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Abstract

Inhibitory neurons take on many forms and functions. How this diversity contributes to memory function is not
completely known. Previous formal studies indicate inhibition differentiated by local and global connectivity in
associative memory networks functions to rescale the level of retrieval of excitatory assemblies. However,
such studies lack biological details such as a distinction between types of neurons (excitatory and inhibitory),
unrealistic connection schemas, and nonsparse assemblies. In this study, we present a rate-based cortical
model where neurons are distinguished (as excitatory, local inhibitory, or global inhibitory), connected more
realistically, and where memory items correspond to sparse excitatory assemblies. We use this model to
study how local-global inhibition balance can alter memory retrieval in associative memory structures,
including naturalistic and artificial structures. Experimental studies have reported inhibitory neurons and
their subtypes uniquely respond to specific stimuli and can form sophisticated, joint excitatory-inhibitory
assemblies. Our model suggests such joint assemblies, as well as a distribution and rebalancing of over-
all inhibition between two inhibitory subpopulations, one connected to excitatory assemblies locally and
the other connected globally, can quadruple the range of retrieval across related memories. We identify
a possible functional role for local-global inhibitory balance to, in the context of choice or preference of
relationships, permit and maintain a broader range of memory items when local inhibition is dominant
and conversely consolidate and strengthen a smaller range of memory items when global inhibition is
dominant. This model, while still theoretical, therefore highlights a potentially biologically-plausible and
behaviorally-useful function of inhibitory diversity in memory.

Significance Statement

Broadly, there are two types of neurons: excitatory and inhibitory. Inhibitory neurons are amazingly diverse
compared with excitatory neurons. Why? Using a computational model with realistically-sized groups of ex-
citatory neurons (representing memories) associated together in a network of memories, we highlight a po-
tentially biologically-plausible and behaviorally-useful function of inhibitory neuron diversity in memory. Two
findings in particular standout: (1) inhibitory diversity can quadruple the range of memory retrieval; and (2)
balancing the strength of different inhibitory neurons’ influence on excitatory neurons can dramatically
change how the network of memories become activated, balancing and extracting both geometric and top-
ological information about the network.
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Introduction
The mechanisms by which our brains flexibly perform

the complex tasks of learning and memory are not com-
pletely understood. Hebbian learning (Hebb, 1949), the
relative increase in synaptic strength between neurons as
a result of shared, causal activity, seems important. Hebb
postulated memories were formulated in the brain by as-
semblies of highly-interconnected neurons (Hebb, 1949).
Evidence for this “neuron assembly” hypothesis was found
in hippocampus, where groups of neurons become syn-
chronously activated in response to an animal’s spatial
location, indicating a neural correspondence to and po-
tential memory of the location (Harris et al., 2003). These
memories are often mutually related, in physical or be-
havioral space for the case of navigation (Tolman, 1948),
in reward space for the case of rewarded learning tasks
(Dusek and Eichenbaum, 1997), in linguistic space for
the case of language comprehension (Goldstein et al.,
2021), and theoretically in any arbitrary semantic space
for generalized graph-based reasoning (e.g., family
trees; Whittington et al., 2020). How can the structure of
thesemutual relations be identified dynamically in cortical net-
works? Inhibitory mechanisms may hold an answer. Here, we
computationally explore the possible role of inhibitory circuits
in extracting graph-based relationships in the space of behav-
iorally relevant information.
The majority of experimental and computational work

focusing on assemblies as representations of memory
items has focused on the role of excitatory neurons.
However, emerging evidence suggests inhibitory neurons
play a nontrivial role in cortical networks. Throughout the
brain, inhibitory neurons have classically been thought to
coarsely keep excitation in check with a broad, nonspe-
cific blanket of inhibition (Amit et al., 1994; Brunel, 2000).
But more recent work has shown inhibitory neurons are
tuned to specific external stimuli (Okun and Lampl, 2008;
Xue et al., 2014), have specific associations with behavior
(Dudok et al., 2021), have a large diversity of forms and
functions within and across brain areas (Gouwens et al.,
2020; Burns and Rajan, 2021), and form inhibitory assem-
blies (Zhang et al., 2017), often jointly with excitatory sub-
networks (Otsuka and Kawaguchi, 2009; Koolschijn et al.,
2019). A hallmark of many neuropathologies is inhibitory
dysfunction (Amieva et al., 2004; Baroncelli et al., 2011;
Burns and Rajan, 2022; Yao et al., 2022). If specific inhibi-
tory dysfunction alone is sufficient for explaining these
pathologies, then we could expect subtle inhibitory changes
to cause dramatic changes in global function in complex
tasks like those involving learning and memory. A great-
er understanding of the neurophysiological mechanisms
underlying these changes may help us target treatments

for such disorders and provide fundamental insight into the
computational roles of inhibitory neurons in such circuits.
Previous modeling work in a formal model with binary

neurons (Haga and Fukai, 2019) has shown how anti-
Hebbian learning (i.e., involving inhibitory synapses) in an
associative memory model was able to extend the span
of association between mutually-related memory items
organized in a simple ring structure, compared with a reg-
ular Hebbian learning rule (i.e., not involving inhibitory
synapses). Later work extended this formal model to arbi-
trary graph structures (Haga and Fukai, 2021). These results
suggest inhibition may play a nontrivial role in relational
memory systems. However, these models lacked biological
features, most prominently a lack of distinction between ex-
citatory and inhibitory neuron populations, breaking Dale’s
Law. Dale’s Law (sometimes also called Dale’s Principle or
Dale’s Hypothesis), first appearing in Eccles et al. (1954), is
the view that a neuron’s terminals do not transmit multiple,
differently-acting chemical or electrical signals to postsynap-
tic targets, e.g., an excitatory neuron has the exclusive
electrical effect of exciting postsynaptic targets and never in-
hibiting them. Another limitation of prior work is that the exci-
tatory assemblies were also not nearly as sparse as those
seen in biology and the neurons took on binary states.
Nevertheless, the results indicate global functional changes
can result from subtle inhibitory changes (Ferguson et al.,
2013; Rich et al., 2017). This study proposes a more realistic
connection scheme of distinct excitatory and inhibitory neu-
rons to embed sparse cell assemblies which represent
memory items mutually linked through arbitrary graph struc-
tures. Formulated in this way, the model allows us to confirm
the previous suggestion that a balance between local inhibi-
tion and global inhibition on cell assemblies determines the
scale and extent of memories retrieved in a neural network.
We show this for various naturalistic and artificial associative
memory structures, including as a potentially behaviorally-
useful function to maintain a choice distribution given a junc-
ture or decision point in physical or memory space. We find
a balance between local and global inhibition allows control
over the range of recall within arbitrary graph structures, as
well as graph clustering effects which may be useful in navi-
gation andmemory tasks.

Materials and Methods
Model
In order to embed memories in the network, we gener-

ate binary patterns as vectors of length NE, the number
of excitatory neurons. Then, the weight Tij of connections
between any pair of excitatory neurons i and j is
defined using these patterns. First, we create p random

binary patterns (of 0 and 1 s) of length NE, jm
i

� �m¼1;2;:::;p
i¼1;2;:::;NE ,

with probabilities for 0 and 1 as Prob jm
i ¼ 0

� � ¼ 1� f
and Prob jm

i ¼ 1
� � ¼ f, and where we call f the “sparseness”

parameter of the memory patterns. This means neurons can
belong to one or more memory patterns, and can be ex-
pected on average to belong to p � f memory patterns.
Memories are then embedded using a modified extended
association rule (Griniasty et al., 1993; Amit et al., 1994)
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designed to allow association between memory items in an
arbitrary graph structure where vertices are the memory pat-
terns and edges represent an association of two memory
patterns.

Tij ¼
Xp

m¼1

jm
i j

m
j þ

Xp

m¼1

Xp

k2K
jm
i j

k
j (1)

Specifically where K is the set of memory patterns neigh-
boring (adjacent to, in the graph theoretic sense) pattern
m in the associative memory structure, M (an example of
the memory patterns m and K is illustrated in the example
shown in Fig. 2A). Although all values of Tij are defined,
not all are non-zero, in fact, many can be zero. This is be-
cause Equation 1 defines increases in Tij only when those
units are assigned to the same memory pattern or neigh-
boring patterns. We could interpret this functionally as
neurons belonging to the same or neighboring patterns
are connected with probability 1 and with probability 0
(or not connected) to all other excitatory neurons. An ex-
ample of the functional consequence of this connectivity
can be seen in Extended Data Figure 1-1.
Two populations of inhibitory neurons are also modelled,

one with global connectivity (uniform connection probabil-
ities as indicated in Fig. 1) of size NG and another with
local connectivity, which is specific to each memory
pattern, and has a total size of NL, but where only fNL

local inhibitory neurons participate in each pattern.
Unless stated otherwise, we use NE ¼ 4;000, NG ¼ 500,
NL ¼ 500, and f ¼ 0:01, meaning that each pattern con-
sists of a joint assembly of 40 excitatory neurons and 10
local inhibitory neurons. A general schematic of the
model from the perspective of a single memory pattern
is shown in Figure 1A.

