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Abstract: The key hallmark of stem cells is their ability to self-renew while keeping a differentiation
potential. Intrinsic and extrinsic cell factors may contribute to a decline in these stem cell properties,
and this is of the most importance when culturing them. One of these factors is oxygen concentration,
which has been closely linked to the maintenance of stemness. The widely used environmental
21% O2 concentration represents a hyperoxic non-physiological condition, which can impair stem
cell behaviour by many mechanisms. The goal of this review is to understand these mechanisms
underlying the oxygen signalling pathways and their negatively-associated consequences. This may
provide a rationale for culturing stem cells under physiological oxygen concentration for stem cell
therapy success, in the field of tissue engineering and regenerative medicine.

Keywords: aging; redox; physiological oxygen concentration; environmental oxygen concentration;
physioxia; senescence

1. Physiological Oxygen Levels In Vivo

Very much importance was given to the balance of nutrients, growth factors and pH buffers used
to grow cells in vitro [1]. However, very little attention was given to the oxygen concentration in the
culture media as it was assumed that the ambient air (21% O2/21 kPa/160 mmHg) was adequate
for cell growth [2]. Room air oxygen concentration is still widely used in vitro by the traditional
incubators; however, at the tissue level, oxygen concentrations in vivo are significantly lower, limiting
its inherent toxicity. According to the extensive review performed by Keeley and Mann, cell culture
undertaken under room air conditions falls short of replicating this protection in vivo [3]. Indeed,
adult tissues experience a wide range of oxygen tensions that are considerably different from the
inhaled ambient oxygen tensions. The partial pressure of oxygen (PO2) progressively decreases after
it enters in the lungs and is transported by blood to reach the tissue where the final physiological
oxygen concentrations are reached. According to air routes in human organisms, the most oxygenated
organs will be lungs, stomach and skin as they are in direct contact with air, followed by the own
vasculature as it transports the air in blood. Finally, air will reach every organ, where an average of
2–9% O2/14–65 mmHg is currently accepted [4,5], and the actual oxygen concentration in situ strongly
depends on the vascularization of the tissue and its metabolic activity [6].
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Unlike most cell types, lung epithelial cells experience a high PO2 physiologically and are
separated from gaseous oxygen by a thin layer of air–surface–liquid. As reported in the bibliography,
average PO2 values for tracheal, bronchial, bronchiolar and alveolar epithelial cells are 13–14%
O2 [7–12], which correlates with the proximity of inspired air. Cutaneous PO2 is known to be directly
proportional to its own blood flow [13], indirectly proportional to temperature [14], and inversely
proportional to epidermal thickness [15]. Furthermore, as stated before, the skin has two oxygen
sources, the atmosphere and the microvasculature. In standard conditions, PO2 at the subcutaneous
level has been reported to range from 3% to 8% O2 [16,17]. Below the skin, adipose tissue can be found.
PO2 values of 7.5% O2 have been described in the arm [18] and in the abdomen [19–21] of lean patients.
Regarding the vascular network, oxygen supply to the vascular wall occurs mainly by diffusion from
the lumen (blood PO2 is 12% O2); thus, the vessel wall PO2 decreases between luminal and adventitial
layers. Moreover, the thickness of the wall will also interfere in the oxygen supply. Estimating the
exact PO2 values experienced by all cell types in the vascular wall: endothelial cells, smooth muscle
and fibroblasts are pretty hard; however, several studies report a PO2 range of 3–10% O2 depending
on the distance from the lumen [22–26].

Well irrigated parenchymal organs have a wider range of PO2, depending on the depth location
inside the tissue. The heart is a highly metabolically active tissue with large oxygen requirements.
The coronary microvasculature penetrates the myocardium and, as a result, a gradient of PO2 has
been observed between the superficial epicardium, the deep myocardium and individual myocytes.
Such levels range 2–6% O2 [27–33]. Similar to other major and well irrigated organs, the cerebral
vasculature extends superficially throughout the brain and penetrates the inner layer of the cortex [34].
Accordingly, different PO2 values have been recorded, decreasing proportionally to the depth of
the tissue: from 5% O2 in the superficial cortex [35–37] to 3% O2 in the deep white matter [38,39].
Remarkably, studies performed in rats recorded values to drop to 0.5% O2 in the deeper regions
(hypothalamus, hippocampus and midbrain) [40]. The liver is a relatively well oxygenated organ as
blood entering through the hepatic artery is at 12% O2 and blood entering through the portal vein is at
6.5% O2 [41]. However, blood exiting the hepatic vein reported a PO2 value of 5% O2 [42]. Indeed,
PO2 values of 4–7% O2 have been reported for liver parenchyma [43–46]. Kidneys receive a 20% of
cardiac output, which is disproportionate compared with other organs with high blood flow. As found
in the bibliography, renal cortical PO2 ranges 4–9.5% [47] and this value decreases until 2% O2 when
reaching the medulla [48,49]. Pancreas is also a well irrigated organ, even though 10–15% of the
total organ blood flow irrigates the Islets of Langerhans, which constitute 1–2% of total pancreatic
tissue. Therefore, the exocrine pancreas has been reported to receive PO2 values that range 4.6–2.7%
O2, whereas endogenous β cells PO2 values recorded are higher (5–6% O2) [50,51]. Measurement of
digestive tract PO2 should be divided into three sections: stomach, small and large intestines. In the
case of the stomach, no difference has been recorded between the three layers, and average PO2 values
from 6 to 10% O2 have been recorded [52,53]. Then, oxygen levels show a clear decrease along the
gastrointestinal tract, reaching its lower levels in the colon. This is in accordance with the presence of
anaerobic bacterial flora in the final segments of the gut. Small intestine PO2 values are 2–5%, 3–6%
and 5–9% O2 for lumen, mucosa and serosa layers, respectively [54]. Large intestine PO2 values are
lower, and have been recorded in a range 0–2% O2 for lumen and mucosa layer and 4–6% O2 for the
serosa layer [55].

The uterus is a highly dynamic organ that experiences changes throughout the menstrual cycle.
During the estrogenic phase, intrauterine PO2 has been reported to be 2.5% O2 in humans [56]. This low
PO2 rises rapidly within the uterine wall (myometrium/decidua) upon conception or during luteus
phase in line with increases in blood flow. Another very dynamic organ is the skeletal muscle. For this
reason, muscular PO2 should be addressed in resting and in contraction where oxygen requirements
may increase two orders of magnitude above rest. A recent study reported that baseline interstitial PO2

in the resting spinotrapezius muscle in humans was 16 ± 2 mm Hg (~2.5% O2) [57]. During the early
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contraction, transient interstitial PO2 fell quasi–exponentially to values approaching intramyocyte PO2

found in humans performing moderate exercise (i.e., approximately 5 mm Hg/0.6% O2) [58,59].
Less irrigated organs receive less oxygen and thus their PO2 is significantly lowered. Bone

marrow, as a primary source for mesenchymal and hematopoietic stem cells, can be isolated from
sternum and iliac crest, where PO2 values have been reported to be 5.4% O2 and 7% O2, respectively, in
humans [60–65]. However, values of 10 mmHg (1.5% O2) in bone marrow have also been reported [66].
Nevertheless, fully mineralized bone tissue exists at a very low PO2, such as 1.4% O2 in cartilage [67].
Finally, in the human eye (retina, corpus vitreous), PO2 values reported a range from 1% to 5%
O2 [68,69]. Figure 1 illustrates the average oxygen pressure for each of the aforementioned tissues.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 27 

 

intramyocyte PO2 found in humans performing moderate exercise (i.e., approximately 5 mm Hg/0.6% 
O2) [58,59]. 

