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abstract

PURPOSECombined hepatocellular cholangiocarcinoma (cHCC-CCA) is a rare, aggressive primary liver carcinoma,
with morphologic features of both hepatocellular carcinomas (HCC) and liver cholangiocarcinomas (CCA).

METHODS The genomic profiles of 4,975 CCA, 1,470 HCC, and 73 cHCC-CCA cases arising from comprehensive
genomic profiling in the course of clinical care were reviewed for genomic alterations (GA), tumor mutational
burden, microsatellite instability status, genomic loss of heterozygosity, chromosomal aneuploidy, genomic
ancestry, and hepatitis B virus status.

RESULTS In cHCC-CCA, GA weremost common in TP53 (65.8%), TERT (49.3%), and PTEN (9.6%), and 24.6%
cHCC-CCA harbored potentially targetable GA. Other GA were predominantly associated with either HCC or CCA,
including, but not limited to, TERT, FGFR2, IDH1, and presence of hepatitis B virus. On the basis of these
features, a machine learning (ML) model was trained to classify a cHCC-CCA case as CCA-like or HCC-like. Of
cHCC-CCA cases, 16% (12/73) were ML-classified as CCA-like and 58% (42/73) cHCC-CCA were ML-classified
as HCC-like. The ML model classified more than 70% of cHCC-CCA as CCA-like or HCC-like on the basis of
genomic profiles, without additional clinico-pathologic input.

CONCLUSION These findings demonstrate the use of ML for classification as based on a targeted exome panel
used during routine clinical care. Classification of cHCC-CCA by genomic features alone creates insights into the
biology of the disease and warrants further investigation for relevance to clinical care.
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INTRODUCTION

Combinedhepatocellular carcinoma cholangiocarcinoma1

(cHCC-CCA) is a rare primary liver malignancy with
morphologic features of both hepatocellular carcinomas
(HCC) and liver cholangiocarcinomas (CCA). Estimates of
the incidence of cHCC-CCA vary broadly from 0.4% to
5%,2-4 with reference to being a fraction of the incidence of
primary liver tumors. For disseminated or recurrent cHCC-
CCA, no consensus guidelines exist because of the rarity of
this disease, which is prohibitive for conducting disease-
specific clinical trials. By contrast, there are both nu-
merous trials and consensus guidelines for the manage-
ment of patients withHCCandCCA, andmore recently the
former often includes additional genomic inclusion criteria,
for example, ongoing trials of FGFR2 inhibitors in FGFR2
fusion-positive CCA.5 Histologically, cHCC-CCA can be
further subdivided into separate, combined, and mixed
subtypes on the basis of morphology; however, these
classifications have no impact on clinical care.6

Numerous studies have defined the characteristic
genomic landscapes of HCC and CCA.7-10 For cHCC-
CCA, genomic studies are limited to small cohorts and
have typically used whole-genome sequencing, whole-
exome sequencing, and transcriptome sequencing, all
retrospectively.11-13 The recent seminal study of Xue
et al13 demonstrates the retrospective use of whole-
genome sequencing and RNA sequencing on laser-
capture microdissected samples, with additional
specialized specimen handling for each cHCC-CCA
subtype and additional immunohistochemistry stud-
ies. Importantly, this study suggests that the combined
subtype of cHCC-CCA resembles CCA and the mixed
subtype resembles HCC.

In this work, we used comprehensive genomic pro-
filing (CGP) of formalin-fixed paraffin-embedded
specimens of a large series of HCC, CCA, and
cHCC-CCA cases, all sequenced as part of routine
clinical care. We found genomic alterations (GA)
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enriched in HCC and CCA. On that basis, we built a ma-
chine learning (ML) model to classify cHCC-CCA as HCC-
like or CCA-like by integrating genomic-derived data
including alterations, aneuploidy, ancestry, complex bio-
marker signatures, and hepatitis B virus (HBV) status. We
demonstrate that a genomic classification of cHCC-CCA in
the course of clinical care is possible and may drive the
utility of targeted therapy in this challenging disease.

