (1) randomised controlled 
trials (parallel or cross-over), (2) published since 1990, 
(3) treatment duration of at least 14 days (at which some 
metabolic effect may occur, yet the short duration may 
reduce a chance to detect an effect), (4) use of probi-
otics (following genera: Bifidobacterium, Lactobacillus, 
Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Propioni-
bacterium and Streptococcus) as key independent variables 

and (5) reported data on at least one difference between 
baseline and end of intervention related to the metabolic 
impairment using search terms: obese/-ity, diabetic/-es, 
weight, metabolic syndrome, glucose intolerant, glucose 
tolerant, glucose tolerance, glucose intolerance, insulin 
resistance, insulin sensitivity, impaired fasting glucose, 
waist circumference, abdominal adiposity, abdominal 
obesity, central obesity, visceral adipose tissue, visceral 
fat, visceral adiposity, fat, fatty liver, non-alcoholic fatty 
liver and irrespective of whether the investigators consid-
ered the outcome as primary or secondary criteria 
(see online supplementary file).

The outcomes were body weight (BW), body mass 
index (BMI), waist circumference (WC), body fat mass 
(BFM) (determined using bioelectrical impedance or 
dual energy X-ray absorptiometry), subcutaneous adipose 
tissue mass (SAT), visceral adipose tissue mass (VAT), 
fasting glucose (FG), glycated haemoglobin (HbA1c), 
insulin (INS), homeostatic model of insulin resistance 
(HOMA-IR), C-reactive protein (CRP), triglycerides 
(TG), alanine aminotransferase (ALAT), aspartate amino-
transferase (ASAT) and gamma-glutamyl transferase 
(GGT). We excluded studies that administered probiotics 
with other functional ingredients with the exception of 
fermentable fibres at a maximum dose of 1.5 g/day. Fruc-
to-oligosaccharides improve probiotics’ survival in the 
gastrointestinal system19; however, we assumed that three 
times a day intake of 0.5 g would be insufficient to exert 
a significant prebiotic effect. Subjects who had isolated 
hypercholesterolaemia, alcoholic liver disease, polycystic 
ovary syndrome and children with an age of <3 years were 
excluded. Three authors (BG, HK, MMS) independently 
performed the study selection and any disagreement was 
resolved on a discussion with a fourth author (JS or JMF).

Data extraction
Two reviewers independently extracted data from the orig-
inal publications: [author, year of publication, country of 
origin, design of the trial, experimental intervention (type 
of bacterial species and, if given, subspecies), dose, food 
form and duration of intervention, comparator/control, 
characteristics of the population (descriptive statistics 
of age, sex and BMI), medication for T2DM, descriptive 
statistics for each outcome (mean/median, SD/SE, CI, 
etc before and after the intervention)]. We extracted data 
and calculated the mean and SE for each outcome and 
time point using standardised units (see online supple-
mentary file). If provided, we extracted statistics quan-
tifying the absolute change postintervention versus 
preintervention and/or the results of a hypothesis test 
investigating the statistical significance of this change.

risk of bias (quality) assessment
We calculated a quality score based on 10 factors, 
according to a standardised procedure (PEDro tool based 
on the Delphi list) and classified studies as high quality 
(≥8 points), moderate quality (>6 and <8 points) or low 
quality (≤6 points).

https://dx.doi.org/10.1136/bmjopen-2017-017995
https://dx.doi.org/10.1136/bmjopen-2017-017995
https://dx.doi.org/10.1136/bmjopen-2017-017995
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Calculation of effect measures
As effect measures, we considered the mean difference in 
absolute change from baseline between the probiotics and 
control groups. For studies with more than two measure-
ments during the follow-up, we calculated the change 
between the last preintervention measurement and the 
measurement at the end of the administration period. 
Missing SE for the difference between interventions for 
change-from-baseline parameter were estimated using 
the formula recommended in the Cochrane handbook 
based on an assumption of the magnitude of correlation 
among the repeated outcome measurements (intrasu-
bject correlation). Since studies did not explicitly report 
coefficients of intrasubject correlation, we assumed for 
all outcomes an intermediate magnitude of intrasubject 
coefficient of 0.5. We conducted sensitivity analyses to 
examine the robustness of the meta-analysis results with 
respect to this assumption by varying the intrasubject 
correlation within realistic ranges (details see below).