Less irrigated organs receive less oxygen and thus their PO2 is significantly lowered. Bone 
marrow, as a primary source for mesenchymal and hematopoietic stem cells, can be isolated from 
sternum and iliac crest, where PO2 values have been reported to be 5.4% O2 and 7% O2, respectively, 
in humans [60–65]. However, values of 10 mmHg (1.5% O2) in bone marrow have also been reported 
[66]. Nevertheless, fully mineralized bone tissue exists at a very low PO2, such as 1.4% O2 in cartilage 
[67]. Finally, in the human eye (retina, corpus vitreous), PO2 values reported a range from 1% to 5% 
O2 [68,69]. Figure 1 illustrates the average oxygen pressure for each of the aforementioned tissues. 

 
Figure 1. Oxygen partial pressure in tissues. 

2. Stem Cell Niches in Adult Tissues 

The concept of a stem cell niche was first proposed by Schofield in 1978 as a physiologically 
restricted microenvironment that supports stem cells [70]. The stem cell niches can be defined as 
specific anatomic locations that regulate their participation in tissue generation, maintenance and 
repair [71]. The stem cell niche is a complex, heterotypic, and dynamic structure, which includes 
supporting extracellular matrix, neighbouring niche cells, secreted soluble signalling factors (such as 
growth factors and cytokines), physical parameters (such as shear stress, tissue stiffness, and 
topography), and environmental signals (metabolites, hypoxia, inflammation, etc.) [72,73]. Stem cells, 
blood vessels, nerves, matrix glycoproteins and the three-dimensional space forming this unit 
provide a highly specialized microenvironment. Contact and communication between these elements 
is critical for stem cell self-renewal and cell fate regulation, thus rendering tissue homeostasis and 
regeneration. 

Several niches have been identified in many adult tissues: 

• In lungs, two main stem cell populations have been described. Basal stem cells (BSCs) have the 
capacity to self-renew and to form secretory and ciliated cells [74–76]. Distal alveolar stem cells 
(DASCs), which are present in the distal airways after H1N1 influenza virus infection and have 
the capacity to replace injured alveolar cells [77,78]. 

• In the skin, epithelial stem cells are found in the bulge area of the hair follicles [79], while the 
exact components of skin niche have not been fully identified yet, although critical regulatory 
cues derive from the dermal papilla. These stem cells are important in regeneration of hair 
follicles while scattered stem cells attached to the basal membrane that separates epidermis from 
dermis (basal keratinocytes) are involved in replacement of interfollicular epidermis [80]. 
Sebaceous glands are maintained by cells at the base of each gland [81], but their niche is still 
largely unknown. 

• While our knowledge of brown, white and beige adipose tissue is rapidly increasing, little is still 
known about marrow adipose tissue and its progenitors, despite recent studies demonstrating 
possible roles for marrow adipose tissue in regulating the hematopoietic space [82]. Inconclusive 

Figure 1. Oxygen partial pressure in tissues.

2. Stem Cell Niches in Adult Tissues

The concept of a stem cell niche was first proposed by Schofield in 1978 as a physiologically
restricted microenvironment that supports stem cells [70]. The stem cell niches can be defined as
specific anatomic locations that regulate their participation in tissue generation, maintenance and
repair [71]. The stem cell niche is a complex, heterotypic, and dynamic structure, which includes
supporting extracellular matrix, neighbouring niche cells, secreted soluble signalling factors (such
as growth factors and cytokines), physical parameters (such as shear stress, tissue stiffness, and
topography), and environmental signals (metabolites, hypoxia, inflammation, etc.) [72,73]. Stem cells,
blood vessels, nerves, matrix glycoproteins and the three-dimensional space forming this unit provide
a highly specialized microenvironment. Contact and communication between these elements is critical
for stem cell self-renewal and cell fate regulation, thus rendering tissue homeostasis and regeneration.

Several niches have been identified in many adult tissues:

• In lungs, two main stem cell populations have been described. Basal stem cells (BSCs) have the
capacity to self-renew and to form secretory and ciliated cells [74–76]. Distal alveolar stem cells
(DASCs), which are present in the distal airways after H1N1 influenza virus infection and have
the capacity to replace injured alveolar cells [77,78].

• In the skin, epithelial stem cells are found in the bulge area of the hair follicles [79], while the
exact components of skin niche have not been fully identified yet, although critical regulatory
cues derive from the dermal papilla. These stem cells are important in regeneration of hair
follicles while scattered stem cells attached to the basal membrane that separates epidermis
from dermis (basal keratinocytes) are involved in replacement of interfollicular epidermis [80].
Sebaceous glands are maintained by cells at the base of each gland [81], but their niche is still
largely unknown.

• While our knowledge of brown, white and beige adipose tissue is rapidly increasing, little is still
known about marrow adipose tissue and its progenitors, despite recent studies demonstrating
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possible roles for marrow adipose tissue in regulating the hematopoietic space [82]. Inconclusive
results have been published about the in situ location or “niche” of adipocyte progenitors (APs).
Regardless of the high vascularity of white adipose tissue (WAT), it has also been reported that
only a fraction of cells with markers of APs are found in close proximity to blood vessels [83].
Therefore, the ontogeny of WAT and the AP niche are still a matter of some debate.

• The vasculature needs to have capacity for cell turnover, growth, and repair to maintain normal
homeostasis. It has emerged during the past decade that there exists an array of ancestral
progenitor cells resident within the mural layers of macro- and micro-vessels [84,85]. These consist
of lineage-committed endothelial progenitor cells (EPCs) [86] and smooth muscle progenitor
cells (SPCs) [87], multipotent vascular stem cells (MVSCs) [88], mesenchymal stem/stromal
cells (MSCs) [89], adventitial macrophage progenitor cells (AMPCs), and circulation-derived
hematopoietic stem cells (HSCs) [90]. The inner adventitia, adjacent to the external elastic lamina,
has emerged as the prime candidate for the vascular stem cell niche.

