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TheAUTO-MUTE 2.0 stand-alone software package includes a collection of programs for predicting functional changes to proteins
upon single residue substitutions, developed by combining structure-based features with trained statistical learning models. Three
of the predictors evaluate changes to protein stability upon mutation, each complementing a distinct experimental approach. Two
additional classifiers are available, one for predicting activity changes due to residue replacements and the other for determining
the disease potential of mutations associated with nonsynonymous single nucleotide polymorphisms (nsSNPs) in human proteins.
These five command-line driven tools, as well as all the supporting programs, complement those that run our AUTO-MUTE web-
based server. Nevertheless, all the codes have been rewritten and substantially altered for the new portable software, and they
incorporate several new features based on user feedback. Included among these upgrades is the ability to perform three highly
requested tasks: to run “big data” batch jobs; to generate predictions using modified protein data bank (PDB) structures, and
unpublished personal models prepared using standard PDB file formatting; and to utilize NMR structure files that contain multiple
models.

1. Introduction

Site-directed mutagenesis experiments provide researchers
with opportunities to evaluate their effects on protein sta-
bility, activity, or disease potential, to annotate structural
or functional roles of residues, to gain insights into mecha-
nisms of protein folding, and to accumulate data needed for
engineering new proteins with desired thermodynamic and
physicochemical properties. A number of in silico mutagen-
esis methodologies have been developed in recent years [1–
5], yielding efficient computational analogues to complement
experimental methods from the wet laboratory at a fraction
of the time and cost, as well as reliable and immediate predic-
tions for functional effects of single residue replacements [6].
Each approach uniquely employs evolutionary, sequence, or
structural information to characterize residue substitutions
in proteins, and predictions of functional effects are obtained
via mathematical, rule-based, or statistical learning methods.

We previously developed the AUTO-MUTE server, an
online set of tools for predicting protein functional conse-
quences upon mutation, by implementing a computational
mutagenesis technique that employs a four-body, knowledge-
based statistical potential function derived via the coarse
graining of protein structures at the amino acid level [7,
8]. For proteins with known 3D structures, any mutation
defined by a single residue replacement can be represented
as a vector of features that include data derived from our in
silicomutagenesis procedure. Large sets of diverse mutations
that have been studied experimentally for their functional
effects, which occur in proteins that share low sequence
similarity, were used to train the AUTO-MUTE predictors.
Our models were developed by implementing classification
and regression statistical machine learning algorithms using
the Java-based Weka software package [9].

Here we introduce AUTO-MUTE 2.0, a portable alter-
native to the web-based server, with platform-specific and
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command-line driven versions designed for Windows (PC)
and Linux/Unix (Mac), as well as for Cygwin, a Unix working
environment emulator for Windows (free downloads avail-
able from http://proteins.gmu.edu/automute). All of the in-
house Java and PHP codes associated with the original online
version have been rewritten in the Perl programming lan-
guage for our newAUTO-MUTE2.0 stand-alone application,
with extensive adjustments introduced into the codes to offer
an expanded set of options based upon user feedback about
the web server. Necessitating our development of separate
versions of AUTO-MUTE 2.0 is its reliance on computational
geometry and statistical machine learning software tools
freely available for download from outside research groups,
respectively known asQhull (http://www.qhull.org/) [10] and
Weka (http://www.cs.waikato.ac.nz/ml/weka/) [9], which are
not platform-independent and used by our software without
modification.

2. Methods

Our approach to predicting protein functional consequences
upon single residue replacement focuses specifically on the
ensuing local structural effects and begins by identifying,
with the use of the Qhull program, all residue positions that
are structural neighbors of the residue undergoing mutation.
Relevant attributes regarding the mutated position and its
six closest neighbors, which include empirical measures
quantifying the structural impacts at all of these positions,
form the individual component values of a unique feature
vector that characterizes the protein mutation.The structural
perturbation values are obtained with our in silico mutage-
nesis procedure that relies on a four-body potential energy
function we developed, and the feature vectors of the single
residue mutations are supplied as input to predictive models
that we trained using statistical machine learning algorithms
implemented with the Weka software package.

