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Abstract
Objectives: To conduct a systematic survey of published techniques for automated diagnosis and prognosis of COVID-19 
diseases using medical imaging, assessing the validity of reported performance and investigating the proposed clinical 
use-case. To conduct a scoping review into the authors publishing such work. Methods: The Scopus database was queried 
and studies were screened for article type, and minimum source normalized impact per paper and citations, before manual 
relevance assessment and a bias assessment derived from a subset of the Checklist for Artificial Intelligence in Medical 
Imaging (CLAIM). The number of failures of the full CLAIM was adopted as a surrogate for risk-of-bias. Methodological 
and performance measurements were collected from each technique. Each study was assessed by one author. Comparisons 
were evaluated for significance with a two-sided independent t-test. Findings: Of 1002 studies identified, 390 remained after 
screening and 81 after relevance and bias exclusion. The ratio of exclusion for bias was 71%, indicative of a high level of 
bias in the field. The mean number of CLAIM failures per study was 8.3 ± 3.9 [1,17] (mean ± standard deviation [min,max]). 
58% of methods performed diagnosis versus 31% prognosis. Of the diagnostic methods, 38% differentiated COVID-19 from 
healthy controls. For diagnostic techniques, area under the receiver operating curve (AUC) = 0.924 ± 0.074 [0.810,0.991] and 
accuracy = 91.7% ± 6.4 [79.0,99.0]. For prognostic techniques, AUC = 0.836 ± 0.126 [0.605,0.980] and accuracy = 78.4% ± 9.4 
[62.5,98.0]. CLAIM failures did not correlate with performance, providing confidence that the highest results were not driven 
by biased papers. Deep learning techniques reported higher AUC (p < 0.05) and accuracy (p < 0.05), but no difference in 
CLAIM failures was identified. Interpretation: A majority of papers focus on the less clinically impactful diagnosis task, 
contrasted with prognosis, with a significant portion performing a clinically unnecessary task of differentiating COVID-19 
from healthy. Authors should consider the clinical scenario in which their work would be deployed when developing tech-
niques. Nevertheless, studies report superb performance in a potentially impactful application. Future work is warranted in 
translating techniques into clinical tools.
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Introduction

The novel coronavirus, SARS-Cov-2 and its associated dis-
ease, COVID-19, have presented a significant and urgent 
threat to public health while simultaneously disrupting 
healthcare systems. Despite being more than 2 years since 
the beginning of the pandemic, outbreaks continue to 
threaten to overwhelm healthcare systems, and viral vari-
ants continue to introduce uncertainty [1]. Fast and accurate 
diagnostic and prognostic capability help quickly determine 
which patients need to be isolated and informs triage of 
patients. Reverse-transcription polymerase chain reaction 
(RT-PCR) is the current clinical standard for diagnosis of 
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COVID-19, however, its low sensitivity often necessitates 
repeat testing [2] taking additional time. This has led to the 
suggestion that there is a role for radiology in diagnosing 
COVID-19.

Radiological professional bodies have generally recom-
mended against the use of imaging for screening in COVID-
19 but recognise the role of incidental findings and for dis-
ease staging. Early in the pandemic, the use of computed 
tomography (CT) for diagnosis and screening was discussed 
in the context of shortages of RT-PCR test kits and poor 
sensitivity [3]. In March of 2020, a consensus report was 
released [4], endorsed by the Society of Thoracic Radiology, 
the American College of Radiology and the Radiological 
Society of North America (RSNA), recommending against 
the use of chest CT for screening due to a low negative pre-
dictive value, but also partly due to a lack of evidence early 
in the pandemic. The Royal Australian and New Zealand 
College of Radiologists released their advice in April of 
2020, which remains current, recommending against the 
use of chest radiograph for screening but recommending for 
the use of CT for staging [5]. The report, however, stops 
short of recommending a severity scale. By June of 2020, 
the World Health Organisation recommended the use of 
radiological imaging: (1) for diagnostic purposes in symp-
tomatic patients when RT-PCR is not available, is available 
but results are delayed and when RT-PCR is negative but 
there is high clinical suspicion of COVID-19; (2) for triage 
purposes when deciding to admit to hospital and/or intensive 
care unit (ICU); and (3) for staging purposes when deciding 
appropriate therapeutic management [6]. The most recent 
version of the Cochrane review on the topic suggest that CT 
and chest X-ray (CXR) are moderately sensitive and specific 
to the diagnosis of COVID-19, whereas ultrasound is sensi-
tive but not specific to the diagnosis of COVID-19 [7]. This 
novel application of radiology has spurred an interest in the 
application of machine learning techniques to automate the 
image interpretation tasks.

