
GigaScience, 7, 2018, 1–9

doi: 10.1093/gigascience/giy091
Advance Access Publication Date: 24 July 2018
Research

RESEARCH

eModel-BDB: a database of comparative structure
models of drug-target interactions from the Binding
Database
Misagh Naderi 1, Rajiv Gandhi Govindaraj 1 and Michal Brylinski 1,2,*

1Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803,
USA and 2Center for Computation & Technology, Louisiana State University, 2054 Digital Media Center, Baton
Rouge, LA 70803, USA
∗Correspondence address. Michal Brylinski, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA; Tel: +(225) 578-2791; Fax:
+(225) 578-2597; E-mail: michal@brylinski.org http://orcid.org/0000-0002-6204-2869

Abstract

Background: The structural information on proteins in their ligand-bound conformational state is invaluable for protein
function studies and rational drug design. Compared to the number of available sequences, not only is the repertoire of the
experimentally determined structures of holo-proteins limited, these structures do not always include pharmacologically
relevant compounds at their binding sites. In addition, binding affinity databases provide vast quantities of information on
interactions between drug-like molecules and their targets, however, often lacking structural data. On that account, there is
a need for computational methods to complement existing repositories by constructing the atomic-level models of
drug-protein assemblies that will not be determined experimentally in the near future. Results: We created eModel-BDB, a
database of 200,005 comparative models of drug-bound proteins based on 1,391,403 interaction data obtained from the
Binding Database and the PDB library of 31 January 2017. Complex models in eModel-BDB were generated with a collection
of the state-of-the-art techniques, including protein meta-threading, template-based structure modeling, refinement and
binding site detection, and ligand similarity-based docking. In addition to a rigorous quality control maintained during
dataset generation, a subset of weakly homologous models was selected for the retrospective validation against
experimental structural data recently deposited to the Protein Data Bank. Validation results indicate that eModel-BDB
contains models that are accurate not only at the global protein structure level but also with respect to the atomic details of
bound ligands. Conclusions: Freely available eModel-BDB can be used to support structure-based drug discovery and
repositioning, drug target identification, and protein structure determination.
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Background

Structural bioinformatics is becoming an increasingly important
component of modern drug discovery. Despite significant ad-
vances in experimental methods to acquire protein structures,
such as X-ray crystallography, nuclear magnetic resonance, and
cryo-electron microscopy, technical limitations and expensive

procedures make it unlikely to have the experimental structures
of all known protein sequences in the near future. For exam-
ple, more than 110 million gene products have been included
in the Reference Sequence Database [1] as of June 2018. In con-
trast, the number of experimentally determined protein struc-
tures in the Protein Data Bank (PDB) [2] is 140,824, which re-
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Figure 1: Deposition rate of ligand-bound structures to the Protein Data Bank.
The total number of protein chains binding small molecules (light gray squares
and a dashed line) is counted at any point in time. The number of unique com-
plex structures is obtained by clustering individual chains at 80% sequence iden-

tity (dark gray circles and a solid line). Nt and Nu in the linear regression equa-
tions are the total and unique number of ligand-protein complexes, respectively,
and m stands for month.

duces to 51,990 structures after removing similar proteins at
95% sequence identity. Genome sequencing currently produces
as many as 13 million protein sequences each year, whereas
only 8,872 protein structures are solved experimentally at the
same time on average. Since this disparity between the num-
ber of available sequences and structures will likely continue
to grow, high-throughput computational modeling is expected
to play a significant role in biomedical sciences by generating
three-dimensional models for those proteins whose structures
will not be determined in the near future.

In addition to protein sequence and structure repositories,
the Binding Database (BindingDB) provides comprehensive in-
formation on interactions between small, drug-like molecules
and proteins considered to be drug targets collected from affin-
ity measurements [3]. The BindingDB can be used to identify
protein targets for small molecules and bioactive compounds
for new proteins, as well as to conduct virtual screening with
ligand-based methods. As of June 2018, BindingDB contained
1,450,120 binding data; however, only 2,291 ligand-protein crys-
tal structures with BindingDB affinity measurements are avail-
able in the PDB. To bridge this gap, we created eModel-BDB, a new
database of 200,005 high-quality drug-protein complex models
involving 108,363 unique drug-like compounds and 2,791 pro-
teins from the BindingDB. This repository was constructed with
a state-of-the-art protocol to generate protein models in their
ligand-bound conformational state, employing meta-threading,
pocket detection, and protein structure and ligand chemical
alignment techniques. eModel-BDB significantly expands the
current structural information on known drug-protein com-
plexes.