Neurons are modelled as proportions of their maximum fir-
ing rates, based on an established method (Amit et al., 1994;
note: the following completely describes our implementation,
including modifications, so readers need not be familiar with
the prior work (Amit et al., 1994)). At each timestep, currents
are calculated for each excitatory neuron IEi , global inhibitory
neuron IGi , and local inhibitory neuron ILi :

tE
_IEi ¼ �IEi 1

1
NEhfi

X
j 6¼i

TijVE
j

� 1� cð Þ 1
NGPEG

X
JGE
ij VG

j

�c
1
NLf

X
JLE
ij V

L
j 1 Hext

i (2)

t I
_IGi ¼ �IGi 1

1
NEfPGE

X
i

JEG
ij VE

j (3)

t I
_ILi ¼ �ILi 1

1
NLf

X
i

JEL
ij V

E
j (4)

and then converted into proportions of their maximum fir-
ing rates by:

_VE
i ¼ f IEi

� �
1 § i (5)

_VG
i ¼ c IGi

� �
(6)

_VL
i ¼ c ILi

� �
; (7)

where Jij is the balanced connection weight between neu-
rons i and j, tE ¼ 10ms and t I ¼ 2ms are the time decay

Figure 1. A, General schematic of the model from the perspective of a single memory pattern (Em) and its connections to its respective
local inhibitory population (LI), neighbors (Ek), and the global inhibitory population (GI). Connection probabilities are indicated as values of
P. To retrieve a pattern, excitation is given directly to a single pattern. Gaussian noise is also applied independently to all excitatory neu-
rons. Key: striped/shaded arrows and circles indicate excitatory connections and populations, respectively, and unshaded arrows and
circles indicate inhibitory connections and populations, respectively. N.B., although M consists of distinct memory patterns (and this dis-
tinction is necessary for the purposes of creating different associative memory structures), neurons can belong to any or all patterns (with
independent probability of f to belong to any single memory pattern). Extended Data Figure 1-1 shows an example of the resultant activ-
ities over time for the stimulated pattern, neighbor, and other patterns. B, Input-output functions for the excitatory neurons (f ) and inhibi-
tory neurons (c ; from Amit et al., 1994). For the excitatory input-output function, values of I above 0:15 are mapped to V ¼ 0:08, and the
inhibitory input-output function continues linearly with the same slope for values of I above 0:6.
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constants, c 2 ½0;1� is the local-global inhibition balance,
and PEG ¼ 0:5 and PGE ¼ 0:1 are the connection proba-
bilities from excitatory to global inhibitory neurons and
global inhibitory to excitatory neurons, respectively. The
hfi term is the sum of expected firing rates based on
the average degree of M, e.g., if M is a 1D chain,
hfi ¼ f � 1:5 ¼ 0:015 (where by “1D chain,” we mean a set
of vertices wherein each vertex is connected to exactly
two other vertices in the set, such that they form a chain-
link structure as illustrated in Fig. 2A). The hfi term therefore
acts to normalize the excitatory-to-excitatory weights and
does not affect the probability of neurons belonging to
memory patterns. External input to the network is given by
Hext

i ¼ 0:2, the drive given to excitatory neurons in the pat-
tern we wish to retrieve during the stimulation window, and
§ i 2 Nð0;0:00152Þ is small Gaussian noise (independently
drawn at every step, for every excitatory neuron). The input-
output functions for the excitatory neurons (f ) and inhibitory
neurons (c ) are shown in Figure 1B and are from a previous
study (Amit et al., 1994). The network’s forward dynamics
(governed by Eqs. 2–7) are solved using the Euler method
with step sizes of 0.1 ms.
The excitatory-to-excitatory weights are considered

balanced by setting Tij ¼ JEEij . We then balance the inhibi-
tory-to-excitatory and excitatory-to-inhibitory weights
based on Tij. We balance the inhibitory-to-excitatory (JGE

ij

and JLEij ) and inhibitory-to-excitatory (JEGij and JELij ) connec-
tions by calculating the sum of each excitatory neuron’s
presynaptic input in Jij and calculating the proportion
of this sum compared with the mean sum of all excita-
tory neurons. This proportion becomes the connection
weight, and obtains a mean of 1. In effect, this means
excitatory neurons which receive stronger recurrent
excitation than the mean excitatory neuron receive
proportionally stronger local and global inhibition.
Theoretically, this can be interpreted as a form of ho-
meostatic normalization for the purpose of excitatory-
inhibitory balance.
Associative memory structures M ¼ ðP;AÞ with

jPj ¼ p vertices (memory patterns) and edges (memory
associations), A, is chosen and the model is instanti-
ated according to the above procedure. We then
choose a single pattern to receive external input to all
of its excitatory neurons during the stimulation win-
dow, t ¼ 0ms to t ¼ 80ms, after which the network is
left to settle into an approximate steady-state and
stopped at t ¼ 500ms for analysis (we show represen-
tative examples in Extended Data Fig. 2-1 of simula-
tions up to 5 s to demonstrate the stability of these
approximate steady-states). The main variable of ma-
nipulation was the balance between local and global
inhibition balance, c, where c ¼ 0 means only global in-
hibition is active, c ¼ 1 means only local inhibition is

DC

BA

Figure 2. A, Illustration of M as a 1D chain. Arrows indicate the initially stimulated memory m and the set of neighboring memory
patterns, K, which are adjacent to m in M. Shading of vertices indicates the strength of activity in each excitatory assembly (darker
is more active). B, Example trials showing the correlation of approximate steady-state activities of excitatory neurons with neighbor-
ing memories in a 1D chain associative memory structure. Gray lines are single trials (n=100) and black lines are the mean of all tri-
als. Panels show increasing the value of c to 0:6 (to a local inhibition dominant network configuration) approximately doubles the
initial range of retrieval. C, Example trials the same as B for c ¼ 0:7 with panels showing increasing sizes of networks (starting from
1x, which is NE ¼ 4; 000, NG ¼ 500, NL ¼ 500). This indicates a strong finite field effect which appears in the local inhibition domi-
nant state. D, Scatterplot showing the range of retrieval measure, D, increases with c. Gray dots are single trials (n=5 per value of
c) and the black line follows the mean of trials. Trials for c ¼ 0:7 were completed with NE ¼ 32; 000, NG ¼ 1; 000, NL ¼ 1;000, and
for all other values of c the trials were completed with the regular network size (NE ¼ 4;000, NG ¼ 500, NL ¼ 500). Extended Data
Figure 2-1 shows the stability of single units in these simulations of up to 5 s.
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active, and c ¼ 0:5 means there is an equal contribu-
tion of both global and local inhibition in the network.

Analysis
We noted changes to c systematically changed the

number of memory patterns in M which became acti-
vated during the simulated memory retrieval phase
(from t ¼ 80ms, when the external stimulation ended,
to t ¼ 500ms, when the simulation ended), despite no
change to the excitatory weights or structure of M. We
refer to this phenomenon throughout this and following
sections as an “extension” in the “range of retrieval” of
the memory patterns. To quantify this extension in the
range of retrieval given by changes in c, we tested M as
a 1D chain with p ¼ 100. We stimulated each pattern
and recorded the excitatory firing rates at t ¼ 480ms to
t ¼ 500ms. With WS ¼ 20ms being the number of time-
steps being averaged, we calculate the mean Vm and var-
iance DV2

m of the final firing rates for eachmemorym by:

Vm ¼ 1
WS

XNE

i¼1

Vm
i (8)

DV2
m ¼ 1

WS

XNE

i¼1

ðVm
i Þ2 � Vm: (9)

The covariance between two memories m and v is:

COVm v ¼ 1
WS

XNE

i¼1

Vm
i V

v
i � VmVv : (10)

The correlation between two memoriesm and v is:

Cm;v ¼ COVm vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DV2

m DV2
v

q : (11)

We then calculate the mean correlation between two
memories at the shortest path distance d away from each
other by:

Cd ¼ 1
p

X
m

Cm;m1d: (12)

Finally, we quantify the range of retrievalD using the fol-
lowing algorithm:
1. Calculate jCd�1 � Cdj for all d.1.
2. D is the first value of d for which the next Y memory

patterns have jCd�1 � Cdj,« . If no such D is found,

D ¼ p
2
.