• In the heart, the myocardium lacks the basal-apical orientation typical of epithelial organs, making
it difficult to delineate the precise localization of cardiac stem cell (CSC) niches. The epicardial
lining has been employed to define anatomically several classes of niches in the adult heart [91–96].
However, cardiac niches are not limited to the subepicardium and are dispersed throughout the
myocardium. CSC niches are more numerous in the atria and apex, which represent protected
anatomical areas characterized by low hemodynamic stress [97,98]. Recently, these CSC have
been put into controversy: a study provided in vivo genetic evidence for nonmyocyte to myocyte
conversion in embryonic but not adult hearts, arguing again the myogenic potential of putative
stem cell populations for cardiac regeneration in the adult stage [99].

• Regarding the central nervous system, several researchers have identified the lateral
subventricular zone (SVZ) and in the subgranular zone (SGZ) of the dentate gyrus within the
hippocampus [100–102]. Astrocytes in SVZ and SGZ are able to give rise to neuroblasts and
subsequently mature neurons. However, the presence of a stem cell niche in the adult human
brain is under debate [103,104]. Considering the hypoxic nature of human brain, it is conceivable
that neural stem cells (NSCs) in the brain would be located in a relatively hypoxic environment.
When it comes to embryonic development and early stages of life, there is evidence that cell fate
decision in neural stem cells (NSCs), which can generate both neurons and glia, is affected by
oxygen tension [105].

• The liver has a high regenerative capacity that involves stem/progenitor cells when the
proliferation of hepatocytes is impaired. Liver stem/progenitor cells, termed hepatic progenitor
cells (HPCs) [106], emerge when hepatocyte proliferation is overwhelmed by persistent or severe
liver injury. There is evidence that hepatic progenitor cells can originate from niches in the
canals of Hering; in addition, the space of Disse may also serve as a stem cell niche during foetal
haematopoiesis and constitute a niche for stellate cells in adults [107].

• The existence, phenotype, and anatomical location of stem/progenitors in the adult pancreas
are actively debated [108]. Although some reports claim the existence of multipotent stem cells
within the pancreas [109], most suggest that these cells are rare in the postnatal pancreas [110].
Ongoing studies suggest that postnatal pancreatic stem cells (PSCs) reside within the biliary tree,
primarily the hepato-pancreatic common duct, and are rare in the pancreas proper [111].

• In adult kidneys, it has been proved that, after an injury, tubules can recover completely, but this
is not the case for nephrons, which are not able to regenerate. Several cellular types with stem
cell properties have been isolated from human adult kidneys [112,113]. These cells have been
identified as a subset of parietal epithelial cells (PEC) in the Bowman’s capsule, which exhibits
coexpression of the stem cell markers CD24 and CD133. However, their ability to differentiate
and form new tissue in vivo is less studied and still controversial.

• Turnover of the epithelial cell lineages within the gastrointestinal tract is a constant process under
normal homeostasis and increases after damage. This process is regulated by multipotent stem
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cells, which give rise to all gastrointestinal epithelial cell lineages and can regenerate whole
intestinal crypts and gastric glands. The stem cells of the gastrointestinal tract are yet undefined,
although it is generally agreed that they are located within a ‘niche’ in the intestinal crypts and
gastric glands [114]:

# Two niches seem to co-exist in the gastric unit: one in the isthmus region and the other
at the base of the gland, although the precise features of the cell populations and the two
niches are currently under debate [115]. The current evidence suggests that gastric stem
cells in every gastric gland give rise to four functionally distinct cell lineages: parietal,
surface mucous (pit), zymogenic, and enteroendocrine.

# Nearly 90% of the intestinal epithelium is replaced every 3–4 days by cells newly generated
from the crypt epithelium; however, long-lived intestinal stem cells (ISCs) are harboured
in the crypt bottom interdigitated between Paneth cells, where cells are physically shielded
from the content of the lumen [116]. To replenish the large amount of disposable functional
epithelium, ISCs produce rapidly cycling progenitor cells, referred to as transit-amplifying
(TA) cells. As they proliferate, TA cells migrate up the crypt-villus axis and differentiate
into mature epithelial cells that are eventually shed off into the lumen [117].

• Human endometrium is the mucosal lining of the uterus and is a highly regenerative tissue,
undergoing more than 400 cycles of proliferation, differentiation, and shedding during a woman’s
reproductive life. During the last 10 years, an MSC subpopulation has been identified and
characterized in human endometrium and in menstrual blood. Endometrial mesenchymal
stem/stromal cells (eMSCs) are easily isolated from endometrial biopsy tissue [118].

• In the muscle, stem cells, known as satellite cells, are located along muscle fibre tracts attached to
the plasma membrane that surrounds each muscle fibre bundle. In this case, the basal lamina may
represent the niche for satellite cells [119,120].

• In bone marrow, hematopoietic stem cells (HSCs) reside along the endosteal surface close
to osteoblastic cells [121,122] and in proximity to the blood vessels [123,124]. According to
Keeley and Mann, both MSCs and HSCs originate from the bone marrow, but their sites of
action extend throughout the organism. Indeed, it has been postulated that changes in partial
oxygen pressure as cells exit the marrow into the systemic bloodstream serve as a key trigger for
terminal differentiation into one cell type or another. For example, osteogenic and adipogenic
differentiation of MSCs is hampered under low oxygen pressure, whereas chondrogenesis may be
enhanced [125].

• Oral tissues, including tooth, periodontal ligament, and gingiva are also an important source of
MSCs. Oral MSCs involve dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous
teeth (SHED), periodontal ligament stem cells (PDLSCs), dental follicle stem cells (DFCs), stem
cells from apical papilla (SCAP) and gingival stem cells (GMSCs) [126].

Considering that the term “niche” refers to an isolated microenvironment, it is logical to accept
that low PO2 should be recorded inside them regardless of the tissue. Sadly, to our knowledge, the
exact PO2 inside the human niches in vivo can not be recorded with the techniques we currently
have. The closest approximations have been performed in human bone marrow aspirates, where PO2

levels are around 5% O2. Thus, it is generally accepted an average PO2 of 3–6% O2 for human stem
cell niches.

From a developmental point of view, the fact that adult niches remain at low oxygen pressures
correlates with the PO2 values recorded in embryos, where embryonic stem cells (ESCs) develop and
give rise to cells of all three germ layers. The preimplantation human embryo and blastocyst develop
under relatively low oxygen concentrations in vivo, approximating 2–9% O2 [127]. The effect of oxygen
on preimplantation embryos has been comprehensively examined in several species, including the
human [128]. While embryos are capable of developing under a 20% O2 atmosphere, studies have
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demonstrated compromised embryo development and viability under these conditions [129–131].
Thus, by residing in these anatomical compartments that experience relatively low oxygen tensions,
stem cells maintain a selective advantage that is well suited to their particular biological roles [132].