To fully appreciate the immensity of the structural data in-
cluded in eModel-BDB, we estimate the time required to solve
an equal number of drug-protein assemblies. Figure 1 shows
that at the current pace, 2,447 ligand-bound protein structures
containing 607 nonredundant complexes are deposited to the
PDB each month. Therefore, it would take about 329 months
for 200,005 unique complex structures to be determined ex-
perimentally. In contrast to other databases comprising pro-
tein models in the unbound conformational state generated
through traditional structure modeling [4, 5], eModel-BDB in-
cludes annotated structure models of drug-protein complexes
with known binding affinities. It provides high-quality data to

support structure-based drug discovery as well as repurposing
of known drugs based on binding pocket and ligand similari-
ties. In addition, the information provided by eModel-BDB can
be utilized to facilitate experimental structure determination by
developing protocols to stabilize proteins with ligands. The pro-
tocol to construct eModel-BDB described here is based entirely
on open-source software to ensure that any researcher is able to
produce new holo-protein models as more data become avail-
able in the PDB and BindingDB.

Methods
Protein structure modeling

Drug-bound protein complexes in eModel-BDB are generated
with a template-based approach. The first phase is to construct
structure models for single protein chains 50–999 amino acids
in length obtained from BindingDB with eThread [6], which
supports both close and remote homology modeling. eThread
employs Modeller, a commonly used comparative modeling
program (RRID:SCR 008395) [7], to build apo-protein structures
based on alignments produced by 3-fold recognition algorithms,
HH-suite [8], SparksX [9], and RaptorX [10]. Subsequently, side-
chain positions and hydrogen-bonding networks in the initial
models are improved with ModRefiner, a program to refine pro-
tein structures at the atomic level with a composite physics-
and knowledge-based force field [11]. The quality assessment
of refined models is carried out with ModelEvaluator [12] in
terms of the estimated global distance test score (GDT-score).
Of 5,501 BindingDB proteins, 4,906 were assigned an estimated
GDT-score of ≥0.4, indicating good-quality models [13, 14].

Ligand-binding site identification

Confident structure models with a GDT-score of ≥0.4 are fur-
ther annotated with binding pockets and residues by eFindSite
[15], which also computes a calibrated pocket confidence score.
eFindSite detected 2,922 high-, 644 moderate-, and 776 low-
confidence pockets in the eThread models of BindingDB targets.
At this point, BindingDB drugs can be assigned to the predicted
pockets with fingerprint-based virtual screening. Specifically, for
a given drug-target pair in the BindingDB, we compute a rank of
the drug against pockets detected by eFindSite, where the re-
maining BindingDB compounds are used as the background li-
brary. eFindSite conducts virtual screening with a set of molec-
ular fingerprints and physicochemical properties calculated for
ligands extracted from weakly homologous template structures
[16]. The top one, two, and three pockets are considered for high-
, moderate-, and low-confidence targets, respectively. A drug
matches the predicted pocket if it is ranked within the top 20%
of the screening library. With this protocol, we matched 108,363
drugs to binding pockets identified in their target proteins.

Similarity-based ligand docking

In the next phase, drug molecules are positioned within the pre-
dicted pockets with a two-step similarity-based docking proto-
col. This procedure exploits a significant structural conserva-
tion of ligand binding modes across remote homologs [17]. First,
globally similar ligand-bound templates from the PDB, identi-
fied by eFindSite to have a similar pocket as the BindingDB pro-
tein, are superposed onto the apo-model. Proteins are aligned
with Fr-TM-align [18] employing the template modeling score
(TM-score) [19] to measure the global structure similarity. Subse-
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quently, the BindingDB compound is aligned onto the template-
bound ligand in order to place it in the predicted pocket of the
apo-model. Here, we use chemical alignments constructed with
kcombu [20], which also reports the chemical similarity between
the BindingDB compound and the template-bound ligand mea-
sured by the Tanimoto coefficient (TC). Since a perfect case cor-
responds to both a TM-score and a TC of 1.0, we introduce a
new metric, the perfect match distance (PMD), combining pro-
tein structure and ligand chemical similarity values:

P MD =
√

(1 − T M-score)2 + (1 − TC )2 (1)

PMD is simply the Cartesian distance from the perfect match
in the TM-score/TC space. In order to generate only high-quality
holo-models, those cases with a PMD of >0.6 are excluded from
the modeling process. This PMD cutoff was chosen to ensure
that TM-score and TC for the selected templates are always
above their individual significance threshold values of 0.4 [19,
20]. Further, for those cases having multiple ligand-bound tem-
plates satisfying the PMD criterion of ≤0.6, a template with the
shortest PMD is selected to build the holo-model of the Bind-
ingDB complex.

Complex structure refinement and assessment

In the final phase, protein models are rebuilt in the presence
of the docked BindingDB compounds with Modeller. To make
sure that the binding site is remodeled to accommodate the
specific ligand, binding residues identified by eFindSite are re-
moved from the initial model while enforcing the presence of
secondary structure predicted by PSIPRED [21]. The resulting
models are further annotated with the ligand-protein interac-
tion score according to the distance-scaled finite ideal-gas refer-
ence (DFIRE) potential [22]. The eModel-BDB database contains
atomic-level structure models of 200,005 drug-protein interac-
tions from BindingDB, comprising 2,791 nonredundant proteins
and 108,363 drug-like compounds. The list of eModel-BDB com-
plexes is provided in Supplementary File S1.

Analyses
Data quality control

The quality control is pertinent to both protein structure model-
ing as well as binding site prediction. The quality of protein mod-
els is assessed with ModelEvaluator employing various struc-
tural features to compute the absolute quantitative score with
a support vector regression. This approach assigns the GDT-
score to a model by analyzing its secondary structure, relative
solvent accessibility, contact map, and β-sheet structure. It has
been demonstrated that GDT-scores estimated by ModelEvalua-
tor for template-based models are highly correlated with the ac-
tual values with the Pearson correlation coefficient of 0.82 [12].
The first violin in Fig. 2 shows that eModel-BDB contains close
and remote homology models with the median target-template
sequence identity of 63%. The second violin indicates that the
vast majority of these structures are accurate with the median
estimated GDT-score for BindingDB proteins of 0.62. Further, as
many as 78% of binding sites predicted by eFindSite to match
BindingDB ligands have a high confidence of >0.8. We showed
previously that confidence scores of >0.8 assigned by eFindSite
correspond to the Matthews correlation coefficient [23] of ≥0.6
for predicted binding residues [15]. On that account, we expect
the majority of binding sites for BindingDB drugs to be correctly

Figure 2: Violin and box plots for model quality control. The distribution of the
target-template sequence identity (SeqId) and the global distance test (GDT)
score estimated for structure models. Horizontal yellow lines represent median
values.

annotated as well. Note that in contrast to other pocket predic-
tors, eFindSite annotations and confidence assignments are, to
some extent, independent of the accuracy of protein models.

The quality of complex models is controlled by imposing
thresholds on the chemical similarity between BindingDB and
PDB ligands as well as the global structure similarity between
eThread models and ligand-bound templates from the PDB. Fig-
ure 3A shows the distribution of both parameters across eModel-
BDB models. Encouragingly, the median TM-score and TC for
ligand-bound templates used to build eModel-BDB are as high as
0.81 and 0.67, respectively. Previous studies show that the prob-
ability for a protein pair to belong to the same fold is 98% when
the TM-score is close to 0.8 [24]. In addition, it was demonstrated
that the root-mean-square deviation (RMSD) over ligand non-
hydrogen atoms for similarity-based docking conducted with
the TC in the range of 0.6–0.8 is typically 2–3 Å [25]. TM-score
and TC values are combined into a single assessment score, the
PMD, measuring the distance from the perfect match. There-
fore, selecting template proteins with a lower TM-score to Bind-
ingDB targets requires their ligands to have a high TC and vice
versa; selecting PDB ligands with a lower chemical similarity to
BindingDB molecules requires a high global structure similar-
ity between proteins. Figure 3B shows that the median PMD for
eModel-BDB complex models is 0.46.