We use « ¼ 0:05 and Y ¼ 5. Intuitively, this algorithm
can be considered to estimate the distance in M from the
initially stimulated memory pattern m to the farthest suffi-
ciently-active memory pattern d to quantify the range of
retrieval.
We observed how the activity of the excitatory popula-

tion spread through associative memory structure for

different values of c and across time. We chose to visual-
ize this spread in three classical graphs, Zachary’s karate
club graph (Zachary, 1977), the K5-3-chain (Schapiro et
al., 2013), and the Tutte graph (Tutte, 1946), and one
constructed graph representing a multi-room spatial
environment which we call the multiroom graph. The ka-
rate club graph (Zachary, 1977) is a classical graph
where each vertex represents a karate practitioner and
edges connect individuals who interacted with each
other outside of their karate training (Fig. 3A, second
row). The K5-3-chain (Schapiro et al., 2013) is a set of
three almost fully-connected graphs on five vertices,
but where the edge between two vertices in each of the
three almost fully-connected are cut and instead those
vertices are connected to another almost fully-con-
nected graph to form a single, connected graph (Fig.
3A, first row). The Tutte graph (Tutte, 1946; Fig. 3A,
third row) has some notable graph-theoretic properties:
(1) each vertex has exactly three neighboring vertices;
(2) unlike many other graphs with the prior property
[property (1)], there exists no Hamiltonian cycle in the
Tutte graph, i.e., there is no path through the graph
which visits each vertex only once, never uses an edge
more than once, and returns to the original vertex it
started at; and (3) there is a central vertex which con-
nects to three separate “rooms” (clusters of vertices),
despite there being a strong global symmetry in the
number of each vertex’s neighbors [property (1)] while
there is also a subtle asymmetry in the lack of a
Hamiltonian cycle [property (2)]. We designed the mul-
tiroom graph to represent a spatial environment with
four equally-sized rooms, each connected to two other
rooms by centrally-located “doorways” on two sides of
each room (Fig. 3A, fourth row). These graphs were
chosen for their complexity, relation to or derivation
from real-world analogues, and well-known graph the-
oretic features.
In order to quantify the similarity between the activity

of the network and graph theoretic properties in the
associative memory structures, we compared the ap-
proximate steady-state activity to the community de-
tection and classification of vertices using the label
propagation algorithm (Raghavan et al., 2007). We de-
note two vertices, e.g., m and v, being members of
the same community according to this algorithm with
LPA vm; vvð Þ ¼ 1 and LPA vm; vvð Þ ¼ �1 otherwise. Then,
the clustering index for a given trial and its associated
associative memory structure is given by the following:

Q ¼ 1
ðp2 � pÞ

X
m

X
m6¼v

LPA vm; vvð ÞCm;v: (13)

The clustering index is a measure of how our model’s
activity corresponds to topological features of M. To test
how the activities correspond to geometric distance for
arbitrary graphs, we define a local area around a vertex in
M. This local area is the closed d-neighborhood of a ver-
tex, i.e., the set of the vertex v and all vertices within dis-
tance d as measured by their shortest path to v. For a
choice of d and v, we construct a local area function
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LA mjv;dð Þ which assigns vertices in the local area with a
value of 1 and �1 otherwise. We then calculate the geo-
metric index by the following:

R ¼ 1
ðp2 � pÞ

X
m

X
m6¼v

LA mjv;dð ÞCm;v: (14)

Code availability
The model was implemented using Julia 1.5.2. A copy

of the code is publicly available at https://github.com/
tfburns/BurnsHagaFukai (also see Extended Data 1).

Results
The general structure of the model is illustrated in Figure

1A. Memories are modelled as strongly-interconnected
assemblies of excitatory neurons. Each memory item’s as-
sembly is also interconnected to the assemblies of memory
items which it is connected to in the associative memory
structure, M. The associative memory structure can take

on any form. Inhibition to the network is provided by two
equally-sized populations: (1) a global inhibitory popula-
tion, which has an excitatory to global inhibitory connection
probability of 0:1 and global inhibitory to excitatory connec-
tion probability of 0:5; and (2) local inhibitory populations
(one for each excitatory assembly), which are fully con-
nected to individual excitatory assemblies in the associative
memory structure. The balance between these two activities
was governed by the parameter c: c ! 0 being strongly
global, c ! 1 being strongly local, and c ¼ 0:5 being a bal-
ance between the two. A single trial is performed by giv-
ing a brief positive impulse (80ms) to a single excitatory
assembly and then letting the network self-regulate
its activity thereafter. This is similar to how a brief sen-
sory stimulus of a single memory item can (even after
the stimulus is removed) have persistent, represent-
able activity and this activity can cause the retrieval of
related memory items via cognition (Miyashita, 1988;
MacDonald et al., 2011; Uitvlugt and Healey, 2019).
We mostly analyze the approximate steady-state reached
after 500ms.

BA

K5-3-chain

karate
club graph

Tutte
graph

multiroom
    graph

Figure 3. Each row of subplots in this figure corresponds to data from four different associative memory structures (graphs); from
top to bottom: K5-3-chain, karate club graph, Tutte graph, and multiroom graph. A, Example trials in the associative memory struc-
tures at two values of c. Vertices are shaded according to the sum of its neurons’ normalized activity (darker is more active). Arrows
indicate the vertex which was stimulated at the beginning of the trial. B, Correlations of approximate steady-state activities of exci-
tatory neurons with all other vertices in the same associative memory structures and at the same two values of c as in panel A.
Vertices have been ordered such that those with similar correlations to other vertices are adjacent to illustrate the clustering effect
that naturally arises from the network’s dynamics.
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Extended range of retrieval
Setting M as a 1D chain with p ¼ 100 memory patterns,

we simulated values of c from 0 to 1 in 0:1 steps. We
found the range of retrieval extended gradually with in-
creases to c (Fig. 2A). At c ¼ 0:7, the network showed a
dramatic increase in noisy behavior, however this slowly
subsided as we increased the size of the network, indicat-
ing a finite field effect (Fig. 2B). Compared with c ¼ 0,
which had a range of retrieval of around 5, c ¼ 0:7 quad-
rupled this distance to 20 neighbors in distance along
the 1D chain (Fig. 2C). In the range of c.0:7, we tested
networks of sizes up to NE ¼ 128; 000, NG ¼ 4;000,
NL ¼ 4; 000 and found that in all cases the network activity
was very noisy. Because of computational limitations, we
did not test larger networks, however we speculate that suf-
ficiently large networks are likely to exhibit even greater ex-
tensions to the range of retrieval but at smaller network
scales are perturbed by noise from a finite field effect.

Spread of excitation in associative memory structures
We also tested more sophisticated associative memory

structures, namely: the K5-3-chain, karate club graph,
Tutte graph, and multiroom graph. As in the 1D chain
case, trials with values above c ¼ 0:7 often had noise,
although the largest graph (multiroom) had stable trials
with values of up to c ¼ 0:85. We also observed most
graphs change in their excitatory activity most noticeably
in the region of c ¼ 0:5 to c ¼ 0:6. We therefore chose to
focus on two cases: (1) strong global inhibition (c ¼ 0:1),
and (2) slightly stronger local inhibition (c ¼ 0:525; Fig. 3).
In most cases (karate club graph, K5-3-chain, and multi-

room graph) excitation spread across a larger range of the
associative memory structure when local inhibition was
dominant than when global inhibition was dominant. The
Tutte graph uniquely decreased the spread of excitation
when activating its central vertex (Fig. 3A, third row, arrow).
We suspect this is because of the unique topology of the
Tutte graph and this central vertex—no other graph has
strongly segmented “rooms” all neighboring a single vertex.
Correlations between the vertices (assemblies) of the

underlying neurons (neurons belonging to those assem-
blies, see Eq. 11) showed different resolutions of cluster-
ing. For most graphs, there was a trend of more and small
clusters at c ¼ 0:1 and then fewer, larger clusters at
c ¼ 0:525. However, the K5-3-chain showed the breaking
down of clusters and some strong negative correlations at
c ¼ 0:525. We can see in Figure 3B, top row, that the
graph is made up of pseudo-K5 subgraphs—groups
of five vertices completely connected, except for two
“boundary” vertices, which connect the pseudo-K5 sub-
graphs together. Within each pseudo-K5 subgraph, the
three “core” vertices (those which are fully connected
within the pseudo-K5 subgraph and not the boundary ver-
tices) remain strongly correlated with one another while
the two “boundary” vertices become almost equally cor-
related with their own pseudo-K5 subgraph and their
neighboring subgraph and negatively correlated with the
opposite subgraph. For the well-connected core vertices,
c ¼ 0:525 also represents the level at which the spread of

excitation almost covers the entire graph. This is quite un-
like the other graphs tested. At c ¼ 0:1, in the karate club
graph, approximately five clusters of strongly correlated
vertices were present, whereas at c ¼ 0:525 this reduced
to approximately three (Fig. 3B, second row). The Tutte
and multiroom graphs showed a similar trend in consoli-
dation of clusters at c ¼ 0:525 (Fig. 3B, third and fourth
rows).
We also observed how excitation spreads across the

associative memory structure across time, after activation
of vertices of interest, in the Tutte and multiroom graphs.
For the Tutte graph we chose the central vertex, which
branches off into three separate “rooms,” and for the mul-
tiroom graph we chose a location within one of the rooms
that also led through a “doorway” to a neighboring room.
We chose these vertices since they represent points of
behavioral interest and ecological importance in animals—
they are points at which an animal may make significant
choice between which room to enter, explore, or exploit.
In the Tutte graph, for c ¼ 0:1, there is initial activation of
all three rooms (Fig. 4A). This is accompanied by a general
rise in global inhibition and specific increases in the activ-
ity of local inhibitory populations connected to the respec-
tive active excitatory populations. However, at this early
stage, one room is slightly more dominant in overall exci-
tation (Fig. 4A, top-left panel, bottom-right “room”). This
dominance appears to translate into gradual and then
complete activity dominance compared with the other
two rooms at the later time-windows. Contrastingly, for
c ¼ 0:525, the activity of vertices in the Tutte graph is ini-
tially broader and this breadth of excitation is maintained
steadily throughout the duration of the trial. We also see
that the global and local inhibitory populations for
c ¼ 0:525 (Fig. 4C) quickly stabilize in an approximate
steady-state. In the case of c ¼ 0:1, the global inhibitory
activity progresses through three distinct phases of activ-
ity (Fig. 4B, arrows): an initial rise, an unstable plateau,
and finally a higher, stable plateau. Meanwhile, the local
inhibitory activity for c ¼ 0:1 reflects the recruitment and
release of various memory items before coming to an ap-
proximate steady-state at a similar time as the global in-
hibitory activity.
The multiroom graph showed a similar trend in broad-