3. Oxygen Alterations In Vitro Affects Many Stem Cell Parameters

When stem cells are cultured at an oxygen level which is not the same as the one offered by the
niche microenvironment, the cells undergo a set of alterations, such as oxidative stress, metabolism
turnover, reduced proliferation and self-renew, hampered motility, altered differentiation potential
and a stemness potential loss. All of these consequences can be avoided if stem cells are cultured at
their physiological oxygen level, as detailed below. Figure 2 summarizes the benefits that the niche
microenvironment offers to their resident stem cells.
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red. Abbreviations: HIF-1α: hypoxia inducible factor 1α; ROS: reactive oxygen species; HO-1: Heme
Oxygenase 1; Nrf2: nuclear receptor factor 2; GSH/GSSG: glutathione ratio; OXPHOS: oxidative
phosphorylation; LDH: lactate dehydrogenase; PDK: pyruvate dehydrogenase kinase; MAPK: mitogen
activated protein kinase; PI3K: phosphoinositide 3 kinase; ERK: extracellular signal regulated kinase;
VEGF: vascular endothelial growth factor; OSKM: Oct3/4, Sox2, Klf4 and c-Myc; HIF: hypoxia
inducible factor.

3.1. Reactive Oxygen Species (ROS) Formation and Antioxidant Defense

Reactive oxygen species (ROS) play an important role in determining the fate of normal stem cells
because they are known to be intracellular messengers. Thus, low levels of ROS are required for stem
cells to maintain quiescence and self-renewal. Otherwise, increases in ROS production can cause stem
cell proliferation/differentiation, senescence and apoptosis in a dose-dependent manner, leading to
their exhaustion. Therefore, the production of ROS in stem cells is tightly regulated to ensure that
they have the ability to maintain tissue homeostasis and repair damaged tissues for the life span of an
organism [133].
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All normal stem cells appear to be highly sensitive to ROS and oxidative stress because of their
relatively undifferentiated state with a long division potential for accumulating genetic damage. In fact,
it has been demonstrated that high oxygen concentrations can cause oxidative stress via production of
ROS that can damage lipids, proteins and DNA, and altering cell metabolism in general [134].

A study found that there was a higher formation of superoxide anion (O2
−) and hydrogen

peroxide (H2O2) in progenitor cells from the umbilical cord blood cultured at 20% O2 compared to
those cultured at 5% O2 [135]. A more recent study revealed a significant increase in ROS formation in
human dermal fibroblasts, as demonstrated by higher O2

− levels when cells where cultured at 21%
in comparison with 5% O2 [136]. Furthermore, we recently establish an increase in ROS production
(H2O2 levels detected by dihydrorhodamine-123), malondialdehyde (MDA) and carbonylation levels
as well as a disruption in mitochondrial membrane potential in DPSCS cultured at 21% O2 compared to
3% O2 [137,138]. An increase in ROS production should be followed by an increase in the antioxidant
defense to alleviate the oxidative stress. As expected, the analysis of glutathione redox status in these
studies showed lower oxidized glutathione (GSSG) levels, higher reduced glutathione (GSH) levels
and higher GSH/GSSG ratios under hypoxia (versus normoxia). Recently, we discovered an increase
in HO-1 and NQO-1 protein expression in DPSCs cultured at 21% compared to 3% O2 which provides
the evidence that the Nrf2 defense pathway is upregulated in the atmospheric oxygen condition [137].

When cells are cultured at low oxygen tension, any available oxygen diffuses to the mitochondria,
creating an environment within the cytosol that lacks oxygen, thereby inhibiting the activity of prolyl
hydroxylases that regulate the activation of hypoxia-inducible factors (HIFs). HIF is a heterodimer
consisting of an oxygen-regulated α subunit (1α and 2α) and a constitutively expressed β subunit. The
biology of the α subunits has expanded in the past years from their original role in angiogenesis to
their current position in the self-renewal, stemness and differentiation of stem cells. In low oxygen
conditions, HIF-1α is not hydroxylated and therefore is stabilized to initiate HIF transcriptional
activity [139].

3.2. Metabolism

Recently, we have expanded our understanding of stem cells metabolism and how metabolic
pathways may affect homeostasis and quiescence. Due to the low oxygen availability, these cells must
rely heavily on anaerobic glycolysis, rather than mitochondrial oxidative phosphorylation (OXPHOS),
to support ATP production [140–142]. However, low OXPHOS in HSCs is in part related to cell-specific
mechanisms rather than only reflecting an environmental adaptation to low oxygen [143].

Moreover, self-renewing HSCs need to limit mitochondrial respiration to remain in a quiescent
state [144–146]. When they are prone to differentiate, a rapid switch to mitochondrial OXPHOS is
observed, probably to meet the robust energy demands associated with differentiation [147,148].

A key player in the regulation of stem cell metabolism is HIF1α, a transcription factor involved in
the cellular responses to low oxygen availability [149]. Cells cultured at low oxygen tension express
HIF1α, which activates multiple glycolytic genes, such as lactate dehydrogenase (LDH) or pyruvate
dehydrogenase kinase (PDK), making stem cell metabolism more similar to the one present in their
in vivo niche [150].

When stem cells that reside in a hypoxic niche are exposed to atmospheric oxygen levels, they
are forced to activate a cellular response in which oxygen consumption by OXPHOS is increased and
glycolysis decreased. This switch in the metabolism is detrimental for cellular function, as it promotes
oxidative damage, senescence, genomic instability and decreases lifespan [151].

To summarize, stem cells generally rely on glycolysis (low oxygen), rather than their committed
progeny, which is typically more oxidative (higher oxygen). Thus, monitoring oxygen levels is a critical
step, especially when differentiation of the stem cell culture is required.
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3.3. Self-Renewal and Proliferation Rate

Many studies have observed the low proliferation rate at the environmental oxygen tension
compared to the physiological one in many types of stem cells: neuronal stem cells (NSCs) [152]; bone
marrow stem cells (BMSCs) [153,154], umbilical cord stem cells (UCSCs) [155]; adipose-derived stem
cells (ADSCs) [156,157] muscle precursor cells [158,159], and also in human fibroblasts WI-38 [160].
The last study attributed the low proliferation rate of the fibroblasts cultured at the environmental
oxygen tension to the telomere shortening while another study correlated it with DNA damage [161] as
chromosomal integrity has been directly related to oxidative stress [162,163]. A similar study revealed
that hypoxic conditions induce an immediate and concerted downregulation of genes involved in
DNA repair and damage response pathways (MLH1, RAD51, BRCA1, and Ku80), concomitantly with
the occurrence of microsatellite instability while maintaining telomere length [164].

Focusing on cell cycle regulation, Lees et al. observed a 2-fold increase in p21Waf1/Cip1 protein
and a 2.7-fold increase in its mRNA after 48 h in 20% O2 compared to 5% O2, while there was
surprisingly no difference in p21Waf1/Cip1 promoter activity. Oxidative stress-induced p21Waf1/Cip1

overexpression generally acts via a p53-dependent mechanism [165,166]. It has been shown that p53
phosphorylation increases in cultures maintained at 20% O2 resulting in cell-cycle arrest, decreased
proliferation, and differentiation of NSCs toward the glial lineage [167,168]. Nevertheless, there is also
a p53-independient pathway [169] where the p38MAPK phosphorylates p21Waf1/Cip1 in response to
oxidative stress stimuli by inducing phosphorylation at Ser130 in vitro and in vivo [170].

