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Cell lines are one of the most frequently implemented model systems in life sciences
research as they provide reproducible high throughput testing. Differentiation of cell
cultures varies by line and, in some cases, can result in functional modifications within
a population. Although research is increasingly dependent on these in vitromodel systems,
the heterogeneity within cell lines has not been thoroughly investigated. Here, we have
leveraged high throughput single-cell assays to investigate the Comma-1D mouse cell line
that is known to differentiate in culture. Using scRNASeq and custom single-cell
phenotype assays, we resolve the clonal heterogeneity within the referenced cell line
on the genomic and functional level. We performed a cohesive analysis of the
transcriptome of 5,195 sequenced cells, of which 85.3% of the total reads
successfully mapped to the mm10-3.0.0 reference genome. Across multiple gene
expression analysis pipelines, both luminal and myoepithelial lineages were observed.
Deep differential gene expression analysis revealed eight subclusters identified as luminal
progenitor, luminal differentiated, myoepithelial differentiated, and fibroblast
subpopulations—suggesting functional clustering within each lineage. Gene expression
of published mammary stem cell (MaSC) markers Epcam, Cd49f, and Sca-1 was detected
across the population, with 116 (2.23%) sequenced cells expressing all three markers. To
gain insight into functional heterogeneity, cells with patterned MaSC marker expression
were isolated and phenotypically investigated through a custom single-cell high
throughput assay. The comparison of growth kinetics demonstrates functional
heterogeneity within each cell cluster while also illustrating significant limitations in
current cell isolation methods. We outlined the upstream use of our novel automated
cell identification platform—to be used prior to single-cell culture—for reduced cell stress
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and improved rare cell identification and capture. Through compounding single-cell
pipelines, we better reveal the heterogeneity within Comma-1D to identify
subpopulations with specific functional characteristics.
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INTRODUCTION

In most mammalian females, the mammary gland consists of
branching ducts surrounded by adipose tissue. The ducts
comprise three layers: basement membrane, basal cells, and
luminal cells outlined in Figure 1A (Malhotra et al., 2010;
Kondov et al., 2018). The basal cell contracture assists milk
transport through the ducts toward the skin surface. The
luminal cells line the inside of the ducts, and the alveolar cell
lineage secretes milk during pregnancy. Within normal
development, the ducts branch throughout the breast, and
adipose is the predominant tissue. Details of mammary gland
development across developmental time points have been
extensively studied (Hens and Wysolmerski, 2005; Anderson
et al., 2007). Over the course of pregnancy, prolactin and
progesterone trigger drastic branching and invasion of ducts
along with lobuloalveolar units to maximize lactational
competency. This tissue remodeling also involves

environmental reorganization for supporting development,
including vascularization to support growth, lipid loss in
adipocytes for spatial restructuring, and enlargement of the
liver for addressing increased energy needs (Petitti and
Perlman, 1988). There is evidence highlighting the
pathogenesis of breast cancer mirroring the functional
pathways identified for mammary gland development during
pregnancy. Mechanisms such as reduced cell apoptosis,
increased cell proliferation, and extracellular matrix
modification reflect alterations in oncogenesis and pregnancy
(Slepicka et al., 2019). Therefore, model systems that can simulate
properties specific to healthy mammary gland function have the
potential to serve as a proxy for better understanding of breast
cancer disease pathogenesis.

Characterization of breast cancer is often leveraged to classify
patients into disease pathways based on surface receptor
expression of Estrogen receptor (ER), Progesterone receptor
(PR), and Human epidermal growth factor receptor 2 (HER2).

FIGURE 1 | Background on mammary duct biology and an introduction of scRNASeq pipeline. (A)Model of mammary duct cross-section and potential cell types,
including tumor initiation. (B) A framework of the experimental pipeline to investigate sample heterogeneity with improved resolution and throughput. The illustrations
were generated on Biorender.com (C) Violin plots for percent of genes mapping to mitochondrial genome, the total number of molecules detected within a cell, and the
number of unique genes detected in each cell. Each data point represents a unique barcode from a bead. Filtered violin plots for cells with the percent of genes
mapping to mitochondrial genome less than 20%, the number of unique features detected in each cell greater than 2,000, and a nCount less than 45,000. (D) Elbow plot
outlining the standard deviation/variance in the data set attributed to each principal component. Kinks in the curve can highlight the distinction between relevant and
noise PCs.
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As higher resolution assays reveal marker expression attributed to
subpopulations within a tumor, the granularity of disease
classifications has been modified to reflect this new
information (Lehmann et al., 2016). Novel gene vectors within
a population have also been shown to provide information on
proliferative capacity, migration tendency, stemness capability,
and treatment targets (Jiang et al., 2021; Xu et al., 2021). Further
investigations into breast cancer have previously yielded
fundamental marker discoveries including Mki67+ as a
prognostic marker, Cd44+/Cd24+ as a breast cancer stem cell
marker, and Trop2 as another therapeutic target (Ricardo et al.,
2011; Xiong et al., 2019; Liu et al., 2021). Gene vectors also assist
cell type deconvolution and functional prediction with markers
such as epithelial cell adhesion molecule (Epcam), actin alpha 2
(Acta2), and collagen type 1 alpha two chain (Col1a2) expressed
significantly in luminal, myoepithelial, and fibroblast cell types,
respectively (Prater et al., 2014; Visvader and Stingl, 2014; Muhl
et al., 2020). Epcam further serves as a marker for stemness and
functions in cellular migration (Gaiser et al., 2012).
Understanding the expression patterns of functional gene
vectors in model systems ultimately allows for improved
stratification of study systems and informed cell line selection
in legacy investigations.

The Comma-1D cell line was derived from BALB/c mouse
mammary epithelium and is known to functionally differentiate
to preneoplastic and neoplastic phenotypes in vitro (Danielson
et al., 1984). Cell lines traditionally serve as a high throughput
model system to understand normal and oncogenic
characteristics. Cell line models differ in their degree of
homogeneity, with commonly investigated breast cancer lines
such as MCF7 indicating biological differences between labs
(Osborne et al., 1987). We chose to characterize Comma-1D
using single-cell methods to underscore this model line for its
known differentiation in culture as a demonstration to highlight
the efficacy and resolution of this suite of methods. Moreover,
the identification of subpopulations demonstrating stem-like
gene expression followed by phenotypic assays to define
differentiation capacity resulted in the development of
multiple robust pipelines for model generation and
characterization. The differential gene expression analysis
(DGEA) analysis provided a framework to identify clusters
based on transcriptomic and predicted genomic alterations.
These clusters may have identifiable functional traits that can
be observed and quantified. For example, cell motility is an
increasing trait of interest in oncology (Twigger et al., 2015).
With this pipeline, we can identify motile gene expression across
the population through scRNASeq followed by high throughput
single-cell fluorescence quantification of migratory proteins.

The advent of high throughput single-cell processing
platforms has allowed for the deep characterization of known
and novel cell subpopulations. Further, these assays have been
employed to define tumor heterogeneity and investigate tumor
microenvironment across disease subtypes and locations (Paul
et al., 2017). However, single-cell technologies have not yet been
leveraged to characterize many model systems, including
Comma-1D, as many cell lines have been assumed to be
homogenous and well defined based on findings from bulk

sequence data. Consortiums such as The Cancer Genome
Atlas provide conventional bulk RNA and DNA methylation
for cell lines, which serve as a necessary foundation for any
preliminary testing using these model systems (Ren et al., 2018).
As our understanding of the complexity of cancer evolves, the
resolution of data needed to provide an accurate framework for
therapy targets needs to approach a single-cell level. By
determining populations of functional variability, we generate
a spectrum of subclonal populations, which can be ordered by
predicted role in disease progression, role in tumor population
heterogeneity, and downstream effect by successful therapeutic
targeting. We present here an optimized high throughput method
for single-cell genomic analysis for population identification to
inform downstream phenotypic and functional experimentation
(Figure 1B). This method identified four novel populations of
interest and enabled an 80.4% increase in microfluidic cell
cultures populated with the Epcam+Cd49fhighSca-1high, stem-
like cell type.