Data synthesis
We calculated summary meta-analysis estimates for the 
difference between probiotic and control, including 95% 
CI and p values, by using the random effects method 
(DerSimonian-Laird estimator20) that allows for hetero-
geneity in results between studies. There was within 
publication and within study dependence structure 
because some authors reported multiple randomised trial 
results investigating different outcomes in the same study 
population within the same paper. However, because we 
aimed to synthesise outcomes separately and as separate 
research questions, we did not adjust our estimates for 
this multiplicity.

Assessment of study heterogeneity
We examined probiotic effect heterogeneity by forest 
plots visualising the study-specific efficacy estimates and 
95% CIs as well as a χ2 heterogeneity test. To identify 
any dose–response relationship pattern, we plotted the 
study-specific efficacy estimates ordered by the total daily 
dose of probiotics administered. To explore whether the 
heterogeneity pattern is related to study-specific variables, 
we generated stratified forest plots grouping studies by 
characteristics of the intervention, food form and specific 
study populations. To quantify the magnitude of hetero-
geneity, we calculated the between study variance (τ²) 
and the I² statistic, that is, the percentage of variation in 
effect estimates attributable to heterogeneity. Further, we 
applied a hypothesis test for heterogeneity based on the Q 
χ2 statistic.21 Forest plots were grouped in different levels 
of heterogeneity based on the I² value: low (I²: 0%–25%), 
intermediate (I²: 25%–50%), moderate (I²: 50%–75%) 
and high (I²≥75%).

To investigate the possible source of heterogeneity, 
we performed sensitivity analysis restricted to studies 
without children, pregnant woman, subjects undergoing 
gastric surgery and without only one country, due to a 
high preponderance of the conducted studies. If feasible, 

depending on the heterogeneity pattern identified, we 
calculated the following efficacy estimates in total and 
for subgroups for each outcome: (1) gender; (2) study 
population. The treatment and placebo groups were clas-
sified as NW: 18.5≥BMI<25 kg/m², OW: 25≥BMI<30 kg/
m², OB: BMI≥30 kg/m², IFG: 5.6–6.9 mmol/L, T2DM: 
FG ≥7.0 mmol/L or HbA1C≥6.5% and NAFLD (biopsy or 
ultrasound diagnosed). For study population character-
istics undescribed in the original publication, we used 
the mean of treatment group value to assign the study 
population. In trials with mixed study populations, the 
study population would contribute to each study popula-
tion specific meta-analysis. (3) Total daily dose. (4) Food 
forms categorised as (capsule or powder or sachet or pill) 
and (yoghourt or fermented milk). (5) Characteristics of 
probiotics interventions: species and subspecies.

Assessment of publication bias
To visually identify publication bias or other small study 
effects, we used funnel plots or simple scatterplots of the 
SE versus the study-specific effect estimates including 
95% pseudo confidence limits. Potential small study 
effects were visualised showing the Egger’s line in the 
funnel plot, a line resulting from a linear regression of 
the effect estimates on their SE, weighing by the inverse 
of the variance of the intervention effect estimate. 
Further, we calculated a Galbraith’s radial plot showing 
the effect estimate divided by its SE against the precision 
of the effect estimate. In addition, for groups with more 
than 10 studies, we tested for small study effects using 
Egger’s test and Begg’s rank correlation test.22 23 In case 
of significant funnel asymmetry, we further examined 
the potential reasons by stratified funnel plots grouping 
studies by study characteristics that might relate to study 
size (eg, quality score, baseline value, population, etc). 
For outcomes with evidence of residual small study effects 
that could not be explained by known study-specific char-
acteristics (eg, due to publication bias), we conducted a 
sensitivity analysis recalculating the summary estimates by 
a trim and fill algorithm.24

sensitivity analysis
First, we conducted a sensitivity analysis aimed to assess 
robustness of results regarding our assumption of intra-
subject correlation (r=0.5) used to impute SD of change 
measures. We varied intrasubject correlations within 
specific ranges obtained from confidence limits of correla-
tion coefficients that were back calculated from studies 
that explicitly reported SDs of changes by using an approx-
imation formula from the Cochrane handbook. Second, 
to evaluate the robustness of results obtained with respect 
to study quality, specific probiotic species or study popu-
lations, we conducted sensitivity analyses by recalculating 
the meta-analytic summary efficacy estimates excluding 
trials with low and intermediate quality score levels, or 
studies including the Bacillus coagulans (former Lactoba-
cillus sporogenes) strain or studies including children, preg-
nant women or gastric surgery. Finally, we investigated 
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the sensitivity of our results with respect to estimates from 
studies conducted in one country where we observed a 
high number of trials with similar design and methods 
and we recalculated estimates excluding those studies. 
All statistical hypothesis testing was conducted two-sided 
(p<0.05). All calculations were conducted using the soft-
ware STATA (StataCorp. 2013. Stata Statistical Software: 
Release 15. College Station, Texas, USA: StataCorp LP).