Many investigators have proposed techniques in a wide 
range of applications to automate image interpretation in 
imaging of COVID-19, including segmentation of COVID-
19 related lesions, typically ground-glass opacities (GGOs), 
diagnosis, staging of the current disease progression and 
prognosis of likely future disease progression. However, 
the field has inspired controversy. DeGrave et al. [8] dem-
onstrated that combining data from multiple sources, in 
particular where data from different classes have different 
acquisition and pre-processing parameters, led to a signifi-
cant bias that artificially improved the measured perfor-
mance in many studies. Garcia Santa Cruz et al. [9] pre-
sented a review of public CXR datasets, concluding that the 
most popular datasets used in the literature were at a high 
risk of introducing bias into reported results.

Many other reviews have been introduced on the topic, 
we now introduce the seminal ones. Shi et al. [10] presented 
a narrative review very early in the pandemic (published 
April of 2020) of machine learning techniques for segmenta-
tion of COVID-19-related lesions and for diagnosis, staging 
and prognosis of COVID-19 using CXR and CT. However, 
this early review did not consider potential study bias in its 
papers. Others have presented systematic reviews [11, 12] 
that, while following a more rigorous approach to inclusion 
also failed to asses bias when assessing results. Wynants 
et al. [13] present a broadly-scoped systematic review for 
prediction models in COVID-19, leveraging the prediction 
model risk of bias assessment tool (PROBAST) [14]. They 
reported high risk of bias across the field. Roberts et al. [15] 
presented a systematic review of machine learning tech-
niques applied to CXR and CT imaging, published up to the 
3rd of October, 2020, assessing bias using the Checklist for 
Artificial Intelligence in Medical Imaging (CLAIM) [16], 
Radiomics Quality Score (RQS) [17] and PROBAST [14] 
and reporting methodological and dataset trends. They use 
this to develop a set of recommendations for authors in the 
field.

In this review, we use similar techniques to those pre-
sented by Roberts et al. [15]. Rather than assessing papers 
on separate criteria, RQS and CLAIM, we assess all papers 
with CLAIM. We also aim to present a richer analysis of 
techniques and their performance, and to provide an update, 
including publications until 31st October, 2021. We also 
introduce an analysis of authors and institutions in the 
field, in the hope that it encourages and facilitates further 
collaboration.

Research questions:

–	 Which techniques are most successful in differentiating 
COVID-19?

–	 What are the clinical requirements driving the devel-
opment of these tools? How would such techniques be 
implemented clinically?

–	 Who is publishing this in this field?

Methodology

Study selection

The inclusion criteria for the review are:

(1)	 Studies that aim to automatically (allowing for manual 
contouring as a preprocessing step under the assump-
tion this could be automated) diagnose, stage or prog-
nose COVID-19 or segment lesions associated with 
COVID-19; and
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(2)	 Studies that use medical imaging or signals, includ-
ing CXR, CT, ultrasound, magnetic resonance imaging 
(MRI), or electrocardiograph (ECG) as input to their 
model.

rscopus version 0.6.6 [18] was used to retrieve articles 
according to the search criteria outlined in Panel 1. The 
search was performed on the 19th November, 2021. Papers 
meeting the inclusion criteria that were identified during 
the investigation but not identified in the search were also 
included in the study.