Many researchers have demonstrated that hypoxia or hypoxia-inducible factor 1 alpha (HIF-1α)
stabilization improves several MSC functions, including cell adhesion, migration, and proliferation,
thereby increasing their therapeutic potential [171]. For example, the paracrine effect of ADSCs is
enhanced under hypoxic conditions, where HIF-1α is more stable and it increases secretion of vascular
endothelial growth factor (VEGF), thereby improving the regenerative potential of ADSCs [172].
Furthermore, the enhancement of the proliferation capacity of human umbilical cord blood-derived
MSCs by hypoxia is now known to be dependent on the expression of HIF-1α and the ERK signalling
pathway [173].

The human genome encodes 1048 microRNAs (miRNAs) that regulate virtually all biological
processes. Recently, several hypoxia-inducible miRNAs have been described to target transcriptional
activity leading to enhanced cell proliferation, migration as well as decrease in growth arrest and
apoptosis through the activation of multiple signalling pathways [174]. MiR-486 expression has been
described to promote proliferation, increase angiogenic activity and reduce apoptosis of BM-MSCs
through a PTEN-PI3K/AKT signalling pathway [175]. Another study found that hypoxia significantly
increased the expression of MVs-released miR-210 by ADSCs, which in turn significantly promoted
the proliferation, migration and invasion of human umbilical vein endothelial cells (HUVECs) [176].
A mechanistic study revealed that hypoxia activates the Notch signalling pathway, which subsequently
represses the expression of miR-1 and miR-206 through canonical Hes/Hey proteins, leading to
increased levels of Pax7, a key regulator of satellite cell self-renewal [177], thus, suggesting that
hypoxia promotes asymmetric self-renewal divisions and inhibits asymmetric differentiation divisions
without affecting the overall rate of proliferation.

3.4. Motility and Adhesion

Wound healing is a typical condition in which epithelial, endothelial as well as mesenchymal
cells are firstly subjected to activation of their motility in order to repopulate the damaged region and
then they show a strong proliferative response in order to successfully complete the wound repair
process [178]. Testing the hypothesis that oxygen can impair cell proliferation, survival, and migration
of MSCs, a study conducted human CSCs culture at 21%, 5% and 0.5% O2. Their findings suggest
that physiological O2 (5%) levels increased migration compared with room air (21%) and hypoxia
(0.5%), and treatment with MSC-conditioned media rescued CSCs migration under hypoxia to levels
comparable to physiological O2 migration [179].
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A study about BMSCs [154] and another about ADSCs [157] showed that oxygen tension affected
the physiological motility of the cells. In fact, the physiological oxygen tension increased the ability
of the cells to migrate and upregulated the mesenchymal gene expression of fibronectin, N-cadherin
(adhesion molecules) and vimentin: a mesenchymal marker and one of the fibrotic proteins which
form the intermediate filaments of the intracellular cell skeleton, particularly in the embryonic stem
cells [180].

As previously mentioned, VEGF expression is upregulated by hypoxia and stimulates the motility
of a range of cell types, including progenitor and stem cells. Focal adhesion kinase (FAK) is a
non-receptor cytoplasmic tyrosine kinase that plays a key role in the regulation of cytoskeletal
reorganization, cellular adhesion, growth, survival, and migration [181]. It has been reported that
VEGF stimulates FAK tyrosine phosphorylation in endothelial cells, which is associated with new focal
adhesions and increased endothelial cell migration [182,183].

3.5. Differentiation Fate

As stated before, low oxygen tensions keep human stem cells in a self-renewable undifferentiated
state. Some researchers have demonstrated that physiological oxygen levels are beneficial for the
in vitro maintenance of human ESCs [184,185], neural crest stem cells (NSC) [186] and BMSC [187]
due to a decrease in the amount of spontaneous differentiation supporting self-renewal. This could
be explained in part by the Notch signalling pathway, which has been evolutionarily conserved to
maintain stem or progenitor cell fates in multicellular organisms [188,189]. Myogenic, haematopoietic,
and neuronal precursor cell differentiation is inhibited by members of the Notch family [190–193].
Similarly, it has been shown that hypoxia directly influences Notch activity mediated directly by
HIF-1α. Indeed, HIF-1α has been shown to physically associate with Notch promoting its stability,
thus blocking neuronal and myogenic differentiation [194].

On the other hand, it has been proved that excessive ROS results in dysfunctional differentiation
of HSC [195]. In fact, studies performing in vitro differentiation of MSC into osteoblasts, adipocytes
and chondrocytes show controversial results. Several studies assessing BM-MSC proved increased
rates of osteogenesis [154,196,197], adipogenesis [198,199] and chondrogenesis [200,201] at low
oxygen tensions. However, other studies reveal completely opposite results, where low oxygen
tension impaired the tri-lineage differentiation potential of MSC, or no significant differences
were found [125,196,202–204]. Similar results have been observed on embryonic pancreatic cells
cultured at high PO2, where HIF-1α expression is decreased and numerous differentiated β-cells are
developed [205].

All of these controversial results could be explained in part by the % O2 and the duration of the
exposure used in their experiments. Some of these studies induced differentiation during a short-term
period (less than 72 h), while others maintained the cells up to 30 days or more at low PO2. The oxygen
pressure average in these studies ranges from 0.1% to 5%, which means that some cells were exposed
to a more anoxic environment than the others.

Oxygen and ROS also play a role in neuronal differentiation and they further impact tumour
growth by influencing cell proliferation and differentiation, such as in neuroblastoma development.
Therefore, manipulating oxygen and ROS production represents a useful therapeutic tool if one needs
either to enhance or to modulate neurogenesis and neuronal differentiation, such as in cell replacement
therapies [206].

3.6. Stemness Maintenance

Low oxygen tension clearly promotes the undifferentiated state in several stem cells, but the
molecular mechanisms underlying these observations remained obscure until recently. A link has
been demonstrated between hypoxia, HIFs and molecules that are crucial for the regulation of the
differentiation of stem and/or progenitor cells, including Notch, β-catenin, OCT3/4, and c-MYC. As
we have previously shown, the physiological oxygen tension upregulated the four pluripotency-related
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genes [207,208]: SOX2, OCT3/4, KLF4 and c-MYC (OSKM) in human DPSCs [138]. This result could
be explained, at least in part, by the fact that HIF-2α regulates the expression of the transcription
factor OCT3/4, essential for maintaining the stemness potential [185,209,210], as well as the expression
of SOX2 and Nanog which inhibit the promoter genes of differentiation [211]. It is also known that
HIF-1α and HIF-2α have been shown to have opposing effects on the activity of c-MYC and thus
several implications on stem cells function. HIF-1α inhibits c-MYC activity [212,213], whereas HIF-2α
has been shown to promote c-MYC-dependent proliferation in renal carcinoma cells and multiple
other cell lines [214].