The prediction programs in AUTO-MUTE 2.0 initially
convert the user-supplied file of single residue substitu-
tion requests, which may occur in any number of distinct
protein structures, into a file consisting of their respective
feature vectors.This process involves submitting each protein
structure to the Qhull program in order to identify the
six closest structural neighbors of each residue position
undergoing mutation, followed by applying a number of
support programs that we prepared (available in a subfolder
from the AUTO-MUTE 2.0 download) for determining
the attribute values corresponding to each single residue
mutation prediction request and generating its feature vector.
A file containing all feature vectors for requested mutations
is supplied to the AUTO-MUTE 2.0 program selected by the
user, and predictions made by the program are presented
in an output table. Each AUTO-MUTE 2.0 program utilizes
predictive models, trained with large numbers of diverse
single residue mutations (similarly represented as feature
vectors) whose functional consequences under consideration
(stability change, activity change, or human nsSNP dis-
ease potential) are experimentally documented, which were
developed by implementing machine learning algorithms

using Weka. Finally, these trained Weka models (available
in another subfolder from the AUTO-MUTE 2.0 download)
are called upon to predict the functional consequences of the
user-requested single residue mutations.

2.1. Four-Body Statistical Potential. To derive the energy
function, we selected X-ray crystallographic structures for
1417 single protein chains (http://proteins.gmu.edu/auto-
mute/tessellatable1417.txt) with high resolution (≤2.2 Å),
sharing low sequence similarity (<30%), from the protein
data bank (PDB) [11]. Each structure is abstracted to a collec-
tion of points in three-dimensional (3D) space, correspond-
ing to the C-alpha coordinates of all its constituent amino
acid residues (i.e., coarse graining of the protein structure at
the residue level). The set of C-alpha points associated with
a protein structure are used as vertices to create hundreds
of nonoverlapping, space filling, irregular tetrahedra that
collectively form a convex hull, referred to as a Delaunay
tessellation in the computational geometry literature [12],
which we generate with the Qhull software package [10].
Each tetrahedron in the tessellation objectively identifies at
its four vertices a quadruplet of nearest neighbor residues
in the protein structure; however, as an added measure
to exclude false-positive residue quadruplet interactions, all
tetrahedral simplex edges longer than 12 Å are immediately
removed from every tessellation prior to further analysis
[7, 8]. Since the tetrahedra forming a Delaunay tessellation
are solid and pack against one another (i.e., two adjacent
tetrahedra in a tessellation may share one vertex, one edge—
two vertices, or one triangular face—three vertices), each C-
alpha point generally serves simultaneously as a vertex for
several tetrahedra in the tessellation (Figure 1).

There are 8855 distinct quadruplets of residues that can
be generated using the standard 20-letter protein alphabet, by
allowing repeated occurrences of residue types in a quadru-
plet (e.g., CCHH are in close proximity in zinc finger pro-
teins, potentially defining the four vertices of a tetrahedron)
while excluding all permutations of any previously listed
quadruplets (i.e., the four vertices of each tetrahedron are not
ordered). For each type of residue quadruplet (𝑖, 𝑗, 𝑘, and 𝑙), let
𝑓
𝑖𝑗𝑘𝑙

denote the observed proportion of tetrahedra generated
by all 1417 protein structure tessellations for which these four
residues appear at the vertices, and let 𝑝

𝑖𝑗𝑘𝑙
represent a rate

expected by chance for the same quadruplet, computed using
the multinomial probability distribution

𝑝
𝑖𝑗𝑘𝑙
=
4!

∏
20

𝑛=1
(𝑡
𝑛
!)

20

∏

𝑛=1

𝑎
𝑡
𝑛

𝑛
, (1)

where ∑20
𝑛=1
𝑎
𝑛
= 1 and ∑20

𝑛=1
𝑡
𝑛
= 4. Here 𝑎

𝑛
represents the

proportion of all residues comprising the 1417 proteins that
are of type 𝑛, and 𝑡
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is the number of occurrences of residue