ening and maintaining a larger range of retrieval with in-
creases in c. However, possibly because of the size of the
network and because the chosen vertex was located
within one of the rooms (thus biasing toward activation of
that room’s other vertices, unlike the central vertex in the
Tutte graph), observation of the effect required an in-
crease in c. For illustration of the effect, we chose
c ¼ 0:525 and c ¼ 0:7 (Fig. 5). Interestingly, in the case of
c ¼ 0:7, initial broadening of the range of retrieval into the
neighboring room (through the doorway adjacent to the
memory item being stimulated) was slightly reduced and
the first memory pattern of the room on the opposite
doorway became active later in the trial.
The clustering and geometric indices, Q and R, for each

graph, at different values of c are given in Table 1. Since R
depends on a choice of distance d in the local area, we
calculated R for all values of d (from 1 up to the diameter)
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and report the largest value of R (and its d) in Table 1 and
for all values in Table 2. In general, the larger the value of
Q, the more agreement between the community struc-
ture measured by label propagation and by the correla-
tions of vertex activities in the final network states (by
our model). High values of R indicate the final activity
states are similar to geometric distance. We analyze the
activity based on all neurons and a subset of neurons
which reach a firing rate of at least 0:02 of the maximum
firing rate during the simulation. We call this subset the
selective neurons.
Clustering indices (Q) using only the selective neurons

are generally larger than for all neurons, indicating these
more-active neurons generally contribute positively to
clustering. This is especially noticeable when the net-
work settles into a state where assemblies take on a
wide range of values (e.g., in the K5-3-chain graph for
c ¼ 0:525). In general, the clustering indices indicate
that given the size and topology of different graphs,
different values of c have different propensities for
clustering global characteristics.

Geometric indices (R) were generally greater than the
clustering indices, indicating a greater emphasis of the
geometry rather than the topology in these memory
graphs at these values of c. Nonetheless, some topo-
logical information is captured and almost all of the
geometric indices were of a comparable order as the
clustering indices. As we increase c, the distance is in-
creased or unchanged (i.e., not decreased). However,
whether the clustering index increases with c depends
on the structure of the graph. Importantly, either the
clustering index or the distance becomes larger when
c becomes larger, implying the approximate steady
states can reflect the broader structure of the graph
as the ratio of local inhibition to global inhibition is
increased.

Discussion
Previous modeling studies have conflated excitatory and

inhibitory neuron identities and learning rules (Griniasty et
al., 1993; Haga and Fukai, 2019) or ignored inhibitory

C

BA

Figure 4. A, Example trials for memory item neuron activities in the Tutte graph during different time-windows for c ¼ 0:1 and
c ¼ 0:525. The central vertex is activated for the first 80ms of each trial. B, Global and local inhibitory firing rates over time for the
Tutte graph trial with c ¼ 0:1 shown in A. Arrows illustrate three distinct modes or levels of global inhibition. C, Same as B but for
c ¼ 0:525.
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neurons’ functional participation (Amit et al., 1994) in asso-
ciative memory structure retrieval. This work uniquely disen-
tangles excitatory and inhibitory neurons and uses sparse
excitatory assemblies to demonstrate the potential
functional role of global-local inhibitory balance in a
more biologically-plausible setting. In the simplistic
case of a 1D memory chain (like might correspond to
discrete memories in a sequence of events through
time), shifting inhibition to a locally-dominant state
quadrupled the range of activation or retrieval. In the
case of more sophisticated memory structures, glob-
ally-dominant inhibition tended to emphasize finer
scale partitions of the memory structure and consoli-
dated strong local associations. Whereas, locally-
dominant inhibition tended to capture broader scale
partitions and allow excitation to extend across a larger
range of the memory structure.

It is important to emphasize these results are generated
in the context of a memory structure which relies on
the correlation of semantically close units, implying that
memory retrieval in such a structure is functionally optimized
when nearby units are correlated. Biological evidence for
such correlations was first prominently shown in monkey
anterior ventral temporal cortex by Miyashita (1988),
which showed that the activity of units selective for arbi-
trary complex visual patterns was correlated by the stimu-
lus-stimulus associations in the temporal ordering of
the stimuli presentations. However, this kind of corre-
lated, associative memory structure is not only found in
the visual system, it is also noticeable and widely studied
in hippocampus. Within a spatial environment, place cells
representing nearby place fields show correlated activity
(Monsalve-Mercado and Roudi, 2020) and can maintain
correlations in the same environment over different tasks

C

BA

Figure 5. A, Example trials for memory item neuron activities in the multiroom graph during different time-windows for two different
values global-local inhibitory balances, c ¼ 0:525 and c ¼ 0:7. A vertex beside to uppermost “doorway” is activated for the first
80ms of each trial. B, Global and local inhibitory firing rates over time for the multiroom graph trial with c ¼ 0:525 shown in A.
C, Same as B but for c ¼ 0:7.
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(Hampson et al., 1996), mostly because of overlapping
place fields. When the environment changes, however,
these correlations are typically inconsistent with one another
(Alme, et al., 2014), suggesting contextual cues alter or
switch between different memory structures.
In our study, we selectively stimulate single memory

patterns and see memory retrieval of the pattern and sur-
rounding associating patterns in ;100–200 ms of simula-
tion time. Is this biologically realistic? Single neurons in
human medial temporal lobe which learn to selectively
encode associative episodic memories within just a few
trials can be recruited in subsequent activations within
;500–700 ms (Ison et al., 2015); maximal pattern comple-
tion of cortical ensembles in visual cortex after subensem-
ble optogenetic stimulation typically takes on the order of
2–4 s (Carrillo-Reid et al., 2019); biasing memory-guided
spatial behavior by selectively stimulating clusters of
place cells for ;1 s has been shown to improve perform-
ance in reward-attaining behavior (Robinson et al.,
2020). Therefore, the speed of memory retrieval in our
model is likely on a faster timescale than should be gen-
erally expected in actual biological systems, although
this could also be because of simplifications in the
model, or disanalogous stimulation methods or assem-
bly/memory structures.

Recent experimental evidence in mice (Rolotti et al.,
2022) shows that when optogenetic techniques are used
to induce place field formation in CA1 neurons, feedback
inhibition limits the number of neurons which become ac-
tivated, thereby limiting the size of the neural assembly
which becomes activated by the induced place field.
However, using disinhibition, this effect can be nullified
and the neural assemblies can be made larger. Rolotti et
al. (2022) showed such disinhibition can improve perform-
ance on a head-fixed spatial goal-oriented learning task
via overrepresentation of the rewarded locations used for
performance in the task. Another functional benefit of
such disinhibition may be in rapid place field formation, as
is seen in the behavioral timescale synaptic plasticity
mechanism (Bittner et al., 2017; Zhao et al., 2020; Milstein
et al., 2021). Our modeling results suggest similar effects
may be possible without the use of disinhibition but rather
simply via a rebalancing of the relative activity or strength
between different inhibitory populations.
In Rolotti et al. (2022), the feedback inhibition comes

from the hippocampus, but they do not explore distinctions
between different inhibitory populations therein. There are
many different types of inhibitory neurons, each with dis-
tinct connectivity, dynamics, and morphology (Pelkey et al.,
2017; Burns and Rajan, 2021; Campagnola et al., 2022). In

Table 1: Clustering and geometric indices for graphs at different values of c

Clustering indices (Q) Geometric indices (R)
All neurons Selective neurons All neurons Selective neurons

Diameter c ¼ 0:1 c ¼ 0:525 c ¼ 0:1 c ¼ 0:525 c ¼ 0:1 c ¼ 0:525 c ¼ 0:1 c ¼ 0:525
K5-3-chain 4 0.404 0.040 0.643 0.368 0.337 (d= 2) 0.393 (d= 4) 0.557 (d = 1) 0.592 (d = 2)
Karate club graph 5 0.098 �0.223 0.120 �0.266 0.111 (d= 2) 0.999 (d= 5) 0.191 (d = 4) 0.999 (d = 5)
Tutte graph 8 0.050 0.270 0.254 0.244 0.259 (d= 4) 0.389 (d= 4) 0.300 (d = 3) 0.464 (d = 3)
Multiroom graph 18 0.115 0.144 0.095 0.258 0.210 (d= 5) 0.375 (d= 5) 0.210 (d = 5) 0.375 (d = 5)

Table 2: Geometric indices (R) for different graphs for all tested levels of d

K5-3-chain Karate club graph Tutte graph Multiroom graph
c=0.525 c=0.1 c = 0.525 c= 0.1 c = 0.525 c=0.1 c = 0.525 c=0.1

d All Selective All Selective All Selective All Selective All Selective All Selective All Selective All Selective