Patient involvement
No patients were involved in setting the research question 
or the outcome measures, nor were they involved in the 
design and implementation of the study. There are no 
plans to involve patients in dissemination.

rEsults
We identified 1934 records, from which we selected 
986 individual abstracts and 161 potentially relevant 

articles for full review (figure 1). We identified 105 arti-
cles19 25–128 reporting data from 99 different research 
studies including 111 different randomised comparisons 
of probiotics versus control (further called randomised 
clinical trials [RCTs], see online supplementary table 
1-2) with the following outcomes: BW (number of RCTs: 
k=58, n=3422 individuals, median=77.4 kg), BMI (k=68, 
n=4015, 28.2 kg/m²), WC (k=26, n=1583, 98.8 cm); BFM 
(k=27, n=1562, 27.8 kg), SAT and VAT (k=5, n=543, 
192.4 cm² and 114.7 cm², respectively), FG (k=83, n=5188, 
6.1 mmol), HbA1c (k=28, n=1796, 6.3%), INS (k=63, 
n=3854, 11.0 mU/L), HOMA-IR (k=52, n=3513, 3.2), CRP 
(k=41, n=2376, 3.6 mg/L), TG (k=74, n=4461, 145.4 mg/
dL), ALAT (k=26, n=1466, 38.6 IU/L), ASAT (k=23, 
n=1340, 36.1 IU/L) and GGT (k=14, n=816, 41.5 IU/L). 
The median duration of the follow-up was 8 weeks (range: 
2–28 weeks), probiotics dose ranged from 107 to 1012 CFU 
daily, and 43 trials were conducted in one country (Iran). 

Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram.

https://dx.doi.org/10.1136/bmjopen-2017-017995
https://dx.doi.org/10.1136/bmjopen-2017-017995
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Using a PEDro tool-based quality score evaluated for each 
research study, 69 (70%) studies showed high quality, 15 
(15%) studies showed moderate quality and 15 (15%) 
studies showed low quality (see online supplementary 
table 3).

Anthropometric variables and bMI
We first examined probiotic effects in all study popula-
tions. We observed a minor but significant mean differ-
ence in absolute changes for anthropometric parameters, 
BW: k=58, d=−0.39 kg (95% CI −0.57 to −0.21; I²=22.6%, 
median duration of the follow-up 10 weeks), BMI: k=68, 
d=−0.33 kg/m² (95% CI −0.53 to −0.12; I²=86.3%), WC: 
k=26, d=−1.01 cm (95% CI −1.55 to −0.48; I²=35.6%), 
BFM: k=27, d=−0.62 kg (95% CI −0.91 to −0.34; I²=16.3%), 
VAT: k=5, d=−6.30 cm² (95% CI −9.05 to −3.56; I²=0.0%), 

and SAT: k=5, d=−4.99 cm² (95% CI −7.55 to −2.44; 
I²=0.0%) with probiotic administration (figure 2A, 
see online supplementary figures 1–18). Sensitivity anal-
ysis excluding different types of trials showed that the 
effect estimates were robust with respect to study quality, 
specific study populations (children, pregnancy, gastric 
surgery) and conserved even when studies from Iran were 
excluded (see online supplementary table 4–6, supple-
mentary figures 19–24).

Glucose homeostasis and systemic inflammation
We also found a significant mean difference in absolute 
changes for parameters related to glucose homeostasis 
and systemic inflammation: FG: k=83, d=−0.12 mmol 
(95% CI −0.18 to −0.07; I²=55.4%), HbA1c: k=28, 
d=−0.14 pp (95% CI −0.22 to −0.06; I²=81.3%), INS: k=63, 