METHODS

Comprehensive Genomic Profiling

This study was conducted in accordance with the West-
ern Institutional Review Board–approved protocol no.
20152817. Clinical cHCC-CCA (N = 73), CCA (N = 4,975),
and HCC (N = 1,470) cases, as diagnosed by the treating
physician (and confirmed on hematoxylin and eosin–stained
slides), underwent CGP in a Clinical Laboratory Improvement
Amendments–certified, NY State–approved, College of
American Pathologists-accredited laboratory (Foundation
Medicine Inc, Cambridge, MA).14 Manual microdissection
was performed if warranted on pathologist visual inspection.

CGP on 0.8-1.1 Mb of the coding genome was performed
on hybridization-captured, adapter-ligation–based librar-
ies, to identify GA (base substitutions, small insertions or
deletions, copy-number alterations, and rearrangements)
in exons and select introns in up to 404 genes, tumor
mutational burden (TMB), microsatellite instability status
(MSI), genomic loss of heterozygosity (gLOH), chromo-
somal aneuploidy, genomic ancestry, and HBV status.

TMB was calculated as the number of nondriver somatic
coding mutations per megabase of genome sequenced.15

TMB high was defined as 20 mutations/Mb (mut/Mb) or
higher. MSI status was determined by analyzing 114

intronic homopolymer repeat loci for length variability and
MSI high was defined as described previously.16 gLOH high
(gLOH-H) was classified as 16% gLOH or higher, as was
used in the ARIEL3 poly (ADP-ribose) polymerase inhibitor
trial in ovarian cancer.17,18

Genomic ancestry of patients was determined using a
principal component analysis of genomic single-nucleotide
polymorphisms trained on data from the 1,000 Genomes
Project, and each patient was classified as belonging to one
of the following super populations: AFR (African), AMR (Ad
Mixed American), EAS (East Asian), EUR (European), and
SAS (South Asian).19,20

All GA prevalence reported in this study only include al-
terations described as functional or pathogenic in literature
and seen in the Catalogue of Somatic Mutations in Cancer21

repository or had a likely functional status (frameshift or
truncation events in tumor suppressor genes). Variants of
unknown significance were not studied.

Hepatitis B Virus Detection

Presence of HBV was determined by the identification of
DNA sequences consistent with genomic HBV DNA. Se-
quencing reads left unmapped to the human reference
genome (hg19) were de novo assembled by Velvet,22,23 and
the assembled contigs were competitively aligned by
BLASTn24 to the National Center for Biotechnology Infor-
mation database of more than 3 million known viral nu-
cleotide sequences. A positive viral status was determined
by contigs at least 80 nucleotides in length and with at least
97% identity to the BLAST sequence.25

Statistical Analysis

All statistical analyses were performed using R software (R
Foundation for Statistical Computing, Vienna, Austria,
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v3.6.0). Proportions of categorical variables were compared
using the chi-square test or Fisher’s exact test; chi-square
test was used for contingency tables larger than 2 × 2.

The Wilcoxon-rank sum test and the Kruskal-Wallis test
were used to test for differences between continuous
variables. All P values are two-sided, andmultiple hypothesis
testing correction was performed using the Benjamini-
Hochberg procedure to calculate the false discovery rate.

Machine Learning

A random forest26–based ML model was trained on a high-
quality subset of CCA (n = 1,916) and HCC (n = 755), using
genomic features (such as alterations, aneuploidy, signa-
tures, ancestry, and HBV status) and clinicopathologic
features (such as age at the time of CGP, sex of the patient,
tissue biopsy site, and local or metastatic status of the tumor
[Data Supplement]). Model performance was evaluated by
10-fold cross-validation of the training cohort and on an
independent test cohort of 479 CCA and 189 HCC (Data
Supplement). This model was then applied on each cHCC-
CCA case to classify it as CCA-like, HCC-like, or ambiguous.

RESULTS

Patient and Specimen Characteristics

Liver biopsies were assayed for the majority of CCA, cHCC-
CCA, and HCC cases. Patients with HCC were predomi-
nantly male, as described previously,27 and were enriched
for younger patients and the African and East Asian ge-
nomic ancestry,28 whereas patients with CCA had a
comparable sex prevalence, and were enriched for older
patients and European genomic ancestry (Table 1). The

cHCC-CCA cohort (N = 73) was 71.2% male and 60.3% of
European ancestry, with a median age of 62 years (range:
22 years to 89+ years; Table 1).