1 0.072 0.453 0.338 0.557 �0.722 �0.722 �0.029 �0.097 �0.019 0.137 0.029 0.092 0.073 0.073 0.052 0.052
2 0.334 0.592 0.338 0.443 0.223 0.223 0.111 0.133 0.178 0.325 0.174 0.230 0.170 0.170 0.122 0.122
3 0.379 0.296 0.234 0.129 0.711 0.711 0.018 0.105 0.341 0.464 0.258 0.300 0.270 0.270 0.178 0.178
4 0.393 �0.057 0.167 �0.071 0.971 0.971 0.087 0.191 0.389 0.459 0.259 0.277 0.345 0.345 0.207 0.207
5 1.000 1.000 0.081 0.190 0.302 0.287 0.193 0.181 0.375 0.375 0.210 0.210
6 0.204 0.102 0.122 0.078 0.360 0.360 0.196 0.196
7 0.151 0.002 0.084 0.023 0.314 0.314 0.170 0.170
8 0.140 �0.018 0.076 0.011 0.252 0.252 0.137 0.137
9 0.185 0.185 0.103 0.103
10 0.124 0.124 0.071 0.071
11 0.072 0.072 0.044 0.044
12 0.035 0.035 0.024 0.024
13 0.012 0.012 0.013 0.013
14 0.000 0.000 0.007 0.007
15 �0.005 �0.005 0.004 0.004
16 �0.008 �0.008 0.002 0.002
17 �0.009 �0.009 0.002 0.002
18 �0.009 �0.009 0.002 0.002
Weighted sum 3.448 2.297 2.383 1.543 10.743 10.743 1.000 2.195 7.827 5.935 5.089 4.185 14.626 14.626 8.996 8.996
Weighted mean 2.928 1.789 2.214 1.460 4.920 4.920 3.732 4.213 4.644 3.375 4.254 3.510 5.719 5.719 5.831 5.831
Weighted median 2 1 1 1 3 3 3 3 3 2 3 2 5 5 5 5
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our model, we speculate that the “local” inhibitory neurons
are parvalbumin-expressing while “global” inhibitory neu-
rons are somatostatin-expressing, given there exists some
evidence for such connectivity profiles in visual cortex
(Adesnik et al., 2012; Litwin-Kumar et al., 2016). However, it
is possible different areas may recruit and use inhibitory
neurons and their circuits differently, for example to develop
different scales of representations in hierarchical planning
(Brunec and Momennejad, 2022). It could also be the case
that there are evenmore functional groups of inhibitory neu-
rons involved in these phenomena (e.g., see later in this dis-
cussion regarding a potential additional “global” inhibitory
group for decreasing the correlation between neighboring
memory patterns).
Inhibitory neurons also contribute to the initiation, main-

tenance, and modulation of rhythmic oscillations in local
electrical activity (Traub et al., 1998; Fries, 2005; Bartos et
al., 2007; Buzsáki and Wang, 2012; Aton et al., 2013).
One example is in the pyramidal interneuron network
gamma (PING) mechanism (Whittington et al., 1995),
which can generate rhythmic dynamics which can ulti-
mately result in the synchronous firing of excitatory neu-
rons. Classically, the PING mechanism is thought of as
involving just one group of excitatory neurons and one
group of inhibitory neurons, and this is generally sufficient
for the generation of PING dynamics. However, Rich et al.
(2017) showed by expanding the diversity of inhibitory
neurons into two groups with different recurrent disinhibi-
tory connectivity, one weakly connected and one strongly
connected, it is possible to achieve richer and more ro-
bust PING dynamics. Although we do not study disinhibi-
tion in our model and our techniques are substantially
different to Rich et al. (2017), we partly followed in the
theme of Rich et al. (2017; albeit in a different mechanism
and showing a different phenomenon) by showing how by
considering a greater diversity of inhibitory neurons acting
simultaneously in a network, we are able to generate
more interesting and novel dynamics. How inhibitory di-
versity related to different mechanisms or phenomena (e.
g., the PING mechanism and the multiscale and extended
retrieval of associative memory structures we demon-
strate here) interact with one another is an open question
for both computational and experimental neuroscientists.
Theoretically, in the absence of noise and with a suffi-

ciently large network, an associative memory structure
with N neurons can expect to accurately store (and
retrieve via pattern completion) a maximum of 0:14 � N
memory patterns (Amit et al., 1985; McEliece et al., 1987),
N=logðNÞ memory patterns if we permit more errors (Amit,
1992), and fewer if those patterns are correlated (Löwe,
1998; although exactly how fewer depends on the manner
in which the patterns are correlated). In our case, the pat-
terns themselves are not correlated, but rather they are
created independently of one another and then correlated
“spatially” in the larger memory structure M via excitatory
weights between the memory patterns as described in
Equation 1 and illustrated in Figure 1. Since we set the
probability of neighboring memory patterns being con-
nected to one another to be 1, the effective spatial corre-
lation will also be 1. Past theoretical and numerical results

(Cugliandolo and Tsodyks, 1994; Gandolfo et al., 1999)
therefore indicate the memory capacity will be smaller
than if the patterns were not correlated. However, if the
spatial correlation is lowered, e.g., ,0:5, the theoretical
memory capacity can be the same as if there was no spa-
tial correlation (for sufficiently large networks without
noise) and the memory patterns will be sufficiently sepa-
rated to allow accurate pattern completion.
Conceivably, it is possible to functionally enter into the

range of spatial correlation ,1 in our model without
changing the connection probability between excitatory
memory patterns and instead by sufficiently increasing
the absolute strength of global inhibition while c ¼ 0.
Such an increase in global inhibition will gradually sup-
press all patterns, with those most weakly activated dying
out earlier. At the level of global inhibition just before all
patterns are suppressed, one or more patterns will be
minimally active, and this is likely less than the number of
patterns active before the increase in global inhibition.
However, increasing the strength of a global inhibitory
population like shown in our model may not be biologi-
cally realistic, perhaps a more realistic scenario would be
to recruit another global inhibitory pool, i.e., a second in-
hibitory neuron group which is globally connected to the
excitatory population. However, this is beyond the scope
of the current study and here we focus on the case of just
one global inhibitory group and one local inhibitory group
for each memory pattern. Nevertheless, for these reasons,
the memory capacity of our model is less than the theoret-
ical optimum because of the correlations between pat-
terns, and as c ! 1 it becomes even less optimum since
it is theoretically equivalent to increasing the strength of
the correlations between neighboring memory patterns. A
similar capacity effect is present in prior models with cor-
relation between the memory patterns (Griniasty et al.,
1993; Amit et al., 1994; Haga and Fukai, 2019), however
this effect comes about by (in whole or in part) modifying
excitatory weights whereas here we demonstrate this ef-
fect can be generated by modifications to inhibitory
weights alone.
The effects generated by these modifications, such as

stable extension in the range of retrieval, appears limited
because of increases in noise in strongly local-inhibition
dominant states. This is likely because of a finite field ef-
fect and may indicate a necessary minimum size of local
excitatory-inhibitory assemblies for such states. For ex-
ample, stability in the case of c ¼ 0:7 for the 1D chain
case with sparsity of f ¼ 0:01 required a network size four
times greater than the case of c ¼ 0 to maintain stability
of retrieval, translating to excitatory assemblies of 160
neurons paired with 40 local inhibitory neurons. Although
assemblies of ;300 neurons have been used in optical
microstimulation experiments in sensory cortex to drive
behavior in mice (Huber et al., 2008), most recorded as-
semblies are on the order of tens of neurons (Harris et al.,
2003; Fujisawa et al., 2008). Among other benefits, such
sparsity is accompanied by theoretical energy efficiencies
(Levy and Baxter, 1996) and in associative memory mod-
els can lead to fewer spurious memories (Hoffman, 2019).
It therefore seems likely that for the described mechanism
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of local-global inhibition to have a stable functional effect
in extending the range of retrieval, the presence of both
local and global inhibition is required in finite, real-world
networks with sparse assemblies.
Alternatively, it is possible this mechanism requires a

hybrid sparse-dense coding schema, as has long been
suggested operates in hippocampus (Barnes et al.,
1990), cerebellum (Marr, 1969), and more recently in
sensory areas (Laurent, 2002; Sakata and Harris, 2009).
In such a schema, sparse assemblies report their activ-
ity to densely-connected assemblies which broadcast
information to other sparse assemblies. In our model,
we could consider the global inhibitory population as a
densely-connected assembly which broadcasts the
overall level of excitation in the network to all local,
sparse assemblies. It is just not excitatory, as in classic
dense-sparse schemas. Through this interpretation, a
reduction in the relative strength of global inhibition (as
in the unstable region of c.0:7) is equivalent to a gradual
transition in the coding schema from sparse-dense to
sparse. Thus, if the described local-global inhibition mech-
anism requires a sparse-dense coding schema, its instabil-
ity when the coding scheme becomes sparse is expected.
Associative memory structures which had more sophisti-
cated topologies also showed unstable regions at high val-
ues of c, however less so when the graph was sufficiently
large (such as in the multiroom graph). So, it is also possi-
ble this mechanism can be supported when the memory
structure is adequately structured or large.
Extension of the range of retrieval was not simply

the only apparent function of the inhibitory mechanism in
sophisticated associative memory structures, the mech-
anism also permitted multiscale segmentation of the as-
sociative memory structure. Local-inhibition dominant
states typically activated coarser topological segments
of the graphs whereas global-inhibition dominant states
consolidated activity in more densely associated clus-
ters, highlighting finer topological features. These results
were similar to those found in a more abstract model of
binary neurons (Haga and Fukai, 2021), except that the
current model was unable to eliminate the spread of ex-
citation totally (as the more abstract model (Haga and
Fukai, 2021) was capable of). This is because the current
model does not include direct potentiation of excitatory
weights, but rather modulation of local-global inhibitory
balance. In this model, where association is embedded
ubiquitously, to sustain highly-specific activity within a
narrow range of memory items or even a single memory
item, it is necessary to create very strong self-excitation
within an assembly and have stronger overall inhibition
with c ! 0. This demonstrates a general limitation that in a
more biologically-realistic setting it may not be possible to
fully eliminate or reduce association between items embed-
ded in an excitatory memory structure through inhibitory
modulation alone. Nevertheless, such inhibitory activity may
cause dissociation through plasticity and learning mecha-
nisms, as demonstrated in numerous psychological and bi-
ological studies (Anderson, 2003; Chiu and Egner, 2015;
Schmitz et al., 2017; Anderson and Hulbert, 2021), which
we have not investigated here.