MATERIALS AND METHODS

Comma-1D Mouse Mammary Epithelial
Culture
The Comma-1D cell line was provided by the Gregory Hannon
Laboratory (Cancer Research United Kingdom, Cambridge
Institute). Aliquots were thawed and then cultured in CytoOne
T25 flasks (US Scientific) with culture media composing DMEM/
F-12 media (Thermo Fisher), 2% FBS (Sigma-Aldrich), 1% Pen-
Strep (Gibco), 10 μg/ml Insulin (Sigma-Aldrich), and 5 ng/ml
Epidermal Growth Factor (Thermo Fisher). Upon 80%
confluency, the sample was passaged following the
recommended subculturing protocol for adherent cells (Cancer
Genome Atlas Research et al., 2013).

Single-Cell RNA Sequencing and Library
Prep
For single-cell RNA sequencing, cells were collected at passage
five and suspended in 1x PBS media at 1 × 106 cells/ml. Cells were
processed according to Chromium 3’ Gene Expression V3 Kit
(10X Genomics) using the manufacturer’s guidelines followed by
sequencing on an S1 NovaSeq chip (Illumina Inc.). Qubit 3
(Fisher Scientific) and 2100 Bioanalyzer (Agilent) were used
for quality check of cDNA. The output BAM file from
sequencing was processed through 10X Genomics Cell Ranger
software v3.1.0. The outputted read counts matrix inputs into R
for downstream analysis such as Seurat and Monocle.

Single-cell gene expression data resolves unique heterogeneity
information not attainable from conventional bulk sequencing
technologies (Ricardo and Phelan, 2008). To evaluate the
heterogeneity in the Comma-1D cell line, we ran the cells
through the pipeline and successfully generated scRNASeq
data with ~50,000 2 × 150 bp reads per cell with 5,745 cells
sequenced, generating 238 M reads with 98% valid barcodes and
100% valid UMIs. 85.3% of the total reads mapped to the mm10-
3.0.0 reference genome.
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ScRNASeq Comma-1D Data Filtering and
Analysis
To advance computational accuracy and remove predicted outlier
data, the Seurat object representing the cells from the Comma-1D
line was filtered for features that were not present in at least 15
cells (~0.3% of total cell count) (Zheng et al., 2017). To further
clean the data set, data points were filtered using three
parameters: high percent mitochondrial data is indicative of
cell death, therefore cells with >20% were removed; a high
count of unique features > 45,000 are indicative of multiplets
and ribosomal RNA (rRNA) in the gel emulsion (GEM)
formation and were therefore removed; a low count of unique
features <2000 is also indicative of GEMs with no cells or debris,
and these cells were also removed from the dataset (Svensson
et al., 2017; Butler et al., 2018; Freytag et al., 1000). Figure 1C
represents the data pre- and post-sub-setting for the above-
mentioned quality standards, respectively, with 5,195 of the
5,745 sequenced cells passing these QC parameters. After
passing the initial QC, the data was normalized to account for
variability. Cell cycle scoring was done to mitigate cell cycle
heterogeneity through phase scoring of G2/M and S markers,
which were then regressed out (Kimmerling et al., 2018). PCA
was conducted for dimensionality reduction to identify
undefined components that constitute variability within the
data, plotted in Figure 1D. The PCA scores were used by
Seurat to generate unsupervised clusters. The Seurat object
with filtered and labeled data was then utilized by the
Monocle pipeline for pseudo-time analysis. Data is imported
through Monocle through extracting and expression matrix, cell
metadata, and gene annotations from the Seurat object. The new
cell data set is reprocessed and standardized through the
preprocess_cds() function. The cell dataset it reclustered with
the louvain_iter set to one, nearest neighbor k value set to 150,
and a UMAP-based dimensionality reduction. Top genes from
the Seurat clusters are leveraged as markers to annotate the
Monocle generate populations.

Integration of Comma-1D and Mouse
Mammary Dataset
To better understand the functional populations predicted in
Comma-1D, the dataset was integrated with previously published
scRNASeq mouse mammary data from a C57BL/6 mouse (Pal
et al., 2021). C57BL/6 is a widely used strain commonly utilized
for developmental biology and therefore served as a good
selection for comparison with Comma-1D. For functional
comparison, the adult C57BL/6 mammary tissue dataset was
downloaded from the GEO database (GSE164307) and
integrated with the Comma-1D scRNASeq data. The dataset
was imported and preprocessed with the same pipeline
described for Comma-1D. Cells were filtered for identifiers
with over 800 features, less than 20,000 total counts, and less
than 20 percent mitochondrial gene activity. This dataset was
independently normalized and scaled prior to data integration.
The C57BL/6mousemammary dataset provided 11,997 total cells
post-filtering. Harmony is a data integration algorithm that
encourages cell grouping by cell type rather than dataset

biased metrics by accounting for experimental variability and
was used for the integration of these data (Korsunsky et al., 2019).
As done for the Comma-1D dataset independently, the Harmony
merged dataset was processed for global unsupervised clustering
using FindNeighbors() and FindClusters(), with a resolution
value of 0.5. Clusters were analyzed using the
FindAllMarkers() function and gene markers used to identify
partitioning Comma-1D were replotted for the merged dataset
using feature plots.

Ranked Stemness Prediction Using Entropy
Scoring of Comma-1D Clusters
To estimate the differentiation potency (i.e., stemness) of single
cells, we leveraged a computationally accelerated calculation of
transcriptional Shannon entropy, following work pioneered by
Tessechndorf and Enver (Teschendorff and Enver, 2017).
Conceptually, differentiation of a cell involves the progressive
silencing of gene pathways unrelated to its increasingly
specialized function, such that the promiscuity seen in
transcriptional activity decreases as a cell differentiates.
Conversely, stem-like cells retain a higher degree of overall
transcriptional activity across a multitude of pathways
governing potential fates. This dynamic can be leveraged to
estimate the degree of differentiation of a single cell, through
calculating the Shannon entropy rate of a random-walk across a
protein-protein interaction (PPI) network with gene expression
superimposed.

We implemented entropy estimation using the
abovementioned approach in Tensorflow 2.0 with support for
GPU accelerated calculation. Prior to entropy scoring,
unnormalized raw cell counts were subject to light kNN
smoothing (k = 8) to reduce technical variance in entropy
scores induced by gene dropout and subsequently
renormalized to 10,000 counts per cell. Entropy scoring on
smoothed, depth-normalized count data was performed on a
Google Cloud VM n1-highmem-16 instance running on an
NVIDIA Tesla T4 GPU with 16 GB RAM. After calculating
entropy scores, unsmoothed, depth-normalized counts were
used to calculate spearman correlations for all genes with
respect to entropy score. Significance values were adjusted to
account for multiple testing correction using the benjamini-
hochberg false discovery rate method. Genes with positive
spearman correlation are overexpressed in stem-like cells,
while genes with negative spearman correlation are
overexpressed in differentiated cells.

Subpopulation Tracking and Stemness
Evaluation With Beacon
Cells were harvested from culture at passage five and suspended
in Comma-1D culture media at an ideal loading concentration of
2 × 106 cells/ml. Utilizing the small volume import parameters on
Beacon, 5 µl of media with cells were bubble imported into the
microfluidic chip at 25°C. OptoElectroPositioning (OEP) was
used to identify, isolate, and pen both independent cells and
clusters of cells into isolated nanopens. Cells were loaded with a
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voltage of 2.1 V at 5 μm/s, with a target of 1–4 cells per pen. This
import and culture method has previously been utilized for
cellular characterization (Beaumont et al., 2022). Over multiple
iterations of this importing and culture, levels of Matrigel
(Corning) were optimized to allow cell adherence on the chip
surface while also providing an isolated nanopen network for 3-
dimensional growth. The cells are cultured on chip with DMEM/
F-12 media (Thermo Fisher), 2% FBS (Sigma-Aldrich), 1% Pen-
Strep (Gibco), 10 μg/ml Insulin (Sigma-Aldrich), and 5 ng/ml
Endothelial Growth Factor (Thermo Fisher) at 37°C with 5%
CO2. The microfluidics on-chip allow constant perfusion of
media which is perfused at 0.01 μl/s. Fresh media refills is
provided to the system every 24 h. Cells were cultured up to
10 days post-import.