Segregation of Genomic Alterations and Landscape

of cHCC-CCA

When CCA was compared with HCC, genes were prefer-
entially altered including ARID1A, BAP1, CDKN2A/B,
FGFR2, IDH1, KRAS, and PBRM1 in CCA,9,10 and
CTNNB1, MYC, and TERT in HCC7 (Figs 1A and 1B).
Genomic HBV was also significantly associated with HCC
compared to CCA (10.5% v 1.9%, P = 4.2e–42, odds
ratio = 6.14).

Among cHCC-CCA cases, we observed a median of 4 GA
per tumor (range 0-14). Frequently altered genes in cHCC-
CCA were TP53 (65.8%), TERT (49.3%), and PTEN (9.6%;
Fig 2A). Within this cohort, the most commonly altered
genes with GA that are linked to benefit from targeted
therapies were BRCA2 (8.2%, 67% short variant, 25%
were biallelic losses; 33% rearrangements), ERBB2 (5.5%,
75% amplifications), IDH1 (4.1%, 100% R132), BRAF
(4.1%, 100% V600E), FGFR2 (4.1%, 67% fusions), and
MET (2.7%, 100% amplifications), and accounted for
24.6% of cHCC-CCA.

Within the cHCC-CCA cohort, the prevalence of CCA- and
HCC-enriched genes described above trended toward
mutual exclusivity, possibly defining independent genomic
subpopulations (Fig 2B). As such, the eight cases of cHCC-
CCA positive for HBV were wild-type for genes often altered
in CCA: ARID1A, BAP1, CDKN2B, FGFR2, IDH1, KRAS,
and PBRM1.

TABLE 1. Baseline Characteristics of the Study Population
Characteristic CCA (n = 4,975) cHCC-CCA (N = 73) HCC (n = 1,470) P

Age (≤ 40 years) 278/4,609 (6.0%) 5/67 (7.5%) 104/1,381 (7.5%) .13

Sex, no. (%) , .001

Male 2,461 (49.5) 52 (71.2) 1,084 (73.7)

Female 2,514 (50.5) 21 (28.8) 386 (26.3)

Genomic HBV, no. (%) 93 (1.9) 8 (10.9) 154 (10.5) , .001

Tumor site

Local 3,764/4,386 (85.8%) 66/72 (91.7%) 1,019/1,340 (76.0%) , .001

Tumor purity (IQR), % 32 (20-48) 37 (20-47) 45 (28-67) , .001

Genomic ancestry, no. (%)

African 315 (6.3) 9 (12.3) 181 (12.3) , .001

American 582 (11.7) 8 (10.9) 207 (14.1) .05

East Asian 329 (6.6) 10 (13.7) 154 (10.5) , .001

European 3,667 (73.7) 44 (60.3) 896 (60.9) , .001

South Asian 82 (1.6) 2 (2.7) 32 (2.2) .33

NOTE. Results are N (%) unless otherwise stated. The chi-square test was used to estimate the P value for each of the 2 × 3 contingency tables, and the
Kruskal-Wallis test was used to determine the P value for the difference in tumor purity across the three diseases.
Abreviations: CCA, cholangiocarcinoma; cHCC-CCA, combined hepatocellular cholangiocarcinoma; HBV, hepatitis B virus; HCC, hepatocellular

carcinoma; IQR, interquartile range.
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Genomic Signatures

Biomarker signatures associated with response to immu-
notherapy like TMB high29 and MSI high30 were low in
prevalence across the three diseases (Data Supplement).
The median TMB was comparable across all three dis-
eases: CCA (2.5 mut/Mb), HCC (3.5 mut/Mb), and cHCC-
CCA (2.6 mut/Mb, Data Supplement). Alterations in the
mismatch repair pathway were also seen in similar fre-
quencies across all three diseases (data not shown).

However, for gLOH-H, which reflects genomic scarring as-
sociated with homologous recombination deficiency, 20.2%
of CCAwere gLOH-H, in contrast to 6.9% of HCC.17,18 Among
cHCC-CCA, 13.8% were gLOH-H (Data Supplement). Me-
dian gLOH of CCA (10.5%) was higher than that of HCC
(5.4%, P , .001) and comparable to cHCC-CCA (9.2%,
P = .04; Data Supplement). However, GA in the homologous
recombination repair pathway were seen in similar fre-
quencies across all three diseases (data not shown).