Panel 1: Scopus search criteria

TITLE-ABS-KEY ( ( covid OR coronavirus ) AND 
( ( chest W/5 xray ) OR “computed tomography” OR 
ultrasound OR “magnetic resonance” OR mr OR mri 
OR ecg OR electrocardiograph* ) AND ( diagnos* 
OR staging OR identif* OR response OR prognos* 
OR segment* ) AND ( learn* OR convolutional OR 
network OR radiomic*) )

Exclusion criteria were also imposed to eliminate studies 
that exhibited or were likely to exhibit a high risk of bias:

(1)	 Studies from journals with a source normalized impact 
per paper (SNIP), as measured in 2021, less than 1 were 
excluded. SNIP is a metric introduced by Scopus that 
measures contextual impact, normalising between 
fields with different citation rates. This process was 
manually checked by two of the authors, and journals 
that were likely to publish relevant studies and reputa-
ble within their fields, that would be eliminated, were 
included.

(2)	 Studies that were more than 90 days old and had not 
attracted any citations were excluded. This criteria is 
included to automatically filter articles which the sci-
entific community has deemed uninteresting, under the 
assumption that in such a fast moving field, 90 days 
should be adequate to have attracted at least one cita-
tion.

(3)	 Studies with metadata indicating that they were Editori-
als, Reviews, Notes or Letters were excluded.

(4)	 Studies where application to COVID-19 is secondary 
and not the primary focus of the paper were excluded.

(5)	 Studies not meeting the minimum risk of bias assess-
ment (see “Bias assessments” section) were excluded.

Remaining studies were assigned amongst reviewing 
authors, and each study was reviewed by one author, who 
assessed for minimum risk-of-bias, and extracted data. Stud-
ies were not de-identified before analysis.

Bias assessments

Due to reports of a high risk-of-bias in the field [9, 13, 15], 
we include a bias assessment. Improper study design, data 
collection, data partitioning and statistical methods can lead 
to misleading reported results [14]. This commonly mani-
fests as a positive bias because authors (rightly) attempt to 
improve the performance of their proposed techniques.

The CLAIM checklist was completed for all included 
papers [16]. All 42 checklist items were given either a pass 
or fail score, or a “not applicable” score which did not count 
towards the failure count in cases where the checklist item 
was not applicable to the paper. The number of failure scores 
was used as a measure for bias. Similar to Roberts et al. [15], 
we impose a subset of CLAIM, items 7, 9, 20, 21, 22, 25, 
26 and 28, as a minimum risk of bias. Any papers that did 
not meet all subset checklist items were excluded. CLAIM 
checklist reports from Roberts et al. [15] were merged and 
used where available to avoid duplication.

Extracted data

Methodological and performance results were collected per 
technique, where each study presents one or more technique. 
When multiple techniques were introduced in each study, 
only the highest performing technique was surveyed, unless 
the techniques filled different purposes (e.g., one study pre-
senting a segmentation and diagnostic technique) or different 
contexts (e.g., different available clinical data to augment 
image input) (Table 1).

Analysis of studies

Accuracy and area under the curve (AUC) of the receiver 
operating characteristic (ROC), where reported, were used 
for performance comparison. Statistical significance was 
measured throughout this review using two-sided inde-
pendent t-tests, with a significance threshold of p < 0.05. 
No adjustments were made for multiple comparisons.

Analysis of authors and publishers

Author, institution and publication metadata were extracted 
using rscopus 0.6.6 [18] and used to compute author h-indi-
ces. A co-author network was generated with tidygraph 
1.2.0 [19] by linking authors that had published together, 
and the most central authors identified using the between-
ness centrality.
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Results

Of 1002 studies identified, 282 were assessed against the 
required subset of the CLAIM checklist for exclusion, after 
which 81 studies were included in the study (Fig. 1). A list 
of identified and included studies are available in Supple-
mentary 1, Table S1, and the full set of studies identified and 
collected data are available in Supplementary 2. CLAIM 26 
eliminated the most studies (Fig. 2, left), which pertains to 
the evaluation of the best-performing model. Most papers 
failing this subset failed to evaluate against a separate test set 
after presenting multiple models. CLAIM 25 eliminated the 
next most studies, which required an adequate description of 
hyperparameter selection. Only one in four of papers met the 
inclusion criteria, and approximately one in four of papers 
failed a half or more of the required CLAIM subset (Fig. 2, 
right). From the 81 studies included, a total of 103 separate 
techniques were included.