All nanopens and their cellular contents were imaged in 12-h
and 24-h intervals comprising every imaging channel on the
Beacon system (OEP, DAPI, FITC, Texas Red, or Cy5).
Pseudobinning was performed with differential expression of
fluorescence of antibodies EpCAM-Cy5 (Biolegend #118220),
EpCAM-AF594 (Cell Signaling Technology #73195), CD49f-
FITC (Biolegend #313606), and Sca-1-BV421 (Biolegend
#108127). The images were then collated and analyzed on a
custom MATLAB (MathWorks) script. Images captured across
timepoints and channels are aligned through the microfluidic
chip’s feature points. Each nano pen is designed with a region of
interest (ROI) for coordinate-based image comparison between
timepoints and imaging channels. Cells are identified through a
circle detection algorithm that then filters possible cell locations
by image intensity readings under the brightfield (OEP) channel.
True positive cell locations are saved on a 3-dimensional matrix
of coordinates. Each ROI and each cell location are measured for
fluorescent intensity across channels at t0. These values are
normalized by dividing cell location measurements by that
cell’s ROI measurement. This normalization permits multi-
chip comparison and scoring. The normalized image intensity
readings are clustered based on populational heterogeneity
identified from single-cell sequencing data. The cell intensity
readout is binned into the generated clusters allowing for high
throughput post-import cellular subtype identification.

RESULTS

Resolving Subpopulation Heterogeneity
Within Comma-1D With Single-Cell
Transcriptomics
We generated eight unique subpopulations from unsupervised
clustering of our Comma-1D cell line culture sample. Principal
Component Analysis (PCA) is useful for fast and linear
dimensionality reduction, however with increasingly complex
data affiliated with scRNASeq, UMAP is another preferred
network analysis tool that preserves the global structure,
distance correlations, and continuity of cell states (Xiang et al.,
2021). Figure 2A shows a UMAP plot of the heterogeneity of the
evident subgroups. Using the filtered, normalized, and scaled
dataset, cell line clustering provided an increased resolution to

gene expression and clonal population differences. Investigating
differential gene expression between clusters within this dataset,
we further highlight potential functional clustering. While one
dataset was generated and processed for scRNASeq of the
Comma-1D cell line, the throughput of 5,195 cells provides
confidence in characterizing the observed heterogeneity.
Datasets were generated for functional validation using Beacon
data across 1,214 cells from two individual chips to demonstrate
technical validity. All p-values are reported for each differentially
expressed gene (DEG) analysis; however, due to the throughput
of this assay and a high n count, p-values are close to 0 with values
less than 2.225074e-308 reported as 0 by R. Figure 2B and
Supplementary Figure S1 are cluster trees outlining distance
relationships between the generated subgroups, with
Supplementary Figure S1 indicating nodal identifiers for
downstream analysis and reference. This phylogenetic tree
analysis averages data points across an identified
subpopulation to extrapolate distance relationships between
the identified clusters. Top differentially expressed genes
driving the node splits in the population are outlined in
Supplementary Table S1. These gene vectors generate hits
relevant to interpreting functional identities of these
populations, such as Lcn2 (p = 0) and Col6a1 (p = 0). From
the cluster tree and UMAP in Figure 2, we visualize specific
populations as more distant from the remaining cells, primarily
clusters attributed to fibroblasts. To investigate the functional
hallmarks of these populations, we explored all markers expressed
in each cluster and sorted them by the difference of pct.1 and
pct.2, which represent the percent of cells in a specific cluster
expressing a gene and the percent of cells outside that cluster
expressing that gene, respectively. Typically, we have identified
that genes with difference values greater than 0.5 are responsible
for providing the most direct representation of individual cluster
states and that these genes, in most cases, parallel the most
significant DEGs with regards to p-value and avg_logFC.
Through sorting by this difference value, we derive gene
expression sets increasingly specific to the subpopulation of
interest (Newman et al., 2015). This analysis was run across
all the generated clusters; resultant data is shown in
Supplementary Figure S2.

The top five differentially expressed genes per cluster that pass
a baseline significance criterion are shown on the heatmap in
Figure 2C. These top differentially expressed genes were parsed
to identify the potential cell types as labeled. The top five genes in
the cluster predicted as fibroblast are Col6a1 (p = 0), Col3a1 (p =
0), Col6a2 (p = 0), Gng11 (p = 0), and Pdgfrb (p = 0). These genes
highlight invasion in the Comma-1D population as part of the
diversity of collagen genes typical of fibroblast cells (Olsen et al.,
1989). Previous studies have also found fibroblasts in Comma-1D
cell line culture (Danielson et al., 1984). Further evidence
supporting the presence of a fibroblast population in Comma-
1D is highlighted in Figure 3A by the feature plots generated
across typical canonical markers of fibroblastic cells. The
fibroblast cluster is significant in its isolated expression of
Col3a1 (p = 0), while also expressing the Vimentin (Vim, p =
1.34e-154), S100a4 (p = 3.06e-164), and Cola2 (p = 0) at a higher
intensity than the remaining populations. Violin plots shown in
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Figure 3B quantify the observed differential expression amongst
the genes highlighted above.

This pipeline was applied in parallel to the additional clusters
identified in the Comma-1D culture. Through these analyses, we
identified the remaining functional groups composing the
Comma-1D culture population. Twigger et al. (2015) identified
key gene markers that functionally determine mammary gland

cell populations, including two main types of epithelial cells,
determined to be luminal and myoepithelial cells. Figure 3C
shows increased gene expression of Epcam (p = 0) and Acta2 (p =
0) used to identify luminal and myoepithelial populations,
respectively. Diving deeper into each predicted partition,
within the luminal subgroup, we observed a higher-than-
expected expression of Krt18 (p = 1.57e-79), a marker for the

FIGURE 2 | Comma-1D preliminary cluster analysis. (A) The UMAP depicts unsupervised clusters across the population with a resolution parameter of 0.5. (B)
Cluster tree generated by averaging data points across a cluster and deriving distance relationships between the identified populations on a pseudo-bulk level. (C) The
heatmap outlines the expression of the top five DEGs within each cluster if they pass the significance threshold.
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FIGURE 3 | Predicting cell types and functions by cluster. (A) Feature plots of key canonical markers of fibroblastic cells (B) Violin plots of key canonical markers of
fibroblastic cells. Identified fibroblast cluster exclusively expressed all markers. (C) Feature plots depicting expression of markers derivative of luminal and myoepithelial
subtypes, EPCAM and ACTA2, respectively. (D) Violin plots outlining distinct expression of Krt18 expression within the luminal subtypes indicating possible alveolar cell
function. Krt8 expression was significantly isolated to the predicted luminal progenitor population within the luminal subtype. Almost exclusive expression of Krt8
indicates luminal progenitor cluster as a progenitor population within luminal cells and with luminal 1 as slightly differentiated cells with secretory/alveolar function. (E)
Differential genes between the two clusters in the luminal partition. (F) Differential genes within the local myoepithelial partition. (G) Ridge plot of gene markers conserved
within luminal cells, but not expressed significantly outside the luminal population. (H) Ridge plot of gene markers conserved within myoepithelial cells, but not expressed
significantly outside the myoepithelial population.
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alveolar subtype of luminal mammary cells Figure 3D (Moritani
et al., 2015; Zhao et al., 2010). Much like Zhao et al. (2010) noted
in their immortalized mammary stem/progenitor cells, we see the
expression of Krt8 (p = 0) isolated to the luminal progenitor cells
relative to all other cell populations, shown in Figure 3D
(Lichtner et al., 1991). After running a FindMarkers()
function, we generate genes differentially expressed between
the luminal progenitor population and luminal 1 population,
with the top hits sorted by pct.difference visualized by the violin
plots in Figure 3E. From the DEGs identified in Figure 3E, we
noticed that the Krt7 (p = 1.13e-180) and Ehf (p = 1.78e-68)
expression, known to identify immature luminal epithelial cells,
was isolated to the luminal progenitor cluster (Jones et al., 2004;
Kumar et al., 2018).

Within the breast, the luminal progenitor cells differentiate
into non-secretory epithelial and alveolar cell types for lactating
function (Booth et al., 2007). The non-secretory epithelial cells
are typically identified by Krt19, for which we did not observe
expression within this population in our experiments. However,
we did observe Krt18 expression, associated with the milk-
creating alveolar subtype, in the luminal progenitor cluster, as
shown previously in Figure 3D. The Violin plots in Figure 3F
identify a significant gene within each cluster compared to the
local myoepithelial population. We found identifying functional
differences within the myoepithelial clusters to be too assumptive
based on our scRNASeq data; however, some DEGs can provide
useful inferences. For example, the myoepithelial 5 population
significantly expressed Aldh3a1(p = 1.48e-157), which has been
linked with increased cell proliferation and tolerance to the

cytostatic and cytotoxic effects of lipidic aldehydes (Muzio
et al., 2012). We also identified the differential genes across all
the clusters within the myoepithelial cell type in the heatmap
shown in Supplementary Figure S2A. To highlight the
differential expression for key markers, feature plots for a top
gene per cluster is visualized in Supplementary Figure S2B. This
differential gene expression analysis can be paralleled across any
two cell selections within the population.