Data validation

In addition to the rigorous quality control maintained dur-
ing dataset generation, eModel-BDB is validated retrospectively
against experimental structures recently deposited to the PDB.
The structure models of BindingDB interactions have been con-
structed with the PDB library as of 31 January 2017. Therefore, in
order to validate eModel-BDB models, 7,012 experimental struc-
tures deposited to the PDB after February 2017 were considered.
The validation protocol is made more challenging by including
only remote homology models with a template-target sequence
identity of <40%. In order to maximize the validation coverage,
we use the recently determined structures of eModel-BDB tar-
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Figure 3: Similarities between target and holo-template proteins. (A) The chemical similarity between BindingDB and PDB ligands measured with the TC is plotted

against the global structure similarity of eThread models and ligand-bound templates from the PDB assessed by the TM-score. The two-dimensional contour plot is
generated by smoothing the data with the kernel density estimation technique. One-dimensional histograms show the distribution of TC (top) and TM-score (right)
values across eModel-BDB models. (B) Violin and box plot for the holo-template PMD combining TC and TM-score. The horizontal yellow line represents the median
value.

gets and their homologs with at least 40% sequence identity. Af-
ter applying these filters, 41 recently solved experimental struc-
tures selected from the PDB can be used to validate 161 eThread
models and 952 BindingDB reaction set IDs, comprising 39 target
proteins, 52 pockets, and 881 compounds. This set is referred to
as the validation dataset. The list of validation pairs is given in
Supplementary File S2.

Protein structure modeling

The first violin in Fig. 4 shows that the median TM-score of
eModel-BDB vs experimental structures is 0.85, with as many
as 98.1% of the models having a TM-score of ≥0.4. Clearly, the
majority of structures are modeled by eThread with a high accu-
racy. A representative example of the correctly predicted target
structure is dihydrofolate reductase (DHFR) from Streptococcus
pyogenes build on the crystal structure of DHFR from Streptococcus
pneumoniae (PDB-ID: 3ix9, chain B, 36% sequence identity to the
target) [26]. The eThread model, whose estimated GDT-score is
0.92, was then used to construct a structure model for the Bind-
ingDB reactant set ID 00267770 consisting of DHFR complexed
with BDBM50329610. This model is validated against the crystal
structure of DHFR-UCP1106 from Staphylococcus aureus (PDB-ID:
5isp, chain X, 43% sequence identity to the target) released on 28
June 2017 [27]. Figure 5 shows the predicted weakly homologous
model of DHFR-BDBM50329610 (purple) superposed on the ex-
perimental structure of DHFR-UCP1106 (gold). The eModel-BDB
model is indeed highly accurate, with a TM-score of 0.95 and a
Cα-RMSD of 1.23 Å over 157 aligned residues. In addition, Fig. 6A
shows that the estimated GDT-score employed in this study as
the confidence measure to control the quality of protein models
correlates with the accuracy of final models evaluated with the
TM-score. On that account, the estimated GDT-score provides
a robust quality assessment measure to control the quality of
models in eModel-BDB.

Figure 4: Violin and box plots for the distribution of validation scores. The accu-
racy is assessed for remote homology complex models in the validation set. The

global structure similarity is measured with the TM-score. The pocket distance
is measured between the predicted pocket center and the geometric center of
the ligand in the experimental structure superposed onto the eThread model.

Horizontal yellow lines represent median values.

Binding pocket prediction

The accuracy of pocket prediction is validated by superposing
the experimental holo structure onto the eModel-BDB model and
then calculating the distance between the geometric center of a
bound ligand in the experimental complex and the pocket cen-
ter predicted by eFindSite in the model. The second violin in Fig.
4 shows that the median pocket distance is 5.5 Å, with 59.6%
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Figure 6: Analysis of structure modeling and ligand docking accuracy. The accuracy is assessed for remote homology complex models in the validation set. (A) Accuracy
of global structure prediction evaluated by the TM-score with respect to the estimated GDT-score. (B) Accuracy of similarity-based docking with respect to the chemical

similarity between BindingDB and PDB ligands measured with the TC. The ligand RMSD is calculated over non-hydrogen atoms according to the chemical alignment
reported by kcombu. Solid red lines show the average prediction accuracy for binned GDT-score values in A and the chemical similarity in B. Dotted black lines mark
the median TM-score in A and RMSD in B across all benchmarking cases.