Bias

Remaining CLAIM failures in the included articles are 
depicted in Fig. 3 (left). The count of failures for each arti-
cle became the risk-of-bias surrogate, a histogram over all 
papers is shown in Fig. 3 (right). The mean number of fail-
ures was 8.3 ± 3.9 standard deviation.

Methodologies

The majority, 58%, of techniques sought to solve a diag-
nosis task, attempting to classify COVID-19 disease from 
healthy patients and/or non-COVID-19 pneumonia (Fig. 4, 
left), versus 31% performing prognosis (where techniques 

performing both are counted in both). Of the 31% of tech-
niques attempting to solve a prognosis task, the majority 
used an objective prognostic outcome measure (46% pro-
gression and 16% survival) rather than matching a clinical 
assessment.

Most papers used CT images, either in 3D or as 2D slices, 
as model input, followed by CXR and US (Fig. 5, left). Only 
a small minority of papers included clinical features as input. 
Although MRI and ECG were explicitly included within the 
scope of the review, no techniques using these modalities 
were included. No MRI papers were identified, and none of 
the 3 identified ECG papers that progressed beyond screen-
ing met the inclusion criteria.

The majority of papers used a deep learning approach, the 
most common deep learning models used are listed in Fig. 6.

Performance

Performance is only reported here for studies where AUC 
or accuracy were described. The top-performing diagnos-
tic and prognostic techniques are listed in Tables 2 and 3, 
respectively. Neither AUC (Fig. 7, left) nor accuracy (Fig. 7, 
right) significantly correlated with the number of CLAIM 
failures for diagnosis nor prognosis. There were no statisti-
cally significant differences between input modalities on per-
formance (Fig. 5, middle and right), although CXR appeared 
to provide a higher AUC than CT, and US appeared to pro-
vide a lower accuracy than CT and CXR. Deep learning 
approaches had increased reported AUC (p = 0.04) and 
accuracy (p = 0.01), but no significant difference in bias was 
identified (Fig. 8).

Table 1   Data collected during survey

Field Definition

Task Diagnosis (differentiating COVID-19 from healthy or other diseases), prognosis (this included staging, differentiat-
ing within COVID-19 for the severity or expected disease trajectory) and segmentation of COVID-19 related lesions, 
including GGO.

Output classes For diagnosis tasks, whether COVID-19 was differentiated for either or both of other pneumonia and/or healthy controls. 
For prognosis tasks, the number of classes or if the task is a continuous regression one, as well as the derivation of the 
class. Derivations were classified as either clinical assessment, where the severity is measured based on clinical features 
at the time of imaging, progression, where the severity is measured either by time spent in hospital or by required inter-
ventions, and survival, where the severity is measured by whether the infection proved lethal.

Imaging type Input to model, including modality and whether additional clinical or demographic information was passed into the 
model.

Model information Including the machine learning or deep learning model, optimiser, parameters and augmentation (if deep learning) and 
manual extracted features (if radiomics).

Number of centres Number of separate institutions from which data was sourced.
Performance Performance measures for proposed technique, as reported.
Reproducibility Whether data and code were made available.
Bias A CLAIM checklist was completed for each study and the number of failures was used as a measure of potential bias.
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Authors

The country of residence of authors tended to correlate with 
countries that were affected the most by the pandemic in 
early 2020 (Fig. 9).

A network analysis of connectivity between authors 
yielded 48 separate graphs of the 81 publications, depicted 
in Supplementary 1 Figure S1, and a subset in Fig. 10. The 
most productive research groups are summarised in Table 4.