Running a differential gene expression analysis between the
luminal and myoepithelial partitions generates gene vectors
conserved within each partition but with differential
expression between the populations. Table 1 lists the top
genes that were differentially expressed between myoepithelial
and luminal subtypes, identified by selecting the top 10 genes by
the difference in the percentage of cells in each partition
expression that marker. The top three DEGs are visualized on
the ridge plots in Figure 3G showcases genes conserved within
luminal cell types while also demonstrating a lack of expression in
the myoepithelial cells, such as Epcam (p = 0),Wfdc2 (p = 0), and
Nkd2 (p = 0). Similarly, Figure 3H represents the top three genes
conserved within myoepithelial cell types with a lack of
expression in the luminal cells, such as Igfbp6 (p = 0), Lrp1
(p = 0), Fbln2 (p = 0).

Each subcluster identified has unique signatures that assist in
defining its local and global functionality within a heterogeneous
cell line. To assist in functional predictions, top gene vectors for
each subcluster, identified by significant avg_logFC value, are
ported through a gseGO network analysis provided by the
ClusterProfiler() package (Wu et al., 2021). The gene vectors

TABLE 1 | Top genes differentially expressed between luminal and myoepithelial subtypes. Conserved genes in the myoepithelial and luminal partitions that are differentially
expressed between the two. p-Value less than 2.23e-308 is reported as 0 by R.

Luminal conserved gene markers
Gene Percent expression in luminal population Percent expression in myoepithelial population p-value

Epcam 0.917 0.066 0.000000e+00
Wfdc2 0.923 0.11 0.000000e+00
Nkd2 0.816 0.061 0.000000e+00
Krt18 0.848 0.11 0.000000e+00
Lsr 0.749 0.021 0.000000e+00
Cldn7 0.733 0.016 0.000000e+00
Lad1 0.789 0.079 0.000000e+00
Rab25 0.671 0.017 0.000000e+00
Wfdc18 0.72 0.082 0.000000e+00
Krt7 0.669 0.054 0.000000e+00

Myoepithelial conserved gene markers
Gene Percent expression in luminal population Percent expression in myoepithelial population p-value

Igfbp6 0.193 0.888 0.000000e+00
Lrp1 0.208 0.885 0.000000e+00
Fbln2 0.223 0.882 0.000000e+00
Ass1 0.246 0.895 0.000000e+00
Sparc 0.371 0.999 0.000000e+00
Ptges 0.157 0.776 0.000000e+00
Igfbp2 0.149 0.766 0.000000e+00
Pdpn 0.186 0.802 0.000000e+00
Emp3 0.372 0.985 0.000000e+00
Ly6e 0.364 0.976 0.000000e+00
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are generated to compare functionality within each partition
rather than global comparison, with the exception of the
predicted fibroblast population. For example, the gene vector
used to run the network analysis for myoepithelial 1 was
generated by comparing the gene expression of that cluster to
the remaining myoepithelial subclusters: myoepithelial 2,
myoepithelial 3, myoepithelial 4, myoepithelial 5. These local
comparisons within each partition determine differential
transcripts with functional indications. All the pathway
predictors and the affiliated genes for each subpopulation are
visualized by the Cnet plots in Supplementary Figure S3. For
each subcluster analysis, the Cnet plots illustrate top pathway
activation indicators and their respectively linked genes. The
pathways identified predict functional differences in each
subcluster based on known gene vectors. The myoepithelial
subclusters were of interest in this analysis to parse functional
granularity between clusters. Myoepithelial 1 expressed genes
associated with cellular response to external stimuli, likeMt1 (p =
1.07e-100), Mt2 (p = 1.78e-179), and Bnip3 (p = 8.76e-150). The
expression of Pttg1 (p = 4.95e-120) and Cdc20 (p = 1.35e-53) in
myoepithelial 2 indicated pathway activation related to
reproduction and cell growth. Myoepithelial 3 was defined by
genes relating to gene ontology (GO) terms for cellular
components and anatomy, like Cdk1 (p = 3.65e-49) and Zyx
(p = 8.46e-88). The top DEGs in myoepithelial 4 were associated
with GO terms for response to wound healing and cell
proliferation, including genes like Tpm1 (p = 2.15e-41), Fn1
(p = 4.31e-71), and Sparc (p = 2.62e-100). The last population
of myoepithelial cells, myoepithelial 5 was distinguished by the
nucleus and intracellular organelle lumen pathways, including
genes such asHsph1 (p = 9.93e-22), Cbr3 (p = 4.57e-68), Ptges (p =
1.48e-41), and Aldh2 (p = 2.78e-33). The myoepithelial 5
population pathways have high gene counts therefore only two
pathways are visualized, whereas in the other plots top three are
shown. Luminal 1 has gene enrichment of Krt17 (p = 1.31e-164),
Krtdap (p = 3.06e-216), and Krt6a (p = 2.70e-242) linked to
pathways involved in keratinization and epidermis development.
The luminal progenitor population has pathway activation of
protease binding and endopeptidase inhibition, indicated by the
expression of genes such asWfdc18 (p = 0) and Lcn2 (p = 0). The
fibroblast population has activation of genes related to
extracellular matrix (ECM) and external structure activation
through gene expression of Col1a1 (p = 0), Col1a2 (p = 0),
Col3a1 (p = 0), and Col6a1 (p = 0). The significance of
expression is lower among the myoepithelial comparisons
further indicating that the population has reduced functional
heterogeneity in comparison to the two luminal clusters.

Subpopulation Comparison of Integrated
C57BL/6 Mouse Mammary and Comma-1D
Data
Harmony was used to compare populations between cell line and
mouse mammary tissue. The merged dataset was re-normalized
to reduce experimental and sample bias. The UMAP in
Supplementary Figure S4A illustrates the relationship
proximity between sample types. The merged dataset was

processed for unsupervised clustering which yielded ten
unique subpopulations composing luminal, myoepithelial, and
fibroblast partitions are shown in Supplementary Figure S4A.
The bar plot in Supplementary Figure S4B quantifies sample
contribution to each cluster. Every cluster population contains
cells from both samples; however, most clusters have a
preferential population to a given sample. For example, the
myoepithelial 1 cluster has 1,944 total cells with 362 cells
(18.62%) originating from C57BL/6 and 1,582 cells (81.38%)
from Comma-1D. The populational breakdown linked with
cell locations on UMAP indicates similar functional
populations representative in each sample type, illustrated in
Supplementary Figure S4C. The three feature plots summarize
the expression of canonical markers Col1a2, Acta2, and Epcam to
identify fibroblast, myoepithelial, and luminal cell types,
respectively. These partitions of cells are detected across the
Comma-1D and C57BL/6 datasets. From the heatmap in
Supplementary Figure S4D, top differential genes
characterizing each cluster is visualized. The merged analysis
revealed two smooth muscle cell derived myoepithelial
populations, indicated by the expression of canonical markers
Tagln (p = 0) and Tpm2 (p = 0). One of the luminal populations
indicated ductal cell functionality with the expression of markers
Csn3 (p = 0) and Wfdc18 (p = 0). This ductal specific luminal
population was not previously identified by the Comma-1D
independent analysis.