Figure 2 Results of meta-analyses: overall estimates and estimates obtained in specific study populations: (A) anthropometric 
variables and BMI, (B) glucose homeostasis, (C) liver enzymes. (X-axis) Absolute difference in mean change from 
baseline (probiotics—control groups): random effects estimate and 95% CI; outcomes (measurement unit): ALAT, alanine 
aminotransferase; ALL, all studies pooled; ASAT, aspartate aminotransferase; BFM, body fat mass; BMI, body mass index; BW, 
body weight; FG, fasting glucose; GGT, gamma-glutamyl transferase; HbA1c, glycated haemoglobin; HOMA-IR, homeostatic 
model assessment of insulin resistance; IFG, impaired fasting glucose; INS, fasting insulin; NAFLD, non-alcoholic fatty liver 
disease; NW, normal weight; OB, obese; OW, overweight, T2DM, type 2 diabetes mellitus, WC, waist circumference.

https://dx.doi.org/10.1136/bmjopen-2017-017995
https://dx.doi.org/10.1136/bmjopen-2017-017995
https://dx.doi.org/10.1136/bmjopen-2017-017995
https://dx.doi.org/10.1136/bmjopen-2017-017995
https://dx.doi.org/10.1136/bmjopen-2017-017995
https://dx.doi.org/10.1136/bmjopen-2017-017995
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d=−0.80 mU/L (95% CI −1.08 to −0.52, I²=72.8%), HOMA-
IR: k=52, d=−0.27 pp (95% CI −0.41 to −0.12; I²=74.9%) 
and CRP: k=41, d=−0.48 mg/L (95% CI −0.76 to −0.21; 
I²=67.1%) with probiotics administration (figure 2B, see 
online supplementary figures 25-39). Sensitivity analysis 
showed that effect estimates were robust with respect to 
study quality and specific study populations (children, 
pregnancy, gastric surgery). Sensitivity analysis recalcu-
lating the meta-analysis estimates excluding all studies 
conducted in Iran revealed non-significant effect esti-
mates for all these parameters (see online supplementary 
table 7–9, supplementary figures 40–44).

tG and liver function
We observed a significant change in TG: k=74, 
d=−5.40 mg/dL (95% CI −9.17 to −1.63; I²=35.9%), ALAT: 
k=26, d=−4.40 U/L (95% CI −7.58 to −1.22; I²=92.9%) 
and ASAT: k=23, d=−3.67 U/L (95% CI −7.25 to −0.09; 
I²=96.8%) as well as a borderline significant trend in GGT: 
k=14, d=−3.14 U/L (95% CI −6.60 to 0.33; I²=86.9%) with 
high heterogeneity (figure 2C, see online supplemen-
tary figures 45–56). Sensitivity analysis showed that effect 
estimates were robust with respect to study quality and 
specific study populations (children, pregnancy, gastric 
surgery). After excluding the trials from Iran, the effect 
estimates became non-significant (see online supplemen-
tary table 9–10, supplementary figures 57–60).

subgroup analysis by gender
Only a small fraction of studies reported gender-specific 
estimates. Thus, the power to identify effect heteroge-
neity by gender was limited for most outcomes. The only 
evidence for heterogeneity of treatment effect by gender 
we observed was for FG, INS and HOMA-IR (effect only 
observed in women, not shown).

Population subgroup analysis
Subgroup analysis in different populations revealed 
specific effects for anthropometric variables 
(see online supplementary table 4–6, supplementary 
figures 61–71). In OW subjects, we obtained a significant 
mean difference in probiotics administration compared 
with placebo for: BW (k=25,d=−0.94 kg, 95% CI −1.17 
to −0.70, I²=0.0%), BMI (k=32, d=−0.55 kg/m², 95% CI 
−0.86 to −0.23, I²=91.9%), WC (k=13, d=−1.31 cm, 95% CI 
−1.79 to −0.83, I²=26.2%), BFM (k=11, d=−0.96 kg, 95% CI 
−1.21 to −0.71, I²=0.0%), VAT (k=5, d=−6.30 cm², 95% CI 
−9.05 to −3.56, I²=0.0%) and SAT (k=5, d=−4.99 cm², 
95% CI −7.55 to −2.44, I²=0.0%). In contrast, the effect 
estimates were smaller and non-significant in OB subjects 
(figure 2A).