Fig. 1   PRISMA flow diagram of search
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Discussion

In this work, we present a systematic review of automated 
techniques for diagnosis, prognosis and segmentation 
of COVID-19 disease. Because the field has proven both 
popular and controversial, we used liberal exclusion criteria 
to reduce the number of lower-quality papers for manual 
review. In formulating the criteria, we assumed that impact-
ful papers are likely to be published in highly cited publica-
tions and are likely to attract citations themselves. Studies 
published in journals with a SNIP below 1 were eliminated, 
which risks eliminating journals that aren’t ranked by Sco-
pus. In order to reduce this risk, the list of eliminated jour-
nals was reviewed by all authors, and a consensus on non-
indexed journals to include was reached. Further, studies 

that have been published for greater than 90 days yet hadn’t 
attracted any citations were eliminated, which risks eliminat-
ing unnoticed studies. Even after screening, 71% of papers 
were excluded during bias assessment (Figs. 1, 2), indicat-
ing that the majority of work in the field is at high risk of 
bias, including those published in reputable peer-reviewed 
publications.

Sources of bias

Datasets

Many studies use data from sources with minimal prove-
nance and metadata, and often use data that was not intended 
for training diagnostic or prognostic tools. A number of data-
sets aggregate data from different sources, some of which 

Fig. 2   Studies excluded for bias. The percentage of total studies that failed each of the required subset of the CLAIM checklist for inclusion 
(left), and a histogram of the number of failures (right), where only studies with 0 failures met the inclusion criteria

Fig. 3   CLAIM results of studies included: the number of included studies that failed each of the CLAIM items (left), and a histogram of the 
number of failures (right)
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may be aggregates themselves [9]; and many studies aggre-
gate a number of datasets, either to increase their training 
size or to provide an independent test set. However, this 
causes a complex set or participants and leads to a high risk 
that the same images are present in the training and evalua-
tion set. Other datasets present a series of CT slices without 
metadata indicating which images belong to which partici-
pants, leading to a high risk that adjacent axial slices from 
a participant may lie in the training and evaluation set. Any 
studies exhibiting these risks failed CLAIM 21.

Although it did not lead to exclusion in this review, some 
datasets also aggregate different classes from different 
sources. It has been established that this presents a high risk 
of bias, as networks are able to distinguish between classes 
using non-disease-related domain effects.

Data handling

Studies that did not split training and evaluation sets at the 
patient level also failed CLAIM 21. This mostly occurred 
in papers dealing with CT as 2D axial slices, some of 

Fig. 4   (Left) Machine learning tasks attempted to be solved by tech-
niques. (Top Right) A breakdown of Diagnosis and Diagnosis & 
Prognosis approaches by diagnostic outcome variable classes. (Bot-
tom Right) A breakdown of Prognosis and Diagnosis & Prognosis 

approaches by prognostic outcome variable. The inner ring repre-
sents the number of classes, or continuous for regression tasks, and 
the outer ring represents the derivation of the outcome variable. See 
Table 1 for definitions of derivations

Fig. 5   (Left) The distribution of modalities used for input to tech-
niques. (Middle) The reported AUC and (Right) accuracy of tech-
niques by modality. Only techniques reporting AUC or accuracy are 

included, respectively. Results of a two-sided independent t-test are 
give as ‘*’ for significance or ‘ns’ for no significance
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Fig. 6   (Left) The distribution of techniques using traditional machine learning and radiomics approaches versus deep learning and (Right) the 
distribution of the most popular deep learning networks

Table 2   Union of top 5 performing diagnostic techniques by AUC and accuracy. Techniques performing binary classification between healthy 
and COVID-19 were excluded

CNN convolutional neural network, DL deep learning, LASSO least absolute shrinkage and selection operator

Refs. CLAIM failures Classes Modality Datasets Method AUC​ Accuracy

Zheng et al. [20] 7/42 3 class CT Bespoke, COVID-CT [21] DenseNet-121 0.991 98.6%
Han et al. [22] 10/42 3 class CT Bespoke Attention DL 0.99 97.9%
Das et al. [23] 14/42 3 class CXR Cohen [24], Montgom-

ery County X-ray [25], 
Kermany [26]

InceptionNet 0.99 99.0%

Wang et al. [27] 3/42 3 class CT 3DLSC-COVID [27] U-Net, ResNet 0.983
Liu et al. [28] 6/42 2 class 