Resolving Founder Populations Through
Pseudo-Time Analysis
The Seurat package provides a comprehensive pipeline for cluster
identification and differential gene expression. As single-cell data
increasingly becomes a more widespread tool for advancing the
efforts of onco-genomics, more analysis platforms are providing
analysis tools to parse and interpret this complex landscape. For
example, the Trapnell lab has generated the Monocle 3 pipeline
for pseudo-time analysis across a population at a given time point
(Trapnell et al., 2014). Using the differential gene expression
across an entire population, we can use Monocle 3 to visualize
predicted nodes of origin and differentiation. We see parallel
functional clustering when investigating our COMMA-1D cell
line through both pipelines. Monocle reclustering generated 11
unique populations within Comma-1D. The clusters generated
resemble the luminal, myoepithelial, and fibroblast
transcriptomic profiles, identified previously using Seurat,
outlined in Figure 4A. The plot in Figure 4B illustrates top
gene markers from the Seurat clusters and their expression
profiles within the Monocle generated populations. We
identified gene expression of Col3a1 (p = 0), Epcam (p = 0),
and Acta2 (p = 2.37e-273), as predictive markers for fibroblast,
luminal, and myoepithelial cells, respectively. As highlighted in
Figure 4B, the representative gene expression patterns were
observed across the various partitions of Comma-1D.
Therefore, we can conclude the populations created through
Monocle are separating cell types similar to cell groups we
defined through Seurat cluster analysis, providing independent
and orthogonal validation of our approach. We can apply this
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FIGURE 4 | Pseudotime analysis of Comma-1D populations. (A)Monocle partitions and reclustering within the populations. Monocle clustering generated 11 total
clusters composed of luminal, myoepithelial, and fibroblast populations. (B) Dotplot of the top four genes per cluster identified from the Seurat generated Comma-1D
populations. Gene expression is plotted against Monocle generated clusters (C) Feature plots illustrating expression of cancer stem cell (CSC) markers Epcam, Itga6,
Ly6a, Cd44, Cd24a, andMki67. Significant stemness related gene markers observed in the luminal A and myoepithelial A Monocle clusters. (D) Utilizing manually
selected root nodes of interest, we create a trajectory predicting population evolution. Within Partition 1, luminal C is furthest along the differentiation trajectory. The
fibroblast population is most progressed along the differentiation trajectory in Partition 2 (E) Ranked entropy score by Comma-1D cluster, luminal progenitor population
with most stem-like capability in this cell line. (F) UMAP plot overlaid with entropy score gradient for Seurat generated clusters.
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association to identify functionally similar populations between
the analysis pipelines. For example, Lgals7 is a gene marker for
luminal 1 (p = 1.89e-109) in Seurat with differential expression in
the luminal C (p = 3.48e-12) cluster in Monocle. Similarly, Lcn2 is
differentially expressed in the luminal progenitor (p = 0) cluster
from Seurat with significant expression observed in luminal A
(p = 5.88e-139) in Monocle.

Monocle pseudotime trajectories determine gene expression
changes across the populations to place single cells along that
defined trajectory. Top cancer stem cell (CSC) markers leveraged
in Seurat are visualized on the Monocle UMAP in Figure 4C.
This reveals populations such as luminal A and myoepithelial A
with high predicted stemness capacity. In contrast, luminal C and
fibroblast clusters have reduced expression of these stemness
markers. Using the DEGs between clusters identified in Seurat, we
generated a Monocle trajectory plot for those genes to determine
which nodes yield key expression differences. The identified and
selected nodes are used to order and plot cells on a pseudotime
trajectory shown in Figure 4D. Based on the pseudotime
trajectory results, we identify luminal A and myoepithelial A
as populations early in the differentiation trajectory. These
pseudotime findings support assumptions made from CSC
marker expression. The trajectory analysis indicates luminal C
and fibroblast populations as furthest along the differentiation
trajectory within each partition. Based on parallel gene expression
markers between analysis pipelines, this supervised pseudotime
analysis further supports predictions from gene expression about
the luminal progenitor population’s stemness capability.

To validate the supervised findings from Monocle 3, we
employed an unsupervised single-cell entropy scoring
algorithm to estimate stemness within the Comma-1D
clusters. Entropy scores have indicated a correlation to
increased stemness capability (Teschendorff and Enver, 2017).
This analysis confirmed the luminal progenitor cells have the
highest mean entropy score, Figure 4E. Thereby, further
indicating this cluster’s potential function as a progenitor or
stem-like population within the Comma-1D cell line culture.
Using this tool, we identify fibroblast cells as the population with
the lowest mean entropy score. As this is the most functionally
differentiated population in our dataset, the findings support both
key conclusions interpreted from entropy scoring. The other six
clusters represent similar entropy scores with mean scores
between those generated for fibroblast and luminal progenitor
clusters. Figure 4F is the UMAP plot structure for Comma-1D
overlayed with an entropy score gradient for each cell point. The
plot visualizes the increased entropy within the luminal
progenitor population.

Comparative Analysis of Novel and Known
Stem-Like Markers Within Comma-1D
Population
Recent publications have highlighted the Comma-1D line for its
inclusion of populations of stem-like cells (Yang et al., 2017).
Parsing published data for markers of stem-like cells revealed
three markers of stem-like cell subpopulations,
Epcam+Cd49fhighSca-1high, as well as preliminary phenotypic

data supporting differentiation capability to both basal and
luminal lineages (Krebsbach and Villa-Diaz, 2017). In
addition, the expression of these markers has already been
associated with disease prognosis (Yang et al., 2012). When
searching for these markers across the cells sequenced from
the Comma-1D line, we observed the differential gene
expression patterns outlined in Figure 5A. The gene
equivalent for the proteins Epcam, Cd49f, and Sca-1 are the
gene symbols Epcam, Itga6, and Ly6a, respectively.
Combinatorial expression of these three markers yields unique
cell selections identified by the nomenclature elucidated in
Table 2. We subset the entire Comma-1D population for cells
expressing one or more genes of interest to investigate the
subpopulations further. For example, to isolate a P8
subpopulation, we filtered for cells with a scaled expression
for the collective gene set, Epcam+Itga6highLy6ahigh,
demonstrating higher than 0.3 intensity. This intensity
cutoff was determined from a bimodality of expression
across these genes where 0.3 was the lower bounds of the
higher mode, which we believe correlates to true RNA
expression, which can be visually interpreted by the violin
plots in Supplementary Figure S5. Published markers Cd44,
Cd24, and Mki67 have each been linked with stemness
potential and were plotted for comparison against Epcam,
Itga6, and Ly6a expression (Ricardo et al., 2011; Cidado
et al., 2016). These P8 filtered cells were plotted in the
feature plots shown in Figure 5B visualizing the stem gene
markers of interest. The composition of this sub-selected
dataset is outlined in the pie charts in Figure 5C, where we
observed cells from all clusters in the original population
present in this predicted stem-like population, except for
the fibroblast cluster.

Custom Beacon Pipeline for Resolving
Phenotypic Heterogeneity and Cell
Aggregate Development
The data presented was collected using a microfluidic instrument
that allows high throughput cellular selection and manipulation
with light-induced dielectrophoresis (Berkley Lights, Inc.). The
system employs disposable microfluidic chips with 3,500
nanopens allowing for isolated cell cultures. Above the
experimental chip is an integrated fluorescent microscope that
operates with OEP, DAPI, FITC, Texas Red, and Cy5 channels.
Using this system, experimental assays are designed to quantify
variables including sample heterogeneity, response to stimulus,
and cell interactions. Experimental and cultural conditions need
to be optimized for each sample to induce assay robustness.
Incremental adjustment of Matrigel concentration, cell import
concentration, and chip surface treatment were done to improve
cell adhesion, increase cell growth, and reduce processing time.
Through dozens of iterations, we have identified a reproducible
custom protocol, which resulted in Comma-1D cell growth to cell
aggregates on the Beacon platform. Figure 6A demonstrates the
Comma-1D cell line cultured under a controlled
microenvironment over a 5-day culture period. Each image
represents a progressive time with 24-h interval image capture
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of a fixed subsection of 18 nanopens on the instrument’s
microfluidic chip. We observed cell-dependent growth
differences between isolated cultures, resulting in the
development of a method for capturing the biological
differences driving cell-to-cell growth rate differences. The

colored bar below pen images indicates pens with cells that
either proliferated (indicated by green) or showed signs of
apoptosis (indicated by red).

We performed a growth analysis of both single and batches of
cell subtypes from the Comma-1D population. The supervised
cellular populations identified from scRNASeq (P5, P6, P7, and
P8), listed above in Table 2, were translated to populations
identifiable via surface marker antibody expression. The
Comma-1D cell line was thawed from frozen aliquots and
cultured in DME media with Fetal Bovine Serum (FBS), Pen
Strep (PS), Insulin, and Endothelial Growth Factor (EGF). To
isolate specific populations, fluorescence-activated cell sorting
(FACS) was performed utilizing cell surface expression of
markers Cd49f, Epcam, and Sca-1. These isolated cell
populations were then independently imported onto the
Beacon 3500 chip. Each cell is tracked by the location
identifiers pinned to each nanopen, allowing for cell type-

FIGURE 5 |Gene expression of markers identified for stemness. (A) Feature plots of Epcam, Itga6, and Ly6a, which represents for the proteins Epcam,Cd49f, and
Sca-1 (B) Feature plot expression of the key gene markers after filtering for cells expressing a minimal threshold of 0.3 for all markers. (C) Pie plot visualizing population
broken down by cluster. Between the entire Comma-1D population and P8, there is increased occupancy of luminal 1 and myoepithelial 4 with a significant decrease of
myoepithelial two and loss of the fibroblast cell population.