Figure 5: Representative example of a structure model constructed by eThread.
The model of DHFR (purple ribbons) complexed with BDBM50329610 is super-

posed onto the crystal structure of homologous DHFR from S. aureus (gold rib-
bons) complexed with UCP1106. Ligands bound to target proteins are shown
as solid sticks (BDBM50329610 is purple and UCP1106 is gold) with non-carbon
atoms colored by atom type (O—red, N—blue).

of pockets predicted within 6 Å; therefore, most eFindSite an-
notations are accurate. A binding site in the model of vitamin
D receptor (VDR) is a representative example of a pocket pre-
dicted with eFindSite. This model was constructed for the Bind-
ingDB reactant set ID 50662356 based on human retinoic acid
receptor RXR-alpha (PDB-ID: 4nqa, chain H, 38% sequence iden-
tity to the target) [28]. Although the GDT-score estimated for the
VDR model is 0.62, indicating a moderately accurate structure,
the top-ranked binding site annotated by eFindSite is assigned a
high confidence of 94.2%. Figure 7 shows the VDR model (pur-
ple ribbons) superposed onto the crystal structure of vitamin
D3 receptor A (gold ribbons) complexed with a synthetic analog
of 1α,25-dihydroxyvitamin D3 (PDB-ID: 5nky, chain A, 66% se-
quence identity to the target) released on 24 May 2017 [29]. Not
only does the VDR model align well to the experimental struc-

Figure 7: Representative example of a binding site detected by eFindSite. The
model of VDR (purple ribbons) is superposed onto the crystal structure of ho-
mologous VDR from human (gold ribbons) complexed with a synthetic analog

of vitamin D (gold and red sticks). Cα atoms of binding residues predicted in the
VDR model by eFindSite are shown as small spheres. Large spheres connected
by a dashed black line are placed at the location of the predicted pocket center
(purple) and the geometric center of vitamin D analog (gold).

ture, with a TM-score of 0.90 and a Cα-RMSD of 2.13 Å over 235
residues, but the predicted pocket center (purple sphere) is only
5.5 Å away from the geometric center of vitamin D analog (gold
sphere).
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Figure 8: Violin and box plots for the docking accuracy. The accuracy is assessed

for remote homology complex models in the validation set. The ligand RMSD
is calculated over non-hydrogen atoms according to the chemical alignment re-
ported by kcombu. The performance of similarity-based docking employed to

construct eModel-BDB is compared to that of AutoDock Vina and rDock. Hori-
zontal yellow lines represent median values.

Ligand docking

Finally, we calculate the RMSD over non-hydrogen atoms be-
tween the BindingDB drug in the eModel-BDB structure and the
bound ligand in the superposed experimental complex. Here,
we employ a subset of 37 models selected from the validation
set whose pocket centers are predicted within 8 Å. The first vi-
olin in Fig. 8 shows that the median ligand RMSD is 2.6 Å and
it is ≤3 Å for 58.1% of BindingDB compounds. The model of
the BindingDB reactant set ID 50974033 consisting of tyrosine-
protein kinase (TSK) complexed with BDBM50399512 is selected
to exemplify the accuracy of complex structures in eModel-
BDB. The model of TSK built on the crystal structure of human
hemopoietic cell kinase (HCK) (PDB-ID: 1qcf, chain A, 39% se-
quence identity to the target) [30] by eThread is assigned an es-
timated GDT-score of 0.61. Subsequently, the complex model of
TSK-BDBM50399512 was constructed by similarity-based dock-
ing employing the crystal structure of HCK bound to a pyrazolo-
pyrimidine inhibitor (PDB-ID: 3vs7, chain B, 37% sequence iden-
tity to the target) [31]. This HCK complex was selected as the
best ligand-bound template based on the high TM-score of 0.64
and TC of 0.53, yielding the shortest PMD of 0.35. Figure 9 shows
the validation of the modeled TSK-BDBM50399512 by the ex-
perimental structure of Bruton’s tyrosine kinase (Btk) bound
to an anti-cancer drug, ibrutinib (PDB-ID: 5p9i, chain A, TM-
score: 0.92, 58% sequence identity to the target) released on
24 May 2017 [32]. Kcombu reports a significant chemical align-
ment between BDBM50399512 and ibrutinib with a TC of 0.68
(Fig. 9A). Upon the superposition of TSK and Btk proteins, the
RMSD between BDBM50399512 docked to the model and ibru-
tinib bound in the experimental structure calculated over the
chemical alignment reported by kcombu is 2.62 Å (Fig. 9B). These
results verify that the computer-generated TSK-BDBM50399512
model for the BindingDB reactant set ID 50974033 is correct.