(pneu-
monia)

CT, clinical features Bespoke LASSO Radiomics 0.98 93.0%

Krakansis et al. [29] 7/42 3 class CXR Kermany [26], Cohen [24] CNN 98.3%
Jin et al. [30] 4/42 3 class CT NIH Chest X-ray [31] AlexNet 96.86%

Table 3   Union of top 5 performing prognostic techniques by AUC and accuracy

RF random forest, LASSO least absolute shrinkage and selection operator, LR logistic regression, NN neural network

Refs. CLAIM failures Classes Modality Datasets Method AUC​ Accuracy

Tang et al. [32] 10/42 2 (clinical assessment) CT Bespoke RF 0.98 89%
Wu et al. [33] (CrrScore) 9/42 2 (progression) CT, clinical features Bespoke LASSO 0.977
Wu et al. [33] (Rad-

Score)
9/42 2 (progression CT Bespoke LASSO 0.976

Li et al. [34] 11/42 2 (clinical assessment) CT Bespoke LR 0.97
Elsharkawy et al. [35] 12/42 2 (clinical assessment) CXR Cohen [24], 

CORD-19 
[36]

NN 98%

Wang et al. [27] 7/42 3 (survival) CT Bespoke LR 88.5%
Meng et al. [37] 5/42 2 (survival) CT Bespoke De-DOVID19-Net 87.5%
Zhu et al. [38] 10/42 2 (progression) CT Bespoke LR 85.69%
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which randomly allocated all 2D images between classes. 
CLAIM 26 was responsible for the most failures (45%, Fig-
ure < CLAIM subset >), which often indicated a failure to 
allocate an evaluation set for use after model selection.

Description of methods

The remaining CLAIM checklist items, 7, 9, 20, 22, 25 
and 28, each related to adequately documenting methodol-
ogy. This is important not only for reproducibility, which is 
important in technical publications to ensure the advance-
ment of the field, but also could represent hidden bias. 
The field of machine learning requires attention to detail 
in implementation to prevent overfitting, data dredging or 
otherwise accidentally positively biasing results.

Study demographics

The majority (58%) of techniques sought to solve a diagnosis 
task. Although there has been limited need for diagnosis of 
COVID-19 using imaging, the potential for faster analysis 
compared with RT-PCR, especially when considering that 
consecutive negative RT-PCR testing is required for exclu-
sion when the pre-test probability is high [39]. However, 

within this set, 38% only demonstrated an ability to dif-
ferentiate COVID-19 from healthy individuals. Any clini-
cally realistic scenario for deployment of such an algorithm 
would need to demonstrate an ability to aid in a differential 
diagnosis between similar diseases. Regardless, most profes-
sional bodies recommend the use of radiographic imaging in 
COVID-19 only for triage purposes [5, 6, 40] and therefore 
it is most likely more impactful for investigators to explore 
prognostic techniques.

CT scanning was the most popular modality, likely due 
to the image quality of tomographic imaging and the avail-
ability of public datasets. The additional context a 3D image 
can give may also have motivated the use of the modality, 
although many techniques only considered 2D axial sec-
tions. Given the clinical context and the fact that techniques 
are likely to be most useful during an outbreak, the use of 
CXR may be more convenient and practical. For example, 
clinical practice dictates that imaging rooms require an hour 
between patients for cleaning, a requirement that can be 
obviated with portable CXR that can move to the patient’s 
room [41]. Therefore, we suggest that future investigations 
may be more impactful in delivering a technique using CXR 
data, especially as no significant performance differences 
were seen between CXR and CT (Fig. 5).