TABLE 2 | Subpopulations of interest by identified marker expression patterns.
Overview of markers selected for stemness investigation. Four
subpopulations of interest were identified by expression patterns of epithelial
cellular adhesion molecule, integrin subunit alpha 6, and lymphocyte antigen 6
complex locus A.

Subset Epcam (Epcam) Itga6 (Cd49f) Ly6a (Sca-1)

P5 − High Low
P6 − Low Low
P7 + High Low
P8 + High High
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FIGURE 6 | Phenotypic assay overview. (A) A subsection of a beacon chip across five time points of a culture period. The bar on the bottom indicates heterogeneity
in observed growth response. Red indicates dying cells, white is no significant observed response, and green is for cells with detected proliferation (B) The top graph is
plotting the growth ratio across identified subpopulations. The bottom graph indicates growth differences depending on initial cell concentration. 5% error bars are
visualized for each plot. (C) Sample pen images of various cells across imaging channels. The colored outline is to highlight expression (green) or lack of (red). The
top row is a known P8 population imaged at three channels with expression detected for all three markers. UA and UB indicate sample images of unknown cell types with
marker expression pattern resolving subtypes P8 and P5, respectively (D) Overview of MATLAB script pipeline to identify cell populations by protein expression,
automating observations described in (C). (Di) Illustrates regions of interest (ROIs) representing each nanopen. (Dii) Shows possible cell detection locations based on
circle detection. (Diii) Visualizes filtered cell detections leveraging OEP fluorescence thresholds. Fluorescence intensity above 65,535 is set as the threshold for true
positive cell detection. (Div) Visualizes normalized expression scores for two cell detection locations in the TRED channel. Normalized scoring accounts for variability in
background fluorescence between FOVs and between experimental chips. Readings are imported into a matrix for each detected cell for eachmarker and channel. (Dv)
A sample readout of cells subtype based on the measured expression. Numbers “5” and “7” indicate populations P5 and P7, respectively. (Dvi)A scatter plot of all the
detected cells plotted based on their expression of Cd49f and Epcam and the subtype they are predicted to belong to. 88.3% of FACS sorted cells pseudo-bin to same
population on-chip. Each color represents the pseudo-binned subtype for that cell, as indicated in the legend. Nanopens with multiple cells at t0 are sources of noise and
background fluorescence that misidentify some cells. (E) ROI images of randomly selected P8 identified cells from each imaging channel. The heatmap on the bottom
compares expression across channels and cells. This functionality provides verification to the pseudo binning results, allows for clustering and threshold adjustment, and
provides easy visualization for every cell subpopulation of interest.
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related deconvolution downstream. By tracking cell types, it
allows characterization of heterogenous batch culture at t = 0
(t0) and its effects on growth response. Cell samples from the
original culture dish that were not sorted through flow cytometry
were also imported onto the Beacon chip for growth analysis.
Cells were cultured on-chip for 4 days with constant perfusion of
Comma-1D culture media. Using the Beacon brightfield imaging
mode (OEP), time-lapse images were captured every 12 h across
the 22 Fields of View (FOV) composing the 3,500 independent
nanopens, 311 of which contained at least one cell and 562 total
cells penned. Growth was tracked across each nanopen. Each pen
with cells (t0) was given a proliferation ratio identified by dividing
the final cell count (t96) by the starting cell count in the pen. We
identified no significant growth differences between the P5, P6,
P7, and P8 population subtypes, as shown in Figure 6Bi.
However, the population with the most considerable growth
based on the calculated proliferation ratio was that which was
not processed through the FACS pipeline. We observed a
diminishing disparity between Comma-1D subtype-specific
growth potential as cell counts in each nanopen at t0 increase,
as shown in Figure 6Bii. Cell concentrations at t0 and t96 across
all the cells imported in this experiment are presented in
Supplementary Table S3.

To improve the image analysis pipeline, a pseudo-sorting
platform was engineered to address the current shortcomings
witnessed above by Comma-1D cell types processed through
FACS. Comma-1D cells were incubated with immunofluorescent
markers for Epcam, Sca-1, and Cd49f and then split into sorted
and unsorted groups. The sorted group of cells was then
processed through FACS to isolate the four subpopulations, as
before. On the Beacon microfluidic chip, specific nanopens were
dedicated to each subpopulation in the FACS sorted groups.
These sorted cells were imported into the nanopens, while also
controlling for cell counts in each nanopen. To investigate batch
effects on growth, nanopens were allowed up to four cells at t0.
The remaining nanopens were then allocated to the Comma-1D
unsorted population of cells. A total of 562 cells were penned on
this microfluidic chip. Using known marker expression
parameters from previous iterations, we created a database of
image intensities from the sorted population across all the
imaging channels on Beacon. This database was used to then
identify which subtype (P5, P6, P7, or P8) the unsorted cells
represented and served as a pseudo binning tool within the
Beacon platform. To visualize this, Figure 6C shows nine
images from three separate nanopens. Each row represents the
same nano pen at the same timepoint imaged on three fluorescent
channels. Outlines were added around each nanopen; green boxes
indicate the presence of fluorescence, and red outlines indicate
low/no expression. In the top row of images in Figure 6C, the
known P8 subpopulation isolated through FACS expressed high
levels of Epcam, Cd49f, and Sca-1. This is the expected pattern of
expression from the P8 population as identified from scRNASeq
data and FACS. In row two of the images in Figure 6C, the
unsorted cell A (UA) reflects the P8 subpopulation expression
pattern by expressing all three markers at a detectable threshold.
In contrast, unsorted cell B (UB) only significantly expresses
CD49f and would therefore be categorized as a basal-like cell

from the P5 subtype. P5 and P8 cells represent subpopulations
that are likely to behave as “stem-like” and should therefore
differentiate and self-renew.

This analysis facilitated pseudo sorting on Beacon and
therefore eliminated the need for and the associated cellular
stress from FACS. To further optimize this process, a custom
MathWorks MATLAB script was developed with the workflow
outlined in Figure 6D. Beacon chips are divided into 22 distinct
imaging FOV, with all 22 FOVs composing the 3,500 nanopen
chip when stitched. To develop the MATLAB script for
automated cellular identification and pseudo binning, Comma-
1D cells were incubated with immunofluorescent markers for
Epcam, Sca-1, and Cd49f, as before. Without processing through
FACS, 652 tagged cells were imported onto the chip. The target
selection function on Beacon allows for controlled and
reproducible image capture of each FOV in each fluorescent
channel. To track cell response, a Region of Interest (ROI) is
generated for each nanopen ID, as shown in Figure 6Di. By
tracking nanopens we can compare populations within those
isolated pens at various timepoints and imaging channels.
Following this, cell detection was conducted using a circular
Hough transform to identify possible cells by circularity within
each ROI or nanopen. Figure 6Dii shows all regions detected
prior to filtering. Filtering removed region centers not within a
generated ROI for nanopens to remove false positives.
Figure 6Diii displays filtered cell detection for a given FOV
determined by measuring peak brightness at each possible cell
location. A measurement reading of 65,535 consistently filtered
false positives. Using the center matrix, each detected cell was
then measured for fluorescence intensity in each channel on
Beacon. This measurement value was normalized by dividing the
average image intensity of all nanopen ROIs in that cell-free FOV.
This normalization was necessary to compare fluorescence
intensity between different FOVs as well as between sample
chips as we observe variability in readings. Figures 6Div
shows an example of normalized intensity readings for a
subsection of a FOV in the TRED channel. Running this
analysis across each ROI for each imaging channel generates a
matrix of expression readings for each imported cell. To improve
pipeline robustness for future assays, rather than employing a
definitive threshold to differentiate expression with background
readings, K-means clustering was used. Applying K-means
clustering to each marker expression and then sorting clusters
based on expression levels for each channel and protein serves as
an automated binning of cells by surface expression. These bins
were then leveraged across the channels to identify combinations
that paralleled P5, P6, P7, and P8 subpopulations. Figure 6Dv
shows a segment of a sample FOV with the text reflecting the
unsupervised cell population each cell is predicted to belong to
with a number “5” representing population group 5, or P5.
Figure 6Dvi shows a scatter plot based on CD49f and Epcam
expression, used to differentiate between basal-like and luminal-
like cells within each colored cluster. To identify key pens of
interest and increase efficiency in visualizing populations of
interest, the script automated the export of images of the
desired populations across channels. Figure 6E is an example
of ROI images captured for some P8 identified cells and the
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measured intensities are shown as a heatmap. In both
experimental runs, the maximum number of cells are penned
from one 5 µl import. Of the 311 nanopens with penned cells in
the FACS sorted preliminary experiment, 46 (14.8%) contained
P8 sorted cells. The pseudobinning experiment had 176 nanopens
with cells, from which 47 (26.7%) nanopens had with P8
identified. This accounts for an 80.4% increase in targeted cell
culture count. Utilization of this pseudobinning helped address
and prevent cell loss associated with traditional FACS sorting and
furthered the image analysis toolset.