To further define the significance of HIF-1α in MSC function, some researchers established adult
BM-derived MSCs that are able to sustain high level expression of ubiquitin-resistant HIF-1α during
long-term biological processes. Using this model, they showed that the stabilization of HIF-1α proteins
exerts a selective influence on colony-forming mesenchymal progenitors promoting their self-renewal
and proliferation, leading to the induction of pluripotent genes and the inhibition of their terminal
differentiation into osteogenic and adipogenic lineages [215].

A similar study using Wharton Jelly (WJ)-MSC proved that 5% O2 stimulates the expression
of OCT4, NANOG, SOX2 and REX1 genes, which maintains WJ-MSC in an undifferentiated state,
enabling expression of stemness-related transcription factor (SRTF) genes and protein, a hallmark
of de-differentiation towards more immature phenotypes. Moreover, under this condition, cells are
stimulated to grow faster with formation of numerous 3D proliferation centres, another marker of
undifferentiated stem cells [216].

Another aspect of stemness is genomic stability. Recent studies have described the occurrence of
chromosomal abnormalities and mitochondrial dysfunction in human stem cells, particularly after
extensive passaging in vitro and/or expansion under low oxygen tensions. In the bone marrow,
hematopoietic and mesenchymal stem cells form a unique niche in which the oxygen tension is
low. Therefore, permanent culture under low oxygen pressure should reflect the better physiological
conditions. MSC cultured at 5% O2 for several passages were morphologically undifferentiated,
contained less mitochondria and displayed a genetic program that maintained cells undifferentiated
and multipotent [217].

3.7. Reprogramming Efficiency

The generation of pluripotent stem cells (iPSCs) from somatic cells has opened a world of
possibilities in basic and applied research. However, reprogramming is a time-consuming process
and efficiency is generally low, which could be a limitation in the translation to the clinic. Oxygen
concentration present in the cellular microenvironment is a key factor that has shown to affect
reprogramming efficiency in several ways.

For instance, Yoshida et al. found increased efficiency of reprogramming to generate iPSCs when
they introduced the four transcription factors (OSKM) into mouse embryonic fibroblasts and human
somatic cells cultured under 1–5% O2 compared to those cultured at 21% O2 [218]. In addition, they
were able to generate iPSCs when they transduced cells with only two of the four transcription factors
(OCT3/4 and KLF4) and cultured them in 5% O2.

As we have stated before, the metabolism of stem cells differs from that of their progeny; this
aspect is critical, as reprogramming cells to pluripotency requires a shift from oxidative to glycolytic
metabolism. This shift is mediated by HIF1α and HIF2α, two factors induced by low oxygen tensions,
which are both necessary to initiate the metabolic switch and for acquisition of pluripotency [219,220].

Table 1 summarizes the findings of the most relevant studies culturing human stem cells at
different oxygen concentrations.
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Table 1. Summary of relevant studies on stem cells alterations at different oxygen tensions.

Cell Type Oxygen
Conditions Duration Affected Parameters Ref.

C2C12 myoblasts 6% vs. 21% 72 h ROS production, differentiation [134]

HSCs (CD34+ cells) 5% vs. 21% 7 days ROS levels, antioxidant enzymes (SOD, CAT and GPx), glutathione
redox state [135]

Human Dermal
Fibroblasts (HDFs) 5% vs. 21% 72 h

ROS production, enzymatic and non-enzymatic antioxidant
response system, DNA damage, extracellular matrix (ECM)

proteins
[136]

DPSCs 3% vs. 21% Up to passage 25 Oxidative stress parameters (ROS, MDA, carbonylation,
antioxidant defenses), proliferation, stemness (OSKM) [138]

MSCs from adipose
tissue 3% vs. 20% Up to 22 passages Genetic stability, glycolytic function, cell differentiation and ROS

production and targets (Protein carbonylation and MDA) [151]

NSCs 3% vs. 21% 10 days Survival, renewal potential and differentiation [152]
BMSCs 2% vs. 20% 12 days Proliferation kinetics, metabolism, differentiation potential [153]

BMSCs 1% vs. 21% 7 days Proliferation, migration, morphology, adhesion molecules,
osteogenic differentiation [154]

MSCs from umbilical
cord

1.5%, 2.5%, 5%,
21% 70 h Proliferation, metabolism, pH, oxygen consumption [155]

ADSCs 1% vs. 20% 72 h Proliferation, ROS generation, migration, OSKM [157]
Muscle Precursor Cells

(MPCs) 5%, 10%, 15%, 20% Up to passage 2 Cell cycle regulation (p21 and p27), Proliferation [159]

BM-MSCs and ADSCs 2% vs. 21% Up to passage 10 Morphology, differentiation potential, genomic stability, telomere
length, mitochondrial membrane potential, ATP content [164]

Central Nervous System
(CNS) Precursor Cells 2%, 5%, 20% Up to passage 2

(35 days)
Proliferation, HIF1α, apoptosis, multilineage differentiation

potential [167,168]

MSCs from umbilical
cord 3% vs. 21% Up to passage 12 Proliferation, HIF1α, ERK signalling pathway, stemness (OCT3/4

and Nanog), p21, p16, p53 [173]

BM-MSCs 5% vs. 21% Up to passage 15 Donor age, differentiation potential, SA-β-Gal, miRNA sequencing,
KEGG signalling pathways [174]

BM-MSCs 1% vs. 21% Up to passage 4 Migration, proliferation, apoptosis, differentiation potential,
PTEN-PI3K/AKT signalling pathway, miRNAs, HGF and VEGF [175]

Satellite Cells 1% vs. 21% 48 h Quiescence, self-renewal, miRNAs, Notch signalling pathway,
transplantation efficiency [177]

CSCs 0.5%, 5%, 21% Up to passage 10 Proliferation, survival, migration, SA-β-Gal, apoptosis [179]
MSCs from umbilical

cord 2.2% vs. 21% 24 h ROS levels, migration, HIF1α, VEGF [182]

ESCs 1–5% vs. 21% Up to passage 50 Morphology, colony growth, differentiation, hGC production,
embryoid body formation [184]

ESCs 4% vs. 20% Up to passage 50 Morphological differentiation, microarray and transcriptome
profiling, HIF, stemness [185]

Neural Crest Stem Cells 5% vs. 20% 12 days Survival, proliferation, multilineage differentiation [186]
BM-MSCs 1, 3, 5, 10% vs. 21% 7 days Viability, proliferation, self-renewal, osteogenic differentiation [187]

C2C12 myoblasts,
Satellite Cells and NSCs 1% vs. 21% 7 days Notch signalling pathway, undifferentiated state maintenance [194]

BM-MSCs and HSCs 5, 12, 20% 10 days ROS content, proliferation, directional differentiation, apoptosis,
cell cycle, migration [195]

BM-MSCs 2% vs. 18% 2 weeks Osteogenic and adipogenic differentiation, HIF1α, VEGF [196]