An intriguing aspect of this inhibitory mechanism is its
ability to dramatically affect not just the range of retrieval
but also which parts of the memory structure become
dominant given an initial stimulation. For example, it ap-
pears in global-inhibition dominant states, global inhibi-
tion drives a “winner-takes-all” dynamic (Grossberg,
1973) whereby only the globally strongest memories re-
main active. In local-inhibition dominant states, this
“winner-takes-all” dynamic appears to dissipate and
permit a general extension of retrieval, or a more egali-
tarian sharing of the winners. However, this extension
can also be mediated and a “winner-takes-all” dynamic
can appear at the peripheries of the retrieval range, with
different peripheries competing against each other (Fig.
5B). This may be considered as a global state transition
from “winner-takes-all” to “winner-shares-all” (Fukai
and Tanaka, 1997). We therefore hypothesize an inhibi-
tory mechanism like we have described may be used to
aid in the learning or retrieval of graph-based cognitive
tasks in cortical networks (Whittington et al., 2020;
Wang et al., 2021). Cognitive control or exploitation of
this mechanism might also occur in concert with, for ex-
ample, gamma oscillations, which are strongly tied to
inhibitory activity (Buzsáki and Wang, 2012). This may
be especially useful when faced with competing behav-
ioral choices and maintaining the distribution of these
choices is meaningful, such as in perceptual decision-
making (Najafi et al., 2020). Indeed, Roach et al. (2022)
report that tuned local inhibition can alter the attractor
dynamics of perceptual decision-making networks to
balance between the speed or accuracy of perceptual
decisions.
Probing such circuits and behaviors may provide insights

on the potential influence such inhibitory mechanisms have
on neuropathologies, especially those associated with cog-
nitive defects (Amieva et al., 2004; Baroncelli et al., 2011).
For instance, the coordination and interaction of inhibitory-
driven oscillatory activity in hippocampus and prefrontal cor-
tex is known to play a role in spatial memory tasks (Jones
andWilson, 2005) and spatial decision-making (Tavares and
Tort, 2022). This coordination and interaction can be dis-
rupted in epilepsy, leading to decreased behavioral flexibility
(Kleen et al., 2011). Perhaps the associated behavioral defi-
cits are in part because of maladaptations or dysfunction of
local-global inhibitory balance or other subtle disruptions to
networks involving multiple inhibitory neuron types.
While this study has made some advances over prior

models (Griniasty et al., 1993; Amit et al., 1994; Haga and
Fukai, 2019) in terms of improving the “biological realism”

of the model, there exist many simplifications and unreal-
istic features in our model. We treat neurons as having a
single point of intracellular space, i.e., without dendrites
or specific morphology, which other than itself being un-
realistic also prevents us from allowing different classes
of inhibitory neurons to preferentially synapse onto differ-
ent regions of other neurons, which is known to vary
widely across inhibitory neurons (Otsuka and Kawaguchi,
2009; Burns and Rajan, 2021; Dudok et al., 2021). We
also assume that joint excitatory-inhibitory assemblies
are completely connected, which is a simplification that
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does not match biology (Otsuka and Kawaguchi, 2009;
Koolschijn et al., 2019; Rolotti et al., 2022). Therefore,
these and other limitations mean that whether and how
actual biological networks achieve the same functional
benefits we described here using inhibitory neuron diver-
sity currently remains unknown. Experimentalists may
therefore wish to design studies to test the presence or
absence of such computational benefits in biological net-
works with diverse inhibitory populations.
In our model, making a seemingly subtle change to the

network structure by introducing some of the complex-
ities and diversities of inhibitory neurons had a profound
impact on retrieval. We have shown how this phenomen-
on mainly persists in a sparse, associative memory struc-
ture which obeys Dale’s Law and has more biologically-
plausible connections than prior models. We have also
shown and discussed some of the potential functional
roles of this mechanism in graph-based cognitive tasks
and discussed how this mechanism may contribute to a
type of sparse-dense coding schema.

References

Adesnik H, Bruns W, Taniguchi H, Huang ZJ, Scanziani M (2012) A
neural circuit for spatial summation in visual cortex. Nature
490:226–231.

Alme CB, Miao C, Jezek K, Treves A, Moser EI, Moser MB (2014)
Place cells in the hippocampus: eleven maps for eleven rooms.
Proc Natl Acad Sci USA 111:18428–18435.

Amieva H, Phillips LH, Della Sala S, Henry JD (2004) Inhibitory func-
tioning in Alzheimer’s disease. Brain 127:949–964.

Amit DJ (1992) Modelling brain function: the world of attractor neural
networks, pp 278–283. Cambridge: Cambridge University Press.

Amit DJ, Gutfreund H, Sompolinsky H (1985) Storing infinite numbers
of patterns in a spin-glass model of neural networks. Phys Rev
Lett 55:1530–1533.

Amit DJ, Brunel N, Tsodyks MV (1994) Correlations of cortical
Hebbian reverberations: theory versus experiment. J Neurosci
14:6435–6445.

Anderson M (2003) Rethinking interference theory: executive control
and the mechanisms of forgetting. J Mem Lang 49:415–445.

Anderson MC, Hulbert JC (2021) Active forgetting: adaptation of
memory by prefrontal control. Annu Rev Psychol 72:1–36.

Aton SJ, Broussard C, Dumoulin M, Seibt J, Watson A, Coleman T,
Frank MG (2013) Visual experience and subsequent sleep induce
sequential plastic changes in putative inhibitory and excitatory
cortical neurons. Proc Natl Acad Sci USA 110:3101–3106.

Barnes CA, McNaughton BL, Mizumori SJ, Leonard BW, Lin LH
(1990) Comparison of spatial and temporal characteristics of neu-
ronal activity in sequential stages of hippocampal processing.
Prog Brain Res 83:287–300.

Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Maffei L, Sale A
(2011) Brain plasticity and disease: a matter of inhibition. Neural
Plast 2011:286073.

Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchron-
ized gamma oscillations in inhibitory interneuron networks. Nat
Rev Neurosci 8:45–56.

Bittner KC, Milstein AD, Grienberger C, Romani S, Magee JC (2017)
Behavioral time scale synaptic plasticity underlies CA1 place
fields. Science 357:1033–1036.

Brunec IK, Momennejad I (2022) Predictive representations in hippo-
campal and prefrontal hierarchies. J Neurosci 42:299–312.

Brunel N (2000) Dynamics of sparsely connected networks of excita-
tory and inhibitory spiking neurons. Comp Neuro 8:183–208.

Burns TF, Rajan R (2021) Sensing and processing whisker deflec-
tions in rodents. PeerJ 9:e10730.

Burns TF, Rajan R (2022) Temporal activity patterns of layer II and IV
rat barrel cortex neurons in healthy and injured conditions. Physiol
Reps 10:e15155.

Buzsáki G, Wang XJ (2012) Mechanisms of gamma oscillations.
Annu Rev Neurosci 35:203–225.

Campagnola L, et al. (2022) Local connectivity and synaptic dynam-
ics in mouse and human neocortex. Science 375:2022.

Carrillo-Reid L, Han S, Yang W, Akrouh A, Yuste R (2019) Controlling
visually guided behavior by holographic recalling of cortical en-
sembles. Cell 178:447–457.

Chiu YC, Egner T (2015) Inhibition-induced forgetting: when more
control leads to less memory. Psychol Sci 26:27–38.

Cugliandolo LF, Tsodyks MV (1994) Capacity of networks with corre-
lated attractors. J Phys A Math Gen 27:741–756.

Dudok B, Klein PM, Hwaun E, Lee BR, Yao Z, Fong O, Bowler JC,
Terada S, Sparks FT, Szabo GG, Farrell JS, Berg J, Daigle TL,
Tasic B, Dimidschstein J, Fishell G, Losonczy A, Zeng H, Soltesz I
(2021) Alternating sources of perisomatic inhibition during behav-
ior. Neuron 109:997–1012.e9.