DISCUSSION

Utilizing scRNASeq data for gene expression analyses in
conjunction with high throughput single-cell functional and
proteomics data, we have developed a pipeline for both
distinct population identification and validation. Through
publicly available scRNA analysis tools, including Seurat and
Monocle 3, we demonstrated the prediction of functional clusters
within complex cell lines like Comma-1D. This heterogeneity
highlights the need for further investigation into model systems,
as well as high levels of intrinsic heterogeneity that must be
considered when interpreting results, as they may confound
conclusions of past and current studies.

The Comma-1D cell line is known to functionally differentiate
in culture. It, therefore, served as a proxy to highlight the efficacy
and resolution of the single-cell suite of methods discussed. Each
cell type identified from the scRNASeq data lent toward a
population to compare on the functional level for growth
capacity. Within the eight subclusters identified from
scRNASeq, there is observed partitioning of cells into luminal
and epithelial groups. Each partition underwent deep
characterization for further clarification on intra-partitional
functional heterogeneity.

Luminal cells in the Comma-1D culture were identified as
luminal progenitor and luminal differentiated cell types. These
results reflect functional groups previously identified in
mammary gland tissue, where (Cristea and Polyak, 2018)
summarize luminal stem cell differentiation into either luminal
progenitor, ductal, and secretary alveolar cells. Through DGEA
and network analysis, a luminal progenitor and differentiated
luminal population predicted to be secretory alveolar cells is
identified within Comma-1D. Significant expression of immature
luminal cell markers such as Krt7 and Ehf are observed in the
luminal progenitor cluster; however, we observed expression of
differentiated cells markers such as Krt8 and Krt18 in that same
population. Where (Wang et al., 2001) identified Krt8/18 as
markers of mature differentiated luminal cells within the
prostate, we observed these markers associated with mammary
luminal progenitors. These results underscore sources of
variability in regard to disease type being investigated and cell
line versus tissue gene divergence.

The presence of secretory cells with the absence of a non-
secretory cluster within our population leads us to hypothesize
two potential scenarios. One scenario is the cell line doesn’t fully
differentiate into all cell types composing mammary gland

function. The other hypothesis is that the non-secretory cells
emerge from luminal progenitors at a later stage than alveolar
cells, and at the stage of cell isolation and barcoding, the cell line
had not yet reached this maturation point. The unclassified
progenitor 1 cluster may represent secretory luminal cells that
are differentiated and, therefore, are in later stages of the
biological process needed to generate mammary gland cell
types. Interestingly, the top DEGs in the progenitor 1 cluster
are genes associated with keratinocytes and their role in cell-cell/
cell-matrix interaction (Lgals7), structural components for
hemidesmosome formation (Col17a1), and fibrous proteins for
cellular support (Krt5) (Ali et al., 2021; Ho et al., 2022). Many of
these functions mirror the needs of luminal cells within the
mammary gland. Conserved gene expression within luminal
cells not observed in the remaining population yield predictive
information for patient disease prognosis or treatment. For
example, Wfdc2 encodes the He4 protein, which has already
shown significant clinical benefit in monitoring and diagnosing
ovarian cancer (Wei et al., 2016). Additionally, there has been a
recent investigation into this marker’s application in breast
cancer and, based on Wfdc2 expression isolated in
myoepithelial cells, we can predict that its efficacy in
determining disease prognosis is more relevant for basal
carcinomas than luminal (Chen et al., 2019).

Unlike the resolved heterogeneity in the luminal population,
the myoepithelial cells identified by expression of Acta2 were
populated by clusters labeled myoepithelial 1–5 with limited
functional granularity. The cnet plots illustrated in
Supplementary Figure S3 visualize activated pathways in each
population respective to the remaining cells in the same partition.
Cells in myoepithelial 1 expressedMt1,Mt2, and Bnip3, which are
all direct activation of cellular response to metal ions or response
to an inorganic substance (Koh and Lee, 2020). Metal ions such as
Zinc are abundant in humans and play a role in the proliferation
and differentiation of mammary epithelial cells (Han et al., 2020).
Myoepithelial two cells significantly expressed Pttg1 and Cdc20,
both associated with reproductive processes in cellular
development (Noll et al., 2015). Cells in myoepithelial 3
expressed unique markers such as Pmepa1, Zyx, and Cdk1.
Zyx is a gene involved in actin reorganization for cell
migration and EMT within the murine mammary gland (Mori
et al., 2009). Myoepithelial 4 cells expressed genes such as Acta2,
Fn1, and Sparc, which are linked to endothelial cell proliferation
and wound healing pathways have been shown to respond within
the mammary gland to facilitate healthy lactation function as well
as controlling inflammatory response to stress (Ryman et al.,
2015). The gene and pathway hits for this cell population indicate
its interaction with the fibroblast cells, supported by their UMAP
proximity. Similarly established cell line model IM-2, derived
from the fourth mammary glands of pregnant BALB/c mice,
demonstrated epithelial-fibroblast interaction in cell culture and
its role in structural formation in culture with parallel functional
differentiation (Reichmann et al., 1989). Cells in myoepithelial 5
expressed Cstb, Ptges, and Txnrd1, which are all genes linked to
pathways associated with intracellular organelle lumen. These
pathways are pivotal within mammary epithelial cells for the
production of cytoplasmic lipid droplets, the precursor to milk fat
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globules (Chanat et al., 2016). While these pathway indicators
don’t reveal exact functionality between the myoepithelial
clusters, they generate an outline of heterogenous function
within a cell line reflecting that of in-vivo cell populations.
These results point toward a heterogenous myoepithelial
population that shares the common function of organizing the
mammary ductal network and aiding in milk transport while also
retaining independent roles in the process.

Genes conserved in the myoepithelial clusters and lacking
significant expression outside that partition provide markers for
cell sorting and legacy experimentation. For example, Lrp1, which
encodes cell surface proteins, provides a gateway to phenotypic cell
identification and subsequent sorting for further downstream
analysis. With this level of increased single-cell resolution data,
we identified gene markers specific to clusters/subpopulations
within the Comma-1D cell line (Supplementary Table S2).
While extremely important for better resolving which systems
can be modeled using Comma-1D, these markers can also be
applied to patient single-cell data in parsing cell type populations
in the tumor microenvironment.

When integrating the Comma-1D dataset withmousemammary
data from C57BL/6, concordant functional clusters were detected in
both populations. The presence of luminal, myoepithelial, and
fibroblast cells is identified in both samples. These findings
further support the functional heterogeneity in cell lines that
needs to be characterized with single-cell assays. Along with the
concordant populations, the C57BL/6 data also indicated the
presence of populations not initially found from the Comma-1D
independent analysis. With the merged data, a ductal luminal
population composed of 2,466 cells was identified with 102
(4.14%) of those cells only from Comma-1D. This population is
characterized bymarkers such asCsn3 andWfdc18 (Supplementary
Figure S4D). The Csn3 plays a role in stabilizing milk micelles, a key
component of milk production during lactation (Komori et al.,
2013). Both markers have been linked to ductal luminal cells that
derive to secretory alveoli cells (Han et al., 2018). Through this
integrated analysis, we confirmed functional heterogeneity observed
in Comma-1D reflects populations detected in mouse mammary
epithelium.