type 𝑛 in the (𝑖, 𝑗, 𝑘, and 𝑙) quadruplet. Applying the inverted
Boltzmann principle [13], the score 𝑠
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proportional to the energy of interaction for the quadruplet
of residues. The combined set of such scores for all 8855
quadruplet types defines the four-body statistical potential,
which is available in themain AUTO-MUTE 2.0 folder under
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Figure 1: Delaunay tessellation of the HIV-1 reverse transcriptase enzyme (PDB ID: 1rtjA). Initially, the protein is represented as a discrete
set of points in 3D space, corresponding to the C-alpha atomic coordinates of every amino acid residue in the structure. A 3D tetrahedral
tiling is then obtained by using these C-alpha points to serve as vertices. The complete tessellation yields hundreds of solid tetrahedra that
are packed against one another in the form of a convex hull, filling the space otherwise occupied by the protein structure. Shown here is the
modified tessellation obtained by removing all edges longer than 12 Å, which reveals clefts and pockets on the protein surface and ensures that
each tetrahedron identifies a quadruplet of interacting amino acid residues at its four vertices via their C-alpha coordinates. Each C-alpha
point is typically shared as a vertex by several tetrahedra as a result of their packed arrangement; hence, each amino acid may simultaneously
participate in a number of distinct nearest neighbor residue quadruplets.

the filename potential 1417 cut12.out. These scores can be
used to compute a total potential for any protein structure,
first by using all its amino acid residue C-alpha points to
generate the Delaunay tessellation of the protein (subject to
removal of all edges longer than 12 Å) and then by adding
up the scores of the residue quadruplets identified at the four
vertices of all the constituent tetrahedra in the tessellation.
For each amino acid sequence position in a protein, a residue
environment score is defined by adding up the scores of only
those tetrahedra that share the corresponding C-alpha point
as a vertex [7, 8].

2.2. Computational Mutagenesis. A residue substitution is
introduced into a tessellated protein structure by changing
the amino acid label at the appropriate C-alpha point. This
change alters by a single residue the makeup of quadruplets
associated with all tetrahedra that share this point as a vertex.
Consequently, the scores of these tetrahedra are changed.
Hence, the residue environment score at themutated position
(i.e., the sum of those tetrahedral scores, as defined at the
end of the prior section) is altered from wild type, as are
the residue environment scores at all structurally nearby
sequence positions whose C-alpha points are connected to
that of the mutated position by a tetrahedral edge. The
nonzero difference (mutant-wild type) between calculated
residue environment scores at each of these protein sequence
positions is referred to as an environmental change (EC)
score [7, 8]. Collectively, these nonzero EC scores empirically
quantify expected environmental perturbations, due to the
residue replacement, at the mutated position itself and at all
other (nonmutated) positions within a local 3D neighbor-
hood as defined by the protein tessellation. Hence, our in
silico mutagenesis approach focuses on carefully modeling
mutational impacts at structurally nearby positions, which
may be distant from the mutated position in the primary
sequence of the protein, while excluding those effects at

spatially long-distance positions given the methodological
derivation (i.e., each of their EC scores is zero) and yet
providing an effective approximation due to the relatively
lower influence of the latter with respect to functional
prediction.

The residue replacement is subsequently represented as
a feature vector, supplied as the input to statistical learning
algorithms, that encodes the following information concern-
ing the mutated position: identities of the native and new
amino acids, EC score, secondary structure (labeled SS in
the prediction output table generated by AUTO-MUTE 2.0;
see Table 1 for an example), mean tetrahedrality (labeled
sT in the output table), and mean volume (labeled Vol. in
the output table) of all tetrahedra that share the mutated
position (i.e., its C-alpha point) as a vertex in the tessellation,
depth (surface, undersurface, or buried) as defined by the
tessellation (labeled Loc. in the output table), and number of
tessellation edge connections with surface positions (labeled
Num. in the output table). Also encoded in the feature
vector is information pertaining to precisely the six residues
that are closest to the mutated position in 3D space, as
determined by lengths of tessellation edges connecting their
respective C-alpha points: amino acid identities, EC scores,
and primary sequence locations in the protein relative to that
of themutated position. Further details related to this in silico
mutagenesis procedure, including descriptive figures, may be
accessed from our previously published work [8, 14].

3. Software Implementation

Included in the main AUTO-MUTE 2.0 folder are five
programs, analogous to their respective counterparts on the
online server and executable from the command-line:

(i) stability changes ddG.pl,
(ii) stability changes ddG H2O.pl,
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Table 1: Prediction tables obtained for a sample text file of mutants (mutants.txt) using stability changes ddG.pl. For