Fig. 7   Performance of techniques, as measured by AUC (left) and 
accuracy (right), plotted against CLAIM failures. Hue represents 
tasks, as indicated in the legend. Dashed lines indicate the mean 
regression for each of the tasks, and shading indicates the 95% con-

fidence interval. All regression lines were compared with a two-sided 
independent t-test against a null hypothesis that gradient = 0, none of 
which reached significance

Fig. 8   Comparison of (Left) AUC, (middle) accuracy and (Right) 
number of CLAIM fails between techniques leveraging deep learn-
ing and those leveraging classical machine learning and radiomics 

approaches. Results of a two-sided independent t-test are represented 
as ‘*’ for significance or ‘ns’ for no significance
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Fig. 9   Number of articles published by author country. Articles with authors from multiple countries, indicated by hue, are counted in duplicate 
for each country

Fig. 10   Authorship graph, where nodes represent authors and edges represent co-authorship. Depicted are the 5 largest clusters
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It has been proposed that ultrasound analysis for COVID-
19 could be valuable in rural and remote regions, and as a 
tool to facilitate social distancing in urban regions [42]. The 
relatively niche requirement means that systems for auto-
mated analysis of ultrasound are likely to be less impactful. 
This may be offset by the low cost of ultrasound, and the 
potential to deploy systems to developing countries. Other 
modalities, including MRI and even ECG, were explicitly 
included in the scope of this review, however no papers met 
the inclusion criteria for either. MRI generally yields poor 
contrast within the lung and provides few benefits over CT 
in this application. Some studies investigating ECG remain 
after the screening process, but either were excluded as they 
were not automated or did not meet the bias assessment 
requirements.

Study performance

Studies tended to report excellent diagnostic and prognostic 
performance based on imaging features. The top diagnostic 
techniques all reported AUC ≥ 0.98 and accuracy ≥ 96.8% 
(Table 2), while the prognostic techniques reported AUC 
≥ 0.97 and accuracy ≥ 85.7% (Table 3). Further, these results 
were relatively stable across the number of CLAIM fail-
ures (Fig. 7), providing some confidence that the top results 
are not dominated by biased studies. Notably, though, the 
top performing prognostic techniques in Table 3 are binary 

classification tasks, which naturally yield higher metrics 
than those with more classes.

Observations

Data handling

Many studies used image storage formats that don’t meet 
medical imaging standards. Images may be stored at lower 
bit depth resolution, be stored using lossy compression, or 
be stored without requisite metadata. If these traits are con-
sistent between classes, these issues are less likely to lead 
to a positive bias in reported results but may lead to lower 
performance. Similarly, many CT studies reported using 
per-image intensity normalisation for pre-processing. For 
quantitative modalities such as CT, this leads to a loss of 
information that the network is likely having to account for 
internally.

Input data

Studies that presented techniques under identical conditions 
with and without clinical data reported superior performance 
with the clinical data [28, 43]. This may be reporting bias, 
but it is likely that some combination of demographic, symp-
tomatic and imaging data is likely to provide additional 
discrimination into the disease progression. Much of this 

Table 4   20 most productive groups

Research group City Country Studies

Department of Radiology, Tongji hospital, Huazhong University of Science and Technology Wuhan China 16
Institute of Automation Chinese Academy of Sciences Beijing China 10
Department of Radiology, The First Affiliated Hospital of Jinan University Guangzhou China 7
Beihang University Beijing China 7
NVIDIA Santa Clara United States 7
Department of Radiology, Université de Paris Paris France 6
School of Electrical and Computer Engineering, University of Oklahoma Norman United States 5
College of Intelligence Science and Technology, National University of Defense Technology Changsha China 5
Huazhong University of Science and Technology Wuhan China 5
Tencent Shenzhen China 5
Department of Radiology, Renmin Hospital of Wuhan University Wuhan China 4
Department of Radiology, Xinhua Hospital Shanghai China 4
Department of Radiology, Xiangya Hospital Changsha China 4
Universidad de Granada Granada Spain 4
Hubei Province Key Laboratory of Molecular Imaging Wuhan China 6
Department of Bioengineering, University of Louisville Louisville United States 3
School of Public Health, Capital Medical University Beijing China 3
Department of Radiology, Shanghai Jiao Tong University Shanghai China 3
Department of Radiology, Xhongnan Hospital of Wuhan University Wuhan China 3
The University of Adelaide Adelaide Australia 3
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information is relatively easily acquired, so there is little 
cost to include it.