Genomic Aneuploidy

Chromosome arm–level aneuploidy was highly prevalent and
differentially enriched across the three forms of primary liver
carcinomas. When CCA was compared with HCC, loss of 3p,
9p, 9q, and 6q and gain of 6p and 5q were significantly
enriched in CCA and HCC, respectively (Fig 3A, Data
Supplement). Within the cHCC-CCA population, the most
frequent events were 8q gain (46.7%), 1q gain (40.0%), 8p
loss (33.3%), and 17p loss (26.7%). In total, we identified 39

unique chromosome arm–level gains and 33 unique chro-
mosome arm–level losses across the 60 cases (Fig 3B).

Machine Learning

The marked differences in the genomic features between
CCA and HCC cases created an opportunity to build an ML
model that could characterize a primary liver carcinoma as
CCA-like or HCC-like.

We trained and tested a random forest–based classifier on a
high-quality cohort of cases (training cohort: CCA n = 1,916
and HCC n = 755; independent test cohort: CCA n = 497 and
HCC n = 189; Data Supplement). When the model was
trained on genomic features alone, themodel’s sensitivity and
specificity were 85.9% and 93.4%, respectively, and when
the model was trained on genomic and clinicopathologic
features, the model’s sensitivity and specificity were 87.6%
and 94.5%, respectively, based on 10-fold cross-validation of
the training data (Data Supplement). Both the models per-
formed similarly on the test cohort (Data Supplement), with a
classification accuracy of 91% (95% CI, 88.8 to 93.2). When
probed further, clinicopathologic features such as sex of the
patient, biopsy site of the patient’s tumor specimen, and age
of the patient at the time of CGP testing were all found to be
significantly associated with the presence or absence of
genomic features including but not limited to TERT,
CTNNB1, IDH1, and FGFR2 (Data Supplement), across the
high-quality cohort of HCC andCCA. Subsequently, we chose
the genomics-driven model for all further analyses.
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FIG 1. (A) Genes preferentially enriched in CCA or HCC. Volcano plot depicting the co-occurrence and mutual exclusivity of gene alterations between
CCA and HCC. Only genes with an adjusted P value ≤ .05 and a prevalence ≥ 5% in either disease are labeled here. The two-tailed Fisher’s exact test
was used to evaluate the P values and odds ratios to determine associations between genes and disease. The Benjamini-Hochberg procedure was used
to estimate the adjusted P values. (B) Prevalence of genes differentially enriched between CCA and HCC. The genes shown in (A), along with TP53, are
depicted on the x-axis and are sorted in the decreasing order of their prevalence in cHCC-CCA. CCA, cholangiocarcinoma; cHCC-CCA, combined
hepatocellular cholangiocarcinoma; HCC, hepatocellular carcinoma.
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The top genomic features that the classifier used to distin-
guish CCA from HCC were (ranked in their descending order
of their classification power): TERT, CTNNB1, gLOH, tumor
purity, CDKN2A, chromosome 3p loss, CDKN2B, FGFR2,
IDH1, TMB, KRAS, genomic ancestry, genomic HBV,
chromosome 9q loss, and PBRM1 (Data Supplement).

This classifier was then applied on each of the 73 cHCC-CCA
cases, to place each individual case within the CCA-HCC
spectrum (Fig 4A). A prediction call of CCA-like or HCC-like
was made for 74% (54/73) of the cHCC-CCA cases. 0.61
was the probability cutoff used to separate HCC-like or CCA-
like cHCC-CCA from ambiguous cHCC-CCA cases (Data
Supplement); this value was derived from the probability
threshold that maximized the Matthew’s correlation
coefficient31 in the HCC-CCA training cohort. In total, 16.4%
(12/73) of the cHCC-CCA cases were classified as CCA-like,
57.5% (42/73) as HCC-like, and the remaining 26.3% (19/
73) of the cHCC-CCA cases were classified as ambiguous.