Dusek JA, Eichenbaum H (1997) The hippocampus and memory for
orderly stimulus relations. Proc Natl Acad Sci USA 94:7109–7114.

Eccles JC, Fatt P, Koketsu K (1954) Cholinergic and inhibitory synap-
ses in a pathway from motor-axon collaterals to motoneurones. J
Physiol 126:524–562.

Ferguson KA, Huh CY, Amilhon B, Williams S, Skinner FK (2013)
Experimentally constrained CA1 fast-firing parvalbumin-positive
interneuron network models exhibit sharp transitions into coherent
high frequency rhythms. Front Comp Neurosci 7:144.

Fries P (2005) A mechanism for cognitive dynamics: neuronal com-
munication through neuronal coherence. Trends Cogn Sci 9:474–
480.

Fujisawa S, Amarasingham A, Harrison MT, Buzsáki G (2008)
Behavior-dependent short-term assembly dynamics in the me-
dial prefrontal cortex. Nat Neurosci 11:823–833.

Fukai T, Tanaka S (1997) A simple neural network exhibiting selective
activation of neuronal ensembles: from winner-take-all to winners-
share-all. Neural Comput 9:77–97.

Gandolfo D, Laanait L, Messager A, Ruiz J (1999) Memory capacity
in neural networks with spatial correlations between attractors.
Physica A 264:305–317.

Goldstein A, et al. (2021) Thinking ahead: spontaneous prediction in
context as a keystone of language in humans and machines.
bioRxiv. doi:10.1101/2020.12.02.403477.

Gouwens NW, et al. (2020) Integrated morphoelectric and transcrip-
tomic classification of cortical GABAergic cells. Cell 183:935–953.
e19.

Griniasty M, Tsodyks MV, Amit DJ (1993) Conversion of temporal
correlations between stimuli to spatial correlations between attrac-
tors. Neural Comp 5:1–17.

Grossberg S (1973) Contour enhancement, short term memory, and
constancies in reverberating neural networks. St App Math
52:213–257.

Haga T, Fukai T (2019) Extended temporal association memory by
modulations of inhibitory circuits. Phys Rev Let 123:078101.

Haga T, Fukai T (2021) Multiscale representations of community
structures in attractor neural networks. PLoS Comput Biol 17:
e1009296.

Hampson RE, Byrd DR, Konstantopoulos JK, Bunn T, Deadwyler SA
(1996) Hippocampal place fields: relationship between degree of
field overlap and cross-correlations within ensembles of hippo-
campal neurons. Hippocampus 6:281–293.

Harris KD, Csicsvari J, Hirase H, Dragoi G, Buzsáki G (2003)
Organization of cell assemblies in the hippocampus. Nature
424:552–556.

Hebb DO (1949) The organization of behavior. New York: Wiley.
Hoffman H (2019) Sparse associative memory. Neural Comp
31:998–1014.

Huber D, Petreanu L, Ghitani N, Ranade S, Hromádka T, Mainen Z,
Svoboda K (2008) Sparse optical microstimulation in barrel cortex
drives learned behaviour in freely moving mice. Nature 451:61–64.

Research Article: New Research 13 of 14

May/June 2022, 9(3) ENEURO.0023-22.2022 eNeuro.org

http://dx.doi.org/10.1038/nature11526
https://www.ncbi.nlm.nih.gov/pubmed/23060193
http://dx.doi.org/10.1073/pnas.1421056111
https://www.ncbi.nlm.nih.gov/pubmed/25489089
http://dx.doi.org/10.1093/brain/awh045
https://www.ncbi.nlm.nih.gov/pubmed/14645147
http://dx.doi.org/10.1103/PhysRevLett.55.1530
https://www.ncbi.nlm.nih.gov/pubmed/10031847
http://dx.doi.org/10.1523/JNEUROSCI.14-11-06435.1994
https://www.ncbi.nlm.nih.gov/pubmed/7965048
http://dx.doi.org/10.1016/j.jml.2003.08.006
http://dx.doi.org/10.1146/annurev-psych-072720-094140
https://www.ncbi.nlm.nih.gov/pubmed/32928060
https://www.ncbi.nlm.nih.gov/pubmed/2392566
http://dx.doi.org/10.1155/2011/286073
https://www.ncbi.nlm.nih.gov/pubmed/21766040
http://dx.doi.org/10.1038/nrn2044
https://www.ncbi.nlm.nih.gov/pubmed/17180162
http://dx.doi.org/10.1126/science.aan3846
https://www.ncbi.nlm.nih.gov/pubmed/28883072
http://dx.doi.org/10.1523/JNEUROSCI.1327-21.2021
https://www.ncbi.nlm.nih.gov/pubmed/34799416
http://dx.doi.org/10.1023/A:1008925309027
http://dx.doi.org/10.7717/peerj.10730
https://www.ncbi.nlm.nih.gov/pubmed/33665005
http://dx.doi.org/10.1146/annurev-neuro-062111-150444
https://www.ncbi.nlm.nih.gov/pubmed/22443509
http://dx.doi.org/10.1016/j.cell.2019.05.045
https://www.ncbi.nlm.nih.gov/pubmed/31257030
http://dx.doi.org/10.1177/0956797614553945
https://www.ncbi.nlm.nih.gov/pubmed/25398560
http://dx.doi.org/10.1088/0305-4470/27/3/018
http://dx.doi.org/10.1016/j.neuron.2021.01.003
https://www.ncbi.nlm.nih.gov/pubmed/33529646
http://dx.doi.org/10.1073/pnas.94.13.7109
https://www.ncbi.nlm.nih.gov/pubmed/9192700
http://dx.doi.org/10.1113/jphysiol.1954.sp005226
https://www.ncbi.nlm.nih.gov/pubmed/13222354
http://dx.doi.org/10.1016/j.tics.2005.08.011
https://www.ncbi.nlm.nih.gov/pubmed/16150631
http://dx.doi.org/10.1038/nn.2134
https://www.ncbi.nlm.nih.gov/pubmed/18516033
http://dx.doi.org/10.1162/neco.1997.9.1.77
https://www.ncbi.nlm.nih.gov/pubmed/9117902
http://dx.doi.org/10.1016/S0378-4371(98)00449-X
https://www.ncbi.nlm.nih.gov/pubmed/33186530
http://dx.doi.org/10.1162/neco.1993.5.1.1
http://dx.doi.org/10.1002/sapm1973523213
http://dx.doi.org/10.1371/journal.pcbi.1009296
https://www.ncbi.nlm.nih.gov/pubmed/34424901
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:3&hx003C;281::AID-HIPO6&hx003E;3.0.CO;2-Q
http://dx.doi.org/10.1038/nature01834
https://www.ncbi.nlm.nih.gov/pubmed/12891358
http://dx.doi.org/10.1038/nature06445
https://www.ncbi.nlm.nih.gov/pubmed/18094685


Ison MJ, Quian Quiroga R, Fried I (2015) Rapid encoding of new
memories by individual neurons in the human brain. Neuron
87:220–230.

Jones MW, Wilson MA (2005) Theta rhythms coordinate hippocam-
pal–prefrontal interactions in a spatial memory task. PLoS Biol 3:
e402.

Kleen JK, Wu EX, Holmes GL, Scott RC, Lenck-Santini P-P (2011)
Enhanced oscillatory activity in the hippocampal-prefrontal net-
work is related to short-term memory function after early-life seiz-
ures. J Neurosci 31:15397–15406.

Koolschijn RS, Emir UE, Pantelides AC, Nili H, Behrens TEJ, Barron
HC (2019) The hippocampus and neocortical inhibitory engrams
protect against memory interference. Neuron 101:528–541.E6.

Laurent G (2002) Olfactory network dynamics and the coding of mul-
tidimensional signals. Nat Rev Neurosci 3:884–895.

Levy WB, Baxter RA (1996) Energy efficient neural codes. Neural
Comput 8:531–543.

Litwin-Kumar A, Rosenbaum R, Doiron B (2016) Inhibitory stabiliza-
tion and visual coding in cortical circuits with multiple interneuron
subtypes. J Neurophysiol 115:1399–1409.

Löwe M (1998) On the storage capacity of Hopfield models with cor-
related patterns. Ann Applied Prob 8:1216–1250.

MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H (2011)
Hippocampal “time cells” bridge the gap in memory for discontig-
uous events. Neuron 71:737–749.

McEliece RJ, Posner EC, Rodemich ER, Venkatesh SS (1987) The
capacity of the Hopfield associative memory. IEEE Trans
Information Theory 33.

Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470.
Milstein AD, Li Y, Bittner KC, Grienberger C, Soltesz I, Magee JC,
Romani S (2021) Bidirectional synaptic plasticity rapidly modifies
hippocampal representations. Elife 10:e73046.

Miyashita Y (1988) Neuronal correlate of visual associative long-term
memory in the primate temporal cortex. Nature 335:817–820.

Monsalve-Mercado MM, Roudi Y (2020) Hippocampal spike-time
correlations and place field overlaps during open field foraging.
Hippocampus 30:354–366.

Najafi F, Elsayed GF, Cao R, Pnevmatikakis E, Latham PE,
Cunningham JP, Churchland AK (2020) Excitatory and inhibitory
subnetworks are equally selective during decision-making and
emerge simultaneously during learning. Neuron 105:165–179.