Subgroup analysis in different populations revealed 
an interesting pattern for glucose homeostasis variables 
(see online supplementary table 7–8, supplementary 
figures 72–82). In subjects with impaired fasting glucose, 
we observed significant effects on HbA1c (k=6 including 
no trial from Iran, d=−0.15 pp, 95% CI −0.31 to 0.00, 
I²=89.7%) and INS (k=17 including five trials from Iran, 

d=−0.77 mU/L, 95% CI −1.01 to −0.52, I²=0.0%) (median 
duration of the follow-up 10 weeks). In type 2 diabetic 
subjects, probiotics reduced FG (k=19 including nine 
trials from Iran, d=−0.66 mmol/L, 95% CI −1.00 to −0.31, 
I²=27.7%), HbA1c (k=13 including seven trials from Iran, 
d=−0.28 pp, 95% CI −0.46 to −0.11, I²=54.1%), INS (k=13 
including eight trials from Iran, d=−1.66 mU/L, 95% CI 
−2.70 to −0.61, I²=37.8%) and HOMA-IR (k=10 including 
six trials from Iran, d=−1.05 pp, 95% CI −1.48 to −0.61, 
I²=18.2%) (figure 2B). Probiotics induced improvements 
in INS (k=6 including four trials from Iran, d=−3.17 mU/L, 
95% CI −4.88 to −1.46, I²=73 .8%) and HOMA-IR (k=6 
including four trials from Iran, d=−0.71 pp, 95% CI −1.05 
to −0.36, I²=66.4%) in women with gestational diabetes.

In subjects with fatty liver diseases, probiotics reduced 
ALAT (k=12 including eight trials from Iran, d=−10.2 U/L, 
95% CI −14.3 to −6.0, I²=93.50%), ASAT (k=10 including 
seven trials from Iran, d=−9.9 U/L, 95% CI −14.1 to −5.8, 
I²=96.1%) (figure 2C, see online supplementary figures 
83–84). Also, BW (k=5, d=−1.83 kg, 95% CI −3.49 to −0.17; 
I²=0.0%), BMI (k=11, d=−1.21 kg/m², 95% CI −2.18 to 
−0.24; I²=88.5%) and components of metabolic syndrome 
WC (k=4, d=−1.81 cm, 95% CI −3.20 to −0.43; I²=0.0%), FG 
(k=12 including nine trials from Iran, d=−0.30 mmol/L, 
95% CI −0.52 to −0.08, I²=68.5%) and TG (k=11 including 
seven trials from Iran, d=−12.89 mg/dL, 95% CI −21.82 to 
−3.97; I²=33.2%) were reduced in subjects with fatty liver 
diseases (see online supplementary table 4,5,7,9). Finally, 
only four trials reported results in subjects with metabolic 
syndrome (data not shown).

Dose, food form and species subgroup analysis
Except for BMI, subgroup analysis did not reveal a 
dose-dependent effect. Subgroup analysis revealed no 
common or unique food form effect (see online supple-
mentary table 4–10).

We observed a significant effect with a single bacterial 
species on all anthropometric variables. In contrast, a 
subgroup analysis showed that the use of three or more 
species has significant effects on an increased number 
of outcomes: BW, BMI, FG, HbA1c, INS, HOMA-IR, TG, 
ALAT and ASAT (figure 3A-C, see online supplemen-
tary table 4–10). Multiple variables BW, BMI, FG, HbA1C, 
INS, TG, ALAT and ASAT were significantly reduced in 
interventions with Bifidobacterium breve (trend for BW), B. 
longum, Streptococcus salivarius subsp. thermophilus, Lacto-
bacillus acidophilus, L. casei group (trend for BW) and L. 
delbrueckii containing mixtures.

robustness of results regarding assumptions of intra-subject 
correlation
With the exception of ALAT, ASAT and TG, estimation 
of intrasubject correlation showed lower 90% CI bounds 
that were larger than 0.5. Therefore, for the majority of 
outcomes, the assumption of a correlation coefficient of 
0.5 was found to be conservative since an assumed higher 
correlation coefficient would result in larger and more 
significant treatment effect values. For ALAT, ASAT and 
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TG, the lower bounds of the 90% CI for the within subject 
correlation were below 0.5. Sensitivity analysis using these 
lower bound CI values as estimates for within subject 
correlation did not alter the conclusions reached for 
these outcomes.

DIsCussIOn
This meta-analysis revealed that probiotics consump-
tion improves anthropometric parameters and BMI with 
small effect sizes. The effects on glucose homeostasis, 
systemic inflammation, TG and liver function were as well 
of small size and influenced by Iranian studies. These 

effect estimates became non-significant when excluding 
Iranian trials. This could be due to multiple factors like 
design, clinical practices, genetics, diets, lifestyle and/or 
environmental factors the strains tested could favour a 
response to probiotics in Iran. Finally, this meta-analysis 
did not explore the contribution of the Iranian studies 
in different study populations and care should be taken 
when generalising those findings.