The CCA-like set of cHCC-CCA cohort had 25% each
ARID1A, FGFR2, and IDH1, and were wild-type for TERT,
CTNNB1, and MYC (Fig 4B) and lacked genomic HBV
(Table 2). CCA-like cHCC-CCA cases had a median gLOH
of 12.4% (Table 2). By contrast, the HCC-like cases har-
bored GA in TERT (71.4%), CTNNB1 (9.5%), and MYC
(9.5%), and were wild-type for lDH1, FGFR2, and KRAS

(Fig 4B). HCC-like cHCC-CCA cases had a median gLOH of

8.7% and 16.7% harbored genomic HBV (Table 2).

DISCUSSION

The two most frequent forms of primary liver carcinomas
(HCC and CCA) are ontologically, morphologically, and
clinically distinct. However, as evoked by its name, cHCC-
CCA is a poorly understood, aggressive rare primary liver
cancer that exhibits morphologic characteristics of both HCC
and CCA.32 As such, cHCC-CCA is an extremely challenging
disease regarding both diagnosis and management.
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We analyzed the genomic profiles of 73 cHCC-CCA, 4,975
CCA, and 1,470 HCC, all generated by targeted exome
sequencing in the course of clinical care. As consistent with

extensive previous studies, CCA and HCC differ strikingly in
many characteristics, including the frequency of GA, ge-
nomic signatures, ancestry, and aneuploidy. Notable
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differentially enriched GA were CTNNB1, MYC, and TERT,
and FGFR2 and IDH1, enriched in HCC and CCA,
respectively.

We observed arm-level losses in 3p, 9p, 9q, and 6q, and
arm-level gains in 5q and 6p as enriched in CCA and HCC,
respectively, consistent with previous work. Loss of the 3p
chromosomal arm (containing the BAP1, PBRM1 gene
loci) has been described as a possible clonal event in
CCA,10 whereas loss of 6q (containing ZNF292 and
EEF1A1), 9p (containing CDKN2A, CDKN2B, and MTAP),
and 9q have been described as recurrent aneuploidy
events in CCA.33 Gain of the 6p chromosomal arm has been
associated with late-stage HCC.34

We also identified multiple recurrent chromosome
arm–level aneuploidy events in cHCC-CCA. A number of
well-characterized tumor suppressors and oncogenes are
known to be contained by these aberrant chromosomal
segments, including MYC (8q gain)13,35; CHD1L, CKS1B,
JTB, and SHC1 (1q gain)36; DLC1 (8p loss)37; SGCE, MET,
and CDK6 (7q gain)13,35; TERT (5p gain)13; TP53 (17p
loss)35; PTEN (10q loss)35; andRB1 (13q loss) as well other

aberrations, notably, gain of the 2q, 5p, 17q, 20p, and 20q
arms, and loss of the 21q arm whose functional implica-
tions remains to be evaluated.

Within individual cases, GA, signatures, and aneuploidy
were strongly associated with either CCA or HCC, typically
mutually exclusive for those associated with the other
disease, suggesting that individual cases could be labeled
as resembling either CCA or HCC. This led us to build a
genomics-only–driven ML model to classify a cHCC-CCA
case as CCA-like or HCC-like, which could then accurately
classify more than 70% of the cases. Within our study
cohort, the clinical characteristics examined were strongly
associated with genomic features at a population level and
as such did not add independent resolution to further
strengthen classification in differentiating HCC from CCA.

This work complements the paradigm of Xue et al, but
significantly differs from that seminal study by both
methodology and the clinical validation status of the used
assays. Xue et al used both whole-exome sequencing and
transcriptional profiling, neither of which was annotated as
validated for use in patient care. IHC, laser capture
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microdissection of areas with differing morphology, and a
team of specialized pathologists for subtype classification
were also used, and all this was performed on banked
specimens dating from 2007 to 2018. By contrast, for the
current study, the only assay used was a clinically validated
targeted exome sequencing assay, at the request of a
physician currently treating a patient with cHCC-CCA. If the
results of this study are to become clinically impactful, then
clincally validated targeted exome based sequencing as-
says would prove to be vital for future cHCC-CCA patients.

Furthermore, in this study, no histologic subclassification
into the separate, combined, and mixed subtypes was
performed, which is in contrast to Xue et al. However, the
resolving power of the ML tool separated cHCC-CCA cases

into HCC-like or CCA-like solely on the basis of genomic
features, which indicates that subtype classification is not
needed for classification.