The model of the BindingDB reactant set ID 50103430 con-
sisting of cytochrome P450 17A1 (CYP17A1) complexed with
BDBM50061174 is selected to exemplify the accuracy of com-
plex structures in eModel-BDB. The model of CYP17A1 built on
the crystal structure of human microsomal cytochrome P450
2A6 (PDB-ID: 1z11, chain A, 29% sequence identity to the tar-
get) [33] by eThread is assigned an estimated GDT-score of 0.69.
Subsequently, the complex model of CYP17A1-BDBM50061174
was constructed by similarity-based docking employing the
crystal structure of CYP17A1 bound to abiraterone, a steroidal
prostate cancer drug (PDB-ID: 3ruk, chain D) [34]. The CYP17A1-
abiraterone complex was selected as the best ligand-bound
template based on the high TM-score of 0.84 and TC of 0.89,
yielding the shortest PMD of 0.19. Figure 9 shows the valida-
tion of the modeled CYP17A1-BDBM50061174 by the experimen-
tal structure of CYP17A1-(R)-orteronel (PDB-ID: 5irq, chain B,
64% sequence identity to the target) released on 15 March 2017
[35]. Kcombu reports a significant chemical alignment between
steroidal BDBM50061174 and nonsteroidal (R)-orteronel with a
TC of 0.54 (Fig. 9A). Upon the superposition of CYP17A1 pro-
teins, the RMSD between BDBM50061174 docked to the model
and (R)-orteronel bound in the experimental structure calcu-
lated over the chemical alignment reported by kcombu is 2.95
Å (Fig. 9B). These results verify that the computer-generated
CYP17A1-BDBM50061174 model for the BindingDB reactant set
ID 50103430 is correct.

The similarity-based docking procedure employed to con-
struct ligand-bound structures in eModel-BDB superposes tar-
get ligands onto template molecules selected from the PDB ac-
cording to the chemical alignment reported by kcombu. One
may expect that superposing target compounds onto chem-
ically similar template ligands yields more accurate binding
poses than those generated from chemically less similar tem-
plate molecules. Indeed, Fig. 6B shows that the target-template
chemical similarity measured with the TC correlates with the
docking accuracy evaluated with the RMSD of ligand poses con-
structed based on target-template alignments. These results are
in line with other studies reporting that the average RMSD val-
ues for similarity-based docking methods are generally below
2 Å when the target-template similarities are above 0.7 [36].
The performance of similarity-based docking employed to con-
struct eModel-BDB is also compared to that of AutoDock Vina
[37] and rDock [38]. In contrast to the median ligand RMSD of
2.6 Å for eModel-BDB complexes, the median RMSD values for
BindingDB drugs docked to eFindSite pockets with AutoDock
Vina and rDock are 6.7 Å and 7.2 Å, respectively (Fig. 8). We
note that similarity-based docking was demonstrated to out-
perform traditional docking when the target-template similarity
is greater than 0.4 [36], which was employed as the TC thresh-
old to construct eModel-BDB complex models. Overall, the qual-
ity assessment as well as independently obtained validation re-
sults demonstrate that the eModel-BDB database contains high-
quality models closely resembling experimentally determined
structures, not only at the global structure level but also at the
level of binding pockets and bound ligands.