Orthogonal comparison of stemness markers and pseudotime
analysis provides a metric for predicting clusters along with
differentiation time points of the Comma-1D population.
Monocle 3 was leveraged for pseudotime analysis, where we
identify cellular partitioning reflective of the cell clustering from
the Seurat analysis. The Comma-1D dataset was reprocessed for
dimensionality reduction onMonocle, after which the differentiation
trajectory was inferred, and gene expression was plotted to track
changes over pseudotime. Supervised pseudotime analysis identified
the luminal progenitor population as a possible origin population in
one partition of the dataset. The verification of gene-based functional
predictions by entropy score validates this assay as a tool for
screening progenitor-like cells, particularly beneficial when
investigating an uncharacterized population or dataset.

There have been abundant investigations into stemness
markers within the mammary gland (Yang et al., 2017; Zhou
et al., 2019; Engelsen et al., 2020). These efforts highlight potential
co-expression protein combinations that may be utilized for

specific stem-like cell populations isolation, including Lin-

CD29highCD24+, CD44+CD24-Lin-, and ALDH1+Sca-1High

(Yang et al., 2017). Despite abundant evidence for the
expression of stemness markers within this cell line, there
remains no established protocol to define the extent of cell
differentiation. Identifying stem cells from genomic profiling is
an assumptive process, but any molecular discoveries can now be
phenotypically validated using custom pipelines on real-time
cellular manipulation platforms such as Beacon.

Intersecting published stemness markers within the mammary
gland with our scRNASeq dataset identified Epcam+, Cd49f high, and
Sca-1highmarkers of interest for further investigation. All populations
had a subset of cells, P8, expressing all markers except for fibroblast.
As we do not expect differentiated fibroblasts to play a role in
stemness, this further supports the likelihood that these markers can
be utilized in identifying cells that may have stem-like properties.
The P8 subpopulation is of interest due to its “stem-like” properties,
where Sca-1 is a key identifier of Hematopoietic Stem Cells (HSCs)
(Morcos et al., 2017). While the P8 population presents the most
potential for stemness based on known marker expression,
investigating the other populations lacking expression of one or
more of the identified genes also yielded functional identification
regarding differentiation and proliferation capability. Determining
functional differences from just scRNASeq data is not direct;
however, we can pair the inferences made from this pipeline to
observe and validate phenotypic differences between cell
populations. Through the linkage of high throughput single-cell
data generation pipelines across multiple cellular variables, we were
able to gain deeper insight into single-cell functional heterogeneity.

Platforms like Beacon provide a high throughput single-cell
testing method to address the emerging need to further
investigate and validate the predicted phenotypic variants within
a population determined from assays such as scRNASeq (Maddaly
et al., 2017; Duarte et al., 2018; Kapalczynska et al., 2018; Sachs et al.,
2018; Takebe et al., 2018; Xu et al., 2018; Xia et al., 2019). The Beacon
instrument contains a 3-axis platform with four nests for cell
culturing in four isolated chips. An imaging cube is fixed above
the nest for imaging in 4 fluorescent channels: FITC, CY5, DAPI,
and TRED. Parallel to conventional organoid growth protocols,
optimizing Matrigel concentration, cellular penning parameters,
media conditions, and fluidics chip conditioning was required (Le
Gac and van den Berg, 2012). While cell growth has been selectively
demonstrated on this platform for Comma-1D, multidimensional
variability can activate distinct cell pathways and requires iteration
for each biologic model (Beaumont et al., 2022).

scRNA sequencing provides high resolution data for
subpopulation identification. We used this data to predict
functional subgrouping within a population to understand the
sources of disease progression and metastasis. Through scRNASeq
and protein-level comparisons, the 4 populations in Table 2 were
identified based on the expression of Epcam, Cd49f, and Sca-1.
Comma-1D cells from culture were sorted using FACS for surface
expression of the given markers and imported onto a Beacon chip
along with unsorted Comma-1D cells from the same culture.
Distributions of t0 and tf counts are outlined in Supplementary
Table S3 and a summary of nanopen and cell counts in this
experiment is outlined in Supplementary Table S4. We observed
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significant growth in the unsorted population compared to the sorted
P5, P6, P7, and P8 populations. While FACS allows high throughput
sorting, current sorting systems have been shown to result in cellular
stress, as described above, and diluted concentrations of rare cell
populations (Sauvat et al., 2015; Llufrio et al., 2018). This resultmay be
due to either flow-based sorting neglecting key cells of interest that
skew proliferation or effects on cell expression due to the sorting
process that inhibited proliferation. In either case, we believe that flow
sorting compounded with themicrofluidic andOEP cell importing of
Beacon resulted in cell stress activation that potentially inhibited cell
growth on-chip. These factors become more significant when
processing patient samples where cellular stress and rare cell loss
are already impacted (Reuben et al., 2015). As the initial count of cells
at t0 increases, we observe a depreciating disparity between sorted and
unsorted cell growth. This could be due to microenvironment
changes that initiate cell adherence and growth from intercellular
signaling. Further investigation will be performed to gain insight into
defining cell subpopulations and their individual delta on the impacts
of the microenvironment and cell aggregate growth.

Fromthe preliminary growth data described above, we observed
that this cellular stress reduced cell growth during the Beacon culture
period. To address this, we leveraged the imaging channels on the
Beacon instrument to identify populations of interest from unsorted
Comma-1D cells that were incubated with fluorescent markers of
Epcam, Cd49f, and Sca-1. The three fluorescent imaging channels
were paired to independent markers, and each nanopen was imaged
on each channel at 12 h interval timepoints. After subtracting
expression readings with baseline values determined from empty
nanopen readings and normalizing measurement readings from
background, we generate expression vectors for each cell in each
nanopen across imaging channels. These vectors allow pseudo-
binning of unidentified cells into populations of interest. Since
our P8 cells of interest are rare in the population, utilizing this
pseudo-sorting capability also bypassed processing steps such as
centrifuging that are conventionally necessary for FACS, further
reducing cell loss and improving cell viability. After numerous
iterations on Beacon, we refined our import and culturing
protocol resulting in reliable cell adhesion and growth from a
subset of cells. The MATLAB image analysis script allowed
bypassing of FACS, preventing loss of rare cells and reducing
cellular stress. Similar analyses of novel cell marker expression
and single-cell growth data will likely yield the highest
throughput analysis of cell subtype effects on cancer malignancy
potential. The built-in cell analysis platform could not be used in this
study due to compromised control on time point comparisons, as
well as no available sorting algorithm for penned cells. The custom
method presented here can be used more generally for high
throughput separation and image analysis to focus on pathologic
or other cells of interest.

Celllines are used across disciplines and have unknown levels of
subpopulation variability, which can alter the ability to draw definitive
conclusions from in vitro studies. In the case of therapeutic
development, in vitro, human cell lines have been key systems for
predicting both efficacy and toxicity of drugs (Allen et al., 2005). For
the Comma-1D line, which here was identified to contain two cell
partitions composed of eight clusters, it is not unlikely that certain
subtypes would respond differently to therapy than others. Moreover,

it is a cell line with a background of known differentiation, so we may
see amore drastically heterogeneous population as compared to other
breastmodel lines (Vachon andBeaulieu, 1992;Vranic et al., 2011). As
the standard of oncology treatment moves toward targeted therapies,
our understanding of model systems used as the first line of testing
needs to be improved through higher resolution characterization
(Levine, 2000; Tripathy, 2002; Arruebo et al., 2011; Nounou et al.,
2015). Further scRNA investigation paired with phenotypic
observations can provide the needed level of deep insight into cell
populations used for these types of critical studies.

We present here an assay for identifying and monitoring
functional characteristics of single cells at a high throughput level.
Using a custom pseudo sorting script, we identify cell subtypes across
up to 3,500 pens on the Beacon platform. Each of the pens and
respective cells were tracked for growth response. By utilizing the
automated script, we also prevented the loss of rare cells typically
observed in flow sorting and reduced cellular stress allowing for
improved growth. With this process established, we laid the
foundation for the application of these analyses to varied cell lines
modeling a wide variety of disease states. Furthermore, we can apply
this pipeline to patient samples to diminish processing times and the
impact of sample handling currently applied by FACS. By reducing
the time between sample collection and functional assay, we will
preserve sample quality and obtain a more accurate understanding of
the patient’s disease state. Ultimately, the development of high
throughput single-cell multi-data assays can resolve the
contribution of various tumor microenvironment components to
disease pathogenesis and tumor metastasis. This information can be
leveraged for high throughput single-cell assays to quantify
therapeutic response, classify differentiation heterogeneity in
generated models, and validate the conclusions identified from
single-cell sequencing.
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