The 19 ambiguous cHCC-CCA cases harbored genomic
features associated with both CCA and HCC. Notable ex-
amples include a case with presence of genomic HBV, and
wild-type FGFR2 and IDH1, all of which resemble HCC but
also harbored a gLOH of 10.6% and 3p loss, which is more
CCA-like. Another case harbors a GA in TERT, a TMB of 2.5
mut/Mb, gLOH of 4%, wild-type FGFR2 and IDH1, all
consistent with HCC, but also an ERBB2 alteration, the
latter being frequently associated with biliary tract cancer.
Almost half of these ambiguous cases (8/19) had lower
tumor purity, which is important as tumor purity is a strong
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feature differentiating CCA andHCC in this series. Low tumor
purity reduces the sensitivity of the CGP test to detect low-
allele-frequency GA, hence affecting classification accuracy.

One limitation is the inability to detect the RNA hepatitis C
virus by the DNA-oriented targeted exome platform used
here, or knowledge of infection with the virus from the
clinical history of the patients. Association of HCC with
hepatitis C virus varies by global geography. In the United
States, CCA is associated with hepatitis C virus, whereas in
Asia, the same disease is also associated with hepatitis B
virus, perhaps secondary to endemic infection.38 Relatedly,
the subdivision of cHCC-CCA into HCC-like and CCA-like
cases on the basis of genomic findings alone mimics the
findings of Xue et al, albeit with a clinically validated assay
that can be used in the course of patient care. However, the
clinical impact of these findings remains to be explored. In
the terms of improving the performance of the classifier,
further investigation can help benchmark the ML model’s
posterior probability threshold to delineate either HCC-like
or CCA-like cHCC-CCA from ambiguous cHCC-CCA.

Another limitation of this study was the lack of character-
ization of clinicopathologic features such as serum alpha-
fetoprotein levels, the presence of cirrhosis or ascites, and
liver imaging–based features such as hepatic vein invasion,
which are all typically observed in HCC but not in CCA.
Inclusion of such features in the ML classifier could po-
tentially enhance performance of the model and should be
considered for further investigation.

Based on the findings in this study and Xue et al, the
concept of cHCC-CCA itself should continue to be critically
evaluated as to what the implications are for etiology of
CCA-like and HCC-like cHCC-CCA. Unlike Xue et al, the
genomic testing platform combined with the ML-classifier
developed here allow for easy classification of cHCC-CCA in
the course of clinical care by use of a clinically validated
test. However, further investigation is needed to identify the
clinical impact of these findings.

TABLE 2. Comparison of Select Features Between the Machine Learning–Classified CCA-Like cHCC-CCA and HCC-Like cHCC-CCA Cases
Feature CCA-Like cHCC-CCA (n = 12) HCC-Like cHCC-CCA (n = 42)

Genomic ancestry, %

African 0 19

East Asian 8.3 19

European 75 47.6

Aneuploidy, %

3p loss 25 7.1

6q loss 9.1 0

9p loss 16.7 14.3

9q loss 8.3 7.1

Genomic HBV, % 0 16.7

Median TMB (IQR), mut/Mb 1.1 (0-2.5) 3.6 (2.5-5.9)

Median gLOH (IQR), % 12.4 (10.4-15.0) 8.7 (5.4-11.9)

Tumor purity (IQR), % 30.0 (21.5-39.3) 37.0 (23.3-48.0)

NOTE. Results are in % unless otherwise stated.
Abbreviations: CCA, cholangiocarcinoma; cHCC-CCA, combined hepatocellular cholangiocarcinoma; gLOH, genomic loss of heterozygosity; HBV, hepatitis

B virus; HCC, hepatocellular carcinoma; IQR, interquartile range; TMB, tumor mutational burden.
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their importance. (B) Gene prevalence across CCA, CCA-like cHCC-
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and HCC-associated genes, between CCA, HCC, and the machine
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cases. AFR, African; AMR, Ad Mixed American; EAS, East Asian;
EUR, European; CCA, cholangiocarcinoma; cHCC-CCA, combined
hepatocellular cholangiocarcinoma; gLOH, genomic loss of hetero-
zygosity; HCC, hepatocellular carcinoma; RF, random forest; SAS,
South Asian; TMB, tumor mutational burden.
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