Ethics

The majority of studies presenting novel datasets reported 
detail on the ethical approval. However, far fewer provided 
information on the consent given by participants, as required 
by CLAIM item 7. To be consistent with the analysis of 
Roberts et al., we have ignored this requirement, however 
we note this is an area to be improved in the medical imag-
ing literature. Further, no studies that sourced from public 
datasets reported any ethical approval. The National State-
ment on Ethical Conduct in Human Research [44] outlines 
the definition of human data to include that sourced from 
public datasets.

Clinical translation

Few of the reviewed papers realistically considered clinical 
deployment. As Roberts et al. [15] highlight, no developed 
systems are ready to be deployed clinically, with one reason 
being the need to work with clinicians to ensure the devel-
oped algorithms are clinically relevant and implementable. 
This is highlighted by a review by Born et al. [45] who found 
that although 84% of clinical studies report the use of CT 
(with CXR only comprising 10% of studies), a much larger 
proportion of the AI papers were focused on X-ray. The same 
paper also emphasizes the need for additional stakeholder 
engagement, including patients, ethics committees, regula-
tory bodies, hospital administrators and clinicians. For clini-
cal deployment medical imaging software generally requires 
validation through randomised control trials, regulatory cer-
tification (generally the software would be developed within 
an ISO1485 and IEC 62304 environment), and integration 
with existing clinical workflow (aligning with agreed stand-
ards for interoperability and upgradability, particularly the 
DICOM standard and required vendor tags).

Author demographics

We provide data on the authors (Fig. 9) and institutions 
(Table 4) publishing in the field as a landscape map for new 
authors. Most of the authors are located between China, The 
United States of America and Italy, and most of the most 
productive groups in China. Collaboration between groups 
predominantly occurred within the same country, except for 
a cluster of collaboration between Italy and the United States 
(Fig. 10).

Review limitations

Automatic filtering of studies using the SNIP of the pub-
lished journal and number of citations for studies older 
than 90 days at the time of search was conducted. This 
was required in order to regulate the scope of the manu-
ally reviewed articles. This risked omitting rigorous papers 
that have not attracted scientific interest or are published 
in less circulated or newer journals. We believe this risk is 
low enough that the results presented are generalisable to 
the field.

In this work, we collect studies primarily from the Sco-
pus database. While Scopus, alongside Web of Science, are 
historically the most widely used databases in bibliometric 
analysis, their coverage is not complete. Notwithstanding, 
Scopus shares 99.11% of its indexed journals with Web 
of Science and 96.61% with Dimensions. For this rea-
son, we believe the methods in this review were valid and 
fit-for-purpose.

In this work, we use CLAIM as a surrogate measure for 
bias. CLAIM provides a prescriptive and objective criterion, 
well-suited to having a range of reviewers quickly and con-
sistently assess a large number of papers. However, CLAIM 
is designed as a checklist of best practices, as opposed to an 
assessment of bias. The number of CLAIM failures should 
be interpreted by the reader as only an approximate measure 
of bias.

Conclusion

In this systematic review, we collected 1002 studies and 
have included 82 in the analysis after screening, relevance 
and bias assessment. A 71% exclusion ratio for bias despite 
extensive screening was indicative of a high level of risk-
of-bias in the field. Commonly, publications sought to 
solve tasks with lower potential clinical impact, focusing 
on diagnosis rather than prognosis and differentiation of 
COVID-19 from controls rather than from other likely can-
didate diseases in a differential diagnosis. Similarly, clini-
cal considerations and deployment were seldom discussed. 
Medical imaging standards were also regularly not met, with 
data sourced online without provenance and in compressed 
formats. Nevertheless, studies reported superb prognostic 
and diagnostic performance, and these results were robust 
amongst studies regardless of risk-of-bias or modality. Deep 
learning studies tended to report improved performance but 
did not report higher risk-of-bias compared with traditional 
machine learning approaches. We therefore conclude that 
the field has proven itself as a concept and that future work 
should focus on developing clinically useful and robust 
tools.
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