Discussion

eModel-BDB is generated to support rational drug development
projects. These data can directly aid structure-based drug dis-
covery pipelines and protein function analysis by providing
atomic-level models of a large set of drug-protein interactions
with known affinities curated in the BindingDB. An important
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Figure 9: Representative example of a complex structure constructed by similarity-based docking. (A) Chemical alignment between BDBM50399512 (left) and ibrutinib
(right) reported by kcombu. The 26 equivalent atom pairs that constitute the maximum common substructure are outlined in purple in BDBM50399512 and in gold
in ibrutinib. (B) The model of TSK (purple ribbons) is superposed onto the crystal structure of HCK (gold ribbons) complexed with ibrutinib (gold sticks). Cα atoms
of binding residues identified in the TSK model by eFindSite are shown as purple spheres, whereas the target compound, BDBM50399512, docked into the predicted

pocket is represented by purple sticks. Non-carbon atoms in BDBM50399512 and ibrutinib are colored by atom type (O—red, N—blue, F—green).

application of eModel-BDB is computational drug repositioning,
i.e., finding new indications for existing drugs [39]. Although
drug repurposing holds a significant promise to speed up drug
development, particularly for diseases considered to be unprof-
itable, its major bottleneck is the scarce structural information
on druggable pockets. On that account, a diverse dataset of
small, drug-like molecules bound to high-quality models with
accurately annotated pockets provides an invaluable resource
for drug repositioning employing sequence order-independent
pocket matching algorithms [40–43]. It is noteworthy that com-
putational drug repurposing has suggested new opportunities to
combat tuberculosis [44, 45], malaria [46], and rare diseases [47,
48].

Binding sites in eModel-BDB can also be matched to pock-
ets predicted in potential drug targets in order to determine
whether these proteins are druggable or not. If a new pocket
aligns well with drug-bound pockets in eModel-BDB, then it is
likely going to be druggable. That being the case, our data can
be utilized at the outset of drug discovery, in the target identifi-
cation phase. Finally, ligand binding can significantly help stabi-
lize a protein, particularly from the point of view of conforma-
tional stability [49]. eModel-BDB can, therefore, inform crystal-
lography efforts by suggesting possible compounds binding to
certain protein targets at either the active or allosteric sites in
order to increase the chances of successful crystallization.

Availability of supporting data

Structure models in eModel-BDB are named according to the
BindingDB reactant set IDs, which can be obtained by search-
ing the BindingDB at https://www.bindingdb.org. This proce-
dure is illustrated in Fig. 10. The BindingDB can be searched
either by protein and compound names (Fig. 10A) or by the

target sequence (Fig. 10B and 10C). Next, the complex of in-
terest can be selected from the list of hits (Fig. 10D) in or-
der to download the corresponding SDfile of the complex (Fig.
10E). The BindingDB reactant set ID, e.g., 00267770, is stored
inside the SDfile (Fig. 10F). The reactant set ID can then be
used to find the detailed information on the BindingDB web-
site, e.g., https://www.bindingdb.org/jsp/dbsearch/Summary ki.
jsp?reactant set id=00267770 (Fig. 10G) as well as access the
structure model in eModel-BDB, e.g., http://brylinski.cct.lsu.
edu/pub/eModelBDB.php?reactant set id=00267770 (Fig. 10H). A
web-based interface to query eModel-BDB is provided at http://br
ylinski.org/emodel-bdb-0. Data are available to download from
the GigaScience GigaDB database [50].

Additional files

SupplementaryFileS1.csv
SupplementaryFileS2.csv
Figure 10. Procedure to obtain eModel-BDB complexes via the

BindingDB website. The target complex can be identified based
on either the protein (red arrows and boxes) or the ligand of
interest (blue arrows and boxes). Common actions that a user
needs to perform are colored in green. (A) Specific ligands and
proteins can be searched directly for on the BindingDB website.
(B, C) Alternatively, target proteins can be found with the blast
search. (D) A complex of interest can then be selected in order
to (E) generate and download an SDfile. (F) The BindingDB re-
actant set ID stored inside the SDfile is used to (G) view a web
page containing detailed information about the target complex
as well as (H) access the corresponding eModel-BDB structure
model named according to the BindingDB reactant set ID.

https://www.bindingdb.org
https://www.bindingdb.org/jsp/dbsearch/Summary_ki.jsp?reactant_set_id=00267770
http://brylinski.cct.lsu.edu/pub/eModelBDB.php?reactant_set_id=00267770
http://brylinski.org/emodel-bdb-0
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