BM-MSCs 1% vs. 21% 7 days/4 weeks Proliferation, migration, stemness (OCT3/4, Nanog, SALL4, KLF4),
differentiation [154]

MSCs 2% vs. 20% 7 days Proliferation, osteogenic differentiation [197]
BM-MSCs 0.2% vs. 21% 7 or 14 days Osteogenic and adipogenic differentiation, HIF1α [198]

MSCs 1, 2, 3, 4, 6% vs.
21% 2, 4, 8, 24, 48, 72 h Adipogenic differentiation [199]

BM-MSCs 3% vs. 21%
Isolation and
expansion (4

weeks)

Chondrogenic differentiation, cell surface markers, ECM formation,
expansion, HIFs [200]

BM-MSCs 2% vs. 20% 14 days Chondrogenic differentiation [201]
MSCs 1% vs. 21% 21 days Osteogenic differentiation, HIFs [202]

WJ-MSCs 3% vs. 21% Up to passage 13 Growth kinetics, SA-β-Gal, differentiation, HIFs, p16, p21, p53,
karyotype [203]

ADSCs 1% vs. 21% Up to passage 2 Proliferation, multilineage differentiation, stemness (Nanog, SOX2) [204]
ESCs (dorsal pancreatic

bud) 3%, 8%, 21% 24h or 7 days Cell differentiation, HIF1α gene and protein expression [205]

ESCs 3–5% vs. 20% Up to passage 3 Morphology, proliferation, pluripotency (SOX2, Nanog and
OCT3/4), HIFs [210]

BM-MSCs 1% vs. 21% 14 days Proliferation, differentiation, self-renewal [215]

WJ-MSCs 5% vs. 21% 2-4 weeks Proliferation, stemness (OCT3/4, Nanog, REX1 and SOX2), HIFs,
differentiation [216]

BM-MSCs 5% vs. 21% Up to passage 2 Morphology, differentiation, transcriptional profiling, metabolism,
adhesion [217]

Dermal Fibroblasts into
IPSCs 1%, 5%, 21% 40 days Efficiency of reprogramming into iPSCs (ESC markers, teratoma

formation) [218]

Fibroblasts, ESCs and
IPSCs 2%, 5%, 21% 2 weeks Reprogramming efficiency, HIFs, metabolism (OCR and ECAR) [219,220]

Abbreviations: HSC: haematopoietic stem cell; HDF: human dermal fibroblast; DPSC: dental pulp stem cell; MSC:
mesenchymal stem cell; NSC: neural stem cell; BMSC: bone marrow stem cell; ADSC: adipose derived stem
cell; MPC: muscle precursor cell; BM-MSC: bone marrow mesenchymal stem cell; CNS: central nervous system;
CSC: cardiac stem cell; ESC: embryonic stem cell; WJ-MSC: Wharton Jelly mesenchymal stem cell; iPSC: induced
pluripotent stem cell.
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4. Stem Cells Defense Pathways Activated by Oxygen

Both in vivo and in vitro, stem cells rely on their capacity to adapt to stress conditions. When
damage accumulates, mitotic cells from renewable tissues have two mechanisms to avoid replication.
They can stop cell cycle progression and enter senescence, or trigger cell death programs such as
apoptosis. It is still unclear what determines if a cell undergoes senescence or apoptosis. Although
most cells are capable of both, these processes seem to be exclusive [221] yet linked to each other [222].
There is a third option, autophagy (self-eating), which can lead either to cell survival or cell death.
In most circumstances, autophagy promotes cell survival by adapting cells to stress conditions;
however, when apoptosis is inhibited, autophagy is reportedly conducive to cell death acting as
a back up mechanism [223]. Finally, autophagic cell death is reported to avoid apoptosis as well as
senescence [224], suggesting a crosstalk between these three processes.

4.1. Autophagy

The catabolic and self-degradative process termed autophagy consists of three different forms:
microautophagy, which implies the direct uptake of soluble cytosolic substrates in the lysosomes via
invagination of the lysosomal membrane; chaperone-mediated autophagy, which degrades specific
proteins carrying the peptide motif KFERQ by lysosomes; and macroautophagy, involving the
formation of double-membrane vesicles (autophagosomes) containing an autophagic cargo and their
fusion with lysosomes. Independently of the type of autophagy, the autophagic cargo is degraded
by lysosomal acidic hydrolases and cathepsins and the molecules produced are released into the
cytoplasm and re-used as building blocks in different anabolic pathways [225].

Basal autophagy allows the removal of redundant or damaged and potentially toxic organelles and
protein aggregates, thus representing an important system for quality control in cellular homeostasis.
Therefore, autophagy is different from other types of cell death but is generally regarded as a survival
mechanism that is highly conserved from yeast to mammals. In addition, it has been reported that
low oxygen tension can induce autophagy, which enhances both cell death and cell survival. An
early induction of autophagy by low oxygen tension may be strongly linked to the self-renewal
activities of MSCs [226], which could be an effective way to sustain a healthy population of stem
cells via balancing abnormal cell clearance with normal cell proliferation, contributing to maintaining
self-renewal activities [227]. Supporting this finding, it has been proved that culture of BM-MSCs at
low oxygen tension enhances survival and viability by inducing basal autophagy through HIF-1α and
the AMPK/mTOR signalling pathway [228,229].

Furthermore, damaged mitochondria by excessive ROS can be efficiently removed in stem cells via
autophagy by a process called mitophagy. Autophagy is known to decrease with age, and the failure
to maintain mitochondrial quality control through mitophagy may explain the organism vulnerability
and dysfunction during aging [230]. As an example, failure of autophagy in physiologically aged
satellite cells or genetic impairment of autophagy in young cells causes entry to senescence by loss of
proteostasis, increased mitochondrial dysfunction and oxidative stress, resulting in a decline in the
function and number of satellite cells [231].

Autophagy also plays a role in the differentiation process of stem cells. In a very complete set
of experiments, Pan et al. demonstrated that autophagy remains at high levels in HSCs and dermal
stem cells and promotes their maintenance, but, after induced differentiation, autophagic activity is
downregulated. On the contrary, they proved that autophagy in NSCs, CSCs and DSCs is upregulated
during their differentiation process. Furthermore, they also established that autophagy increases the
reprogramming efficiency and promotes the generation of iPSCs [232]. This evidence suggests that
autophagy plays a critical role in the homeostatic control of stem cell functions.