A weight loss of 3% to 5% results in clinically relevant 
reductions in cardiovascular risk factors and weight loss of 
2% to 5% results in modest lowering of HbA1c in OW and 
OB adults with T2DM.129 We found that probiotics 

Figure 3 Results of subgroup meta-analyses stratified by probiotics species and total number of different species 
administered (data shown for at least three trials): (A) body weight (kg), (b) fasting glucose (mmol/L), (C) glycated 
haemoglobin (%). (X-axis) Absolute difference in mean change from baseline (probiotics group—control group): random effects 
estimate and 95% CI. B. bif, Bifidobacterium bifidum; B. brev, Bifidobacterium breve; B. lac., Bifidobacterium animalis subsp. 
lactis; B. lon., Bifidobacterium longum; S. therm., Streptococcus salivarius subsp. thermophilus; Lc. lact, Lactococcus lactis; L. 
hel., Lactobacillus helveticus; L. acid., Lactobacillus acidophilus; L. del., Lactobacillus delbrueckii; L. gas., Lactobacillus gasseri; 
L. reut., Lactobacillus reuteri; L. fer., Lactobacillus fermentum; L. rham., Lactobacillus rhamnosus; L. cas. gr., Lactobacillus casei 
or paracasei; L. sal., Lactobacillus salivarius; L. plan., Lactobacillus plantarum.



8 Koutnikova H, et al. BMJ Open 2019;9:e017995. doi:10.1136/bmjopen-2017-017995

Open access 

consumption resulted in BW loss in OW individuals 
(0.94 kg, 1.2%), which is below the clinically meaningful 
threshold, suggesting that probiotics might be a comple-
ment to standard weight loss approaches. In addition to 
its effects on BW, probiotics consumption decreased BFM 
and WC, indicating improved body composition and 
fat distribution. This was corroborated in studies using 
computer tomography76–79 124 and probiotic interventions 
reduced both visceral and subcutaneous adipose tissue. 
In OB subjects, however, the effects of probiotics were 
non-significant. Obesity is a chronic disease characterised 
by severe gut microbial dysbiosis and OB subjects may be 
resistant to probiotics or require long-term administra-
tion. The median intervention duration with probiotics 
was 8 weeks in OW subjects and it remains to be explored 
whether probiotics could achieve or contribute to a clini-
cally meaningful weight loss as part of a long-term lifestyle 
intervention.

Probiotics intake improved glucose control in subjects 
with impaired fasting glucose and T2DM. The HbA1c 
effect size was doubled in diabetics and INS was propor-
tionally reduced, indicating improved insulin resistance. 
Probiotics intake reduced BW in subjects with T2DM indi-
cating that BW loss contributes to the better glycaemic 
control. Overall, the metabolic status of subjects with 
T2DM improved as indicated by reduced TG and CRP, 
although additional research in these population is 
warranted. Finally, in subjects with T2DM, the mean 
difference in HbA1c with probiotics was −0.28, which is 
promisingly close to the HbA1c reductions of 0.5–2 pp 
associated with medical nutrition therapy.130

Probiotic intake reduced liver enzyme activity in 
subjects with fatty liver disease. These changes occurred 
with reduced BW and components of metabolic 
syndrome (WC, FG, TG) yet surprisingly, the surrogate 
of insulin resistance remained unchanged. This is prom-
ising although the number of trials is small (12), the trials 
were of short duration (≤12 weeks except98 119) and the 
majority of them were performed in Iran. Additional eval-
uation of liver pathology using non-invasive assessments 
and liver biopsy would be needed to support a clinical 
recommendation.

Previous meta-analyses suggested benefits with 
multistrain probiotic mixes compared with a single 
strain. We corroborated that probiotic mixes composed 
of three or more species resulted in improvements and 
identified core species: B. breve, B. longum, Streptococcus 
salivarius subsp. thermophilus, L. acidophilus, L. casei group, 
L. delbrueckii. Interestingly, yoghourt starter bacteria 
include L. delbrueckii subsp. bulgaricus and S. thermoph-
ilus and this finding is of interest in respect to an inverse 
association between yoghourt and BW change and the 
incidence of T2DM.131 132 In diabetics, treatment with 
metformin and acarbose changes faecal microbiota with 
an increased abundance of lactobacilli (which belongs to 
the Firmicutes phyla) and bifidobacteria (Actinobacteria) 
and these species could potentially contribute to the anti-
diabetic effect.133–135 The intake of probiotics on top of 

medication may induce even more pronounced changes 
in microbiota of the small intestine and this raises the 
question whether probiotics could become a part of the 
nutritional strategy in diabetes management.