Okun M, Lampl I (2008) Instantaneous correlation of excitation and
inhibition during ongoing and sensory-evoked activities. Nat
Neurosci 11:535–537.

Otsuka T, Kawaguchi Y (2009) Cortical inhibitory cell types differen-
tially form intralaminar and interlaminar subnetworks with excita-
tory neurons. J Neurosci 29:10533–10540.

Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ
(2017) Hippocampal GABAergic inhibitory interneurons. Physiol
Rev 97:1619–1747.

Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm
to detect community structures in large-scale networks. Phys Rev
E Stat Nonlin Soft Matter Phys 76:036106.

Rich S, Zochowski M, Booth V (2017) Dichotomous dynamics in E-I
networks with strongly and weakly intra-connected inhibitory neu-
rons. Front Neural Circuits 11:104.

Roach JP, Churchland AK, Engel TA (2022) Two roles for choice se-
lective inhibition in decision-making circuits. bioRxiv. doi:10.1101/
2022.01.24.477635.

Robinson NTM, Descamps LAL, Russell LE, Buchholz MO, Bicknell
BA, Antonov GK, Lau JYN, Nutbrown R, Schmidt-Hieber C,
Häusser M (2020) Targeted activation of hippocampal place cells
drives memory-guided spatial behavior. Cell 183:1586–1599.

Rolotti SV, Ahmed MS, Szoboszlay M, Geiller T, Negrean A, Blockus
H, Gonzalez KC, Sparks FT, Solis Canales AS, Tuttman AL,
Peterka DS, Zemelman BV, Polleux F, Losonczy A (2022) Local
feedback inhibition tightly controls rapid formation of hippocampal
place fields. Neuron 110:783–794.e6.

Sakata S, Harris KD (2009) Laminar structure of spontaneous and
sensory-evoked population activity in auditory cortex. Neuron
64:404–418.

Schapiro AC, Rogers TT, Cordova NI, Turk-Browne NB, Botvinick
MM (2013) Neural representations of events arise from temporal
community structure. Nat Neurosci 16:486–492.

Schmitz TW, Correia MM, Ferreira CS, Prescot AP, Anderson MC
(2017) Hippocampal GABA enables inhibitory control over un-
wanted thoughts. Nat Commun 8:1311.

Tavares LCS, Tort ABL (2022) Hippocampal-prefrontal interactions
during spatial decision-making. Hippocampus 32:38–54.

Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev
55:189–208.

Traub RD, Spruston N, Soltesz I, Konnerth A, Whittington MA,
Jefferys JGR (1998) Gamma-frequency oscillations: a neuronal
population phenomenon, regulated by synaptic and intrinsic cellu-
lar processes, and inducing synaptic plasticity. Prog Neurobiol
55:563–575.

Tutte WT (1946) On Hamiltonian circuits. J London Math Soc s1-
21:98–101.

Uitvlugt MG, Healey MK (2019) Temporal proximity links unrelated
news events in memory. Psychol Sci 30:92–104.

Wang JX, King M, Porcel N, Kurth-Nelson Z, Zhu T, Deck C, Choy P,
Cassin M, Reynolds M, Song F, Buttimore G, Reichert DP,
Rabinowitz N, Matthey L, Hassabis D, Lerchner A, Botvinick M
(2021) Alchemy: a benchmark and analysis toolkit for meta-rein-
forcement learning agents. arXiv 2102.02926v1.

Whittington JCR, Muller TH, Mark S, Chen G, Barry C, Burgess N,
Behrens TEJ (2020) The Tolman-Eichenbaum machine. Cell
183:1249–1263.

Whittington MA, Traub RD, Jefferys JG (1995) Synchronized oscilla-
tions in interneuron networks driven by metabotropic glutamate
receptor activation. Nature 373:612–615.

Xue M, Atallah BV, Scanziani M (2014) Equalizing excitation-inhibi-
tion ratios across visual cortical neurons. Nature 511:596–600.

Yao HK, Guet-McCreight A, Mazza F, Moradi Chameh H, Prevot TD,
Griffiths JD, Tripathy SJ, Valiante TA, Sibille E, Hay E (2022)
Reduced inhibition in depression impairs stimulus processing in
human cortical microcircuits. Cell Rep 38:110232.

Zachary WW (1977) An information flow model for conflict and fission
in small groups. J Anthro Res 33:452–473.

Zhang XJ, Li Z, Han Z, Sultan KT, Huang K, Shi SH (2017) Precise in-
hibitory microcircuit assembly of developmentally related neocort-
ical interneurons in clusters. Nat Commun 8:16091.

Zhao X, Wang Y, Spruston N, Magee JC (2020) Membrane potential
dynamics underlying context-dependent sensory responses in the
hippocampus. Nat Neurosci 23:881–891.

Research Article: New Research 14 of 14

May/June 2022, 9(3) ENEURO.0023-22.2022 eNeuro.org

http://dx.doi.org/10.1016/j.neuron.2015.06.016
https://www.ncbi.nlm.nih.gov/pubmed/26139375
http://dx.doi.org/10.1371/journal.pbio.0030402
https://www.ncbi.nlm.nih.gov/pubmed/16279838
http://dx.doi.org/10.1523/JNEUROSCI.2196-11.2011
https://www.ncbi.nlm.nih.gov/pubmed/22031886
http://dx.doi.org/10.1016/j.neuron.2018.11.042
https://www.ncbi.nlm.nih.gov/pubmed/30581011
http://dx.doi.org/10.1038/nrn964
https://www.ncbi.nlm.nih.gov/pubmed/12415296
http://dx.doi.org/10.1162/neco.1996.8.3.531
https://www.ncbi.nlm.nih.gov/pubmed/8868566
http://dx.doi.org/10.1152/jn.00732.2015
https://www.ncbi.nlm.nih.gov/pubmed/26740531
http://dx.doi.org/10.1016/j.neuron.2011.07.012
https://www.ncbi.nlm.nih.gov/pubmed/21867888
http://dx.doi.org/10.1113/jphysiol.1969.sp008820
https://www.ncbi.nlm.nih.gov/pubmed/5784296
http://dx.doi.org/10.7554/eLife.73046
http://dx.doi.org/10.1038/335817a0
https://www.ncbi.nlm.nih.gov/pubmed/3185711
http://dx.doi.org/10.1002/hipo.23173
https://www.ncbi.nlm.nih.gov/pubmed/31675168
http://dx.doi.org/10.1016/j.neuron.2019.09.045
https://www.ncbi.nlm.nih.gov/pubmed/31753580
http://dx.doi.org/10.1038/nn.2105
https://www.ncbi.nlm.nih.gov/pubmed/18376400
http://dx.doi.org/10.1523/JNEUROSCI.2219-09.2009
https://www.ncbi.nlm.nih.gov/pubmed/19710306
http://dx.doi.org/10.1152/physrev.00007.2017
https://www.ncbi.nlm.nih.gov/pubmed/28954853
http://dx.doi.org/10.1103/PhysRevE.76.036106
https://www.ncbi.nlm.nih.gov/pubmed/17930305
http://dx.doi.org/10.3389/fncir.2017.00104
https://www.ncbi.nlm.nih.gov/pubmed/29326558
http://dx.doi.org/10.1016/j.cell.2020.09.061
https://www.ncbi.nlm.nih.gov/pubmed/33159859
http://dx.doi.org/10.1016/j.neuron.2021.12.003
https://www.ncbi.nlm.nih.gov/pubmed/34990571
http://dx.doi.org/10.1016/j.neuron.2009.09.020
https://www.ncbi.nlm.nih.gov/pubmed/19914188
http://dx.doi.org/10.1038/nn.3331
https://www.ncbi.nlm.nih.gov/pubmed/23416451
http://dx.doi.org/10.1038/s41467-017-00956-z
https://www.ncbi.nlm.nih.gov/pubmed/29101315
http://dx.doi.org/10.1002/hipo.23394
http://dx.doi.org/10.1037/h0061626
https://www.ncbi.nlm.nih.gov/pubmed/18870876
http://dx.doi.org/10.1016/S0301-0082(98)00020-3
http://dx.doi.org/10.1112/jlms/s1-21.2.98
http://dx.doi.org/10.1177/0956797618808474
https://www.ncbi.nlm.nih.gov/pubmed/30513038
http://dx.doi.org/10.1016/j.cell.2020.10.024
https://www.ncbi.nlm.nih.gov/pubmed/33181068
http://dx.doi.org/10.1038/nature13321
https://www.ncbi.nlm.nih.gov/pubmed/25043046
http://dx.doi.org/10.1016/j.celrep.2021.110232
https://www.ncbi.nlm.nih.gov/pubmed/35021088
http://dx.doi.org/10.1086/jar.33.4.3629752
http://dx.doi.org/10.1038/s41593-020-0646-2
https://www.ncbi.nlm.nih.gov/pubmed/32451487

	Multiscale and Extended Retrieval of Associative Memory Structures in a Cortical Model of Local-Global Inhibition Balance
	Introduction
	Materials and Methods
	Model
	Analysis
	Code availability

	Results
	Extended range of retrieval
	Spread of excitation in associative memory structures

	Discussion
	References