Taken together, these results demonstrate that autophagy plays a key role in stem cell survival,
proliferation, differentiation and self-renewal. However, little is still known about the relation
between physiological in vitro oxygen tension and autophagy, which might be of importance for
stem cell therapies.
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4.2. Apoptosis

There are two basic apoptotic signalling pathways: the extrinsic and intrinsic apoptotic pathways.
The intrinsic (or mitochondrial) apoptotic pathway is triggered by a variety of intracellular stimuli,
including DNA damage, growth factor deprivation, and/or oxidative stress. This pathway relies on the
formation of the apoptosome, which is composed of procaspase-9, Apaf-1 and cytochrome c. A series
of Bcl-2 family members control the release of cytochrome c by regulating mitochondrial membrane
permeabilization. The extrinsic pathway of apoptosis is initiated by the binding of death ligands to
death receptors in the TNF receptor superfamily. This interaction is followed by the assembly of the
death-inducing signalling complex (DISC), which consists of FADD and procaspase-8/10. DISC then
either activates downstream effector caspases-3, 6 and 7 to directly induce cell demise or cleaves the
Bcl-2 family members, thereby triggering the mitochondria-mediated intrinsic apoptotic pathway [233].

A recent study compared proliferation rates of BM-MSCs cultured at 1%, 5% and 18% O2. As
expected, cells exposed to lower oxygen concentrations displayed greater proliferative potential and
reduced apoptosis, as demonstrated by a downregulation of Bax and cleaved caspase-3 expression and
an upregulation of antiapoptotic protein Bcl-2 [234]. In fact, it has been proved that caspase-3 silencing
modulates the cell cycle of MSCs, promotes cell proliferation and enhances the anti-apoptotic capacity
of MSCs under low oxygen conditions in vitro [235].

“Hypoxic preconditioning” has been proven to be an effective method to enhance the therapeutic
action of MSCs. As such, hypoxic preconditioning increased the expression of pro-survival and
pro-angiogenic factors including HIF-1a, angiopoietin-1, VEGF, erythropoietin, Bcl-2 and Bcl-xL in
BM-MSCs before transplantation into infarcted hearts [236]. Furthermore, the administration of
hypoxic preconditioned MSCs attenuated ischemia/reperfusion injury by inhibiting inflammatory
responses associated with ROS generation. Mechanistically, p38MAPK and NF-kB signalling pathways
were downregulated, whereas mitochondrial cytochrome c, Bcl-2, glutathione and IL-10 were
upregulated [237].

Thus, in vitro culturing at low oxygen tension enhances the capacity of MSCs to repair infarcted
myocardium, which is attributable to reduced cell death and apoptosis of implanted cells, as well as
increased angiogenesis, antioxidant and anti-inflammatory effects.

4.3. Senescence

Cellular senescence is described as a state of permanent and irreversible cell cycle arrest in
response to different stress/negative stimuli. These include telomere shortening, DNA damage,
oxidative stress, oncogene activity and others [238,239]. Though senescent cells are still viable and
metabolically active, they are unresponsive to mitogenic or oncogenic stimulations and lack the specific
functions of their lineage [240]. The cell cycle arrest in senescence occurs mostly in the G1 phase,
distinguishing it from G0-arrested quiescent cells [241].

Senescent cells have both beneficial and negative effects and functions for both tissues and the
whole organism. On one hand, senescence is a potential tumour-suppressing mechanism. On the
other hand, excessive accumulation of senescent cells could create a pro-inflammatory environment
favourable for the onset and progression of different age-related diseases, such as cancer [242].

Although the phenotype associated with cellular senescence is highly variable and heterogeneous,
senescent cells show common traits. Enlarged cell body and irregular shape, increased senescence
associated-β-galactosidase (SA-β-Gal) activity, decreased proliferation capacity, high levels of the
CDKIs p16 and p21, and decreased mitochondrial membrane potential are common markers of cellular
senescence both in vitro and in vivo [243].

Several studies show that human MSCs cultured at atmospheric oxygen tension (21% O2) exhibit
an increase in cell senescence markers compared to those cultured at low physiological in vivo oxygen
tension [244–246]. For instance, human DPSCs cultured at 21% O2 show increased levels of p16 mRNA
expression and SA-β-Gal activity compared to those cultured at 3% O2 at several passages [138]. In
this same study, cells cultured at 21% O2 exhibit a great decrease in mitochondria membrane potential



Int. J. Mol. Sci. 2019, 20, 1195 14 of 27

and higher levels of ROS in comparison with cells at 3% O2. Similar studies with human DPSCs show
significantly higher levels of p21 protein levels under 21% O2 through the p38 signalling pathway [137].

In addition, several studies with human ADSCs demonstrate higher levels of SA-β-Gal
activity [247,248] and increased expression levels of the tumour suppressor genes p16, p21, p53 and
pRb in those cells cultured at atmospheric O2 concentration compared to 2–5% O2 [249]. Related studies
with human ADSCs found increased average cell size and ROS levels at ambient oxygen pressure at
passages 12–21. Interestingly, they also discovered that the alteration of senescence-associated gene
expression profile was more noticeable at 20% O2 after several passages, while the change at 5% O2

was less significant.
Moreover, atmospheric oxygen culture of MSCs showed increased expression of p21, Mdm2 and

E2A with increased cell size while the culture of MSCs at lower oxygen concentrations exhibit activation
of HIF-1α and suppression of p21, Mdm2 and E2A expressions [245]. MSCs under atmospheric
conditions also cease proliferation earlier, whereas their counter partners could be further expanded
without significant loss of proliferation capacity, which was driven by the p21 pathway. Additionally,
bone-marrow derived MSCs cultured at 1% O2 showed lower levels of SA-β-Gal, p16 expression and
higher proliferation capacity compared to those cultured under hyperoxic conditions [250].

Taken together, these results suggest that culturing at physiological oxygen levels delays
senescence and inhibits senescence-related genes such as p21 and p16, preventing cell cycle arrest.
However, the underlying mechanisms by which oxygen modulates cellular senescence are still not
clear. The inhibition of cell cycle progression that accompanies senescence seems to be driven by two
main pathways: p16 and p21. Both can be induced by stress such as ROS or other negative stimuli and
activated by DNA Damage Response (DDR) or p38MAPK activity. By contrast, HIF-1α is known to be
able to inhibit p16 and p21, thereby preventing oxidative stress-induced senescence.

5. Perspectives Regarding Stem Cell Culture Oxygen Condition for Stem Cell Therapy

As stated, although most stem cells are maintained under 21% O2, this is unlikely the optimal
condition to preserve their stemness. As shown by our group recently, partial O2 pressure influences the
adhesion, proliferation, and osteogenic differentiation of human dental pulp stem cells on β-tricalcium
phosphate scaffold [251]. Therefore, oxygen concentration can modify stem cells behaviour when
used for tissue engineering constructs for bone regeneration procedures. Other authors found
similar results in an ischemia model. Cells cultured under physiological oxygen concentration
(physioxia) exhibited increased proliferation, migration, and angiogenesis, and decreased senescence
and apoptosis. Physioxia is a more effective environment to culture stem cells for transplantation
because it owes the maintenance of native stem cell properties [247].

This review has illustrated the dramatic influence that widely used environmental oxygen tension
may have on the maintenance and survival of stem cells, and also provides an insight of the highly
regulated network of signalling pathways that underlies the stem cells response to oxygen alterations.

We conclude that oxygen concentration is an essential factor to be considered when culturing
stem cells for tissue engineering and regenerative medicine.
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