Different probiotic species and strains may have 
multiple modes of actions affecting sugar digestion 
and absorption,136 fat absorption,106 gut barrier func-
tion,112 115 137 low-grade inflammation, 39 71 81 99 110 111 116 
138 bile acid metabolism,97 139 incretin secretion120 and gut 
microbiota ecosystems19 44 87 115 119 and, in particular, short 
chain fatty acid production.121 It is reasonable to antici-
pate that these multiple effects may combine to induce 
significant effects, particularly in the case of multispecies 
mixes. However, the exact mechanism behind probiotics’ 
efficacy is unknown and currently limited to hypotheses. 
The majority of studies examined in the current analysis 
poorly described the rationale of the probiotics selected, 
dosing remained arbitrary and, overall, the approaches 
were rather empiric. Therefore, further research is 
warranted to select the probiotics strains not only for 
their capacity to comply with food grade status, but also 
for their capacity to survive through gastrointestinal tract 
(assuming this is required) and affect relevant biological 
target(s).

limitations of the study
We integrated both exploratory and secondary outcomes, 
trials with small sample size, heterogeneous study popu-
lations, no or incomplete information on concomitant 
hypoglycaemic drug treatment and no or incomplete 
dietary and physical activity records. The heterogeneity 
of probiotic strains implies a limitation that we aimed to 
reduce by the subgroup meta-analysis at the species level. 
Thirty-eight per cent of trials were conducted in Iran and 
published within the last 6 years. These trials reported very 
similar designs, sample sizes, methodology, endpoints and 
results. Exclusion of these trials render the effect of probi-
otics non-significant for FG, HbA1c, INS, HOMA-IR, CRP, 
TG, ALAT and ASAT. The influence of these trials on the 
overall meta-analysis is clear though the precise reason 
why is difficult to know with certainty. Care is required in 
interpreting these data in generalising them to subjects 
outside of Iran. Furthermore, non-published results from 
studies that did not show significant results could intro-
duce a potential bias. While our diagnostic publication 
bias analyses indicated evidence for publication bias (both 
asymmetric funnel plots and Egger’s test) for outcomes 
FG, HbA1c, INS, ALAT, ASAT and GGT, correction of esti-
mates by imputing non-published studies demonstrated 
no effect of small study size. While including studies with 
low methodological quality may influence our analyses, 
recalculating summary estimates with filtering study 
quality demonstrated that our results were robust despite 
potential bias. For some trials, important parameters 
necessary for the estimation of effect sizes were unknown 
and we had to base our calculations on assumptions that 
could be only in part derived from the data at hand. For 
example, if SD of changes were not explicitly reported, 
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we had to impute these by assuming a value for the 
intrasubject correlation. A sensitivity analysis varying the 
correlation assumptions within realistic ranges of correla-
tion showed robustness of results. Even though for some 
outcomes the true correlation between subjects might be 
higher, we chose a conservative estimate (r=0.5) aimed at 
avoiding any overestimation bias of effect sizes and type I 
error inflation. Finally, we did not adjust our estimates for 
multiplicity tests.

significance of the study
This meta-analysis showed that the intake of probi-
otics resulted in minor improvements of BW and body 
composition in OW subjects. Probiotics administration 
may provide improved glucose control and insulin func-
tion in type 2 diabetic subjects, and liver enzymes in 
those with fatty liver disease. These improvements were 
observed with B. breve, B. longum, Streptococcus salivarius 
subsp. thermophilus, L. acidophilus, L. casei and L. delbrueckii 
containing mixtures.

unanswered questions and future research
This review and meta-analysis brought forth several ques-
tions: First, what are the underlying mechanisms? Second, 
how can multispecies mixes be optimised to induce syner-
gistic effects? Third, can probiotics become part of stan-
dard dietary recommendations for obesity, diabetes and 
non-alcoholic disease management? Finally, with these 
questions, this study paves the way for clinical studies 
examining the potential of probiotic mixes as part of a 
long-term dietary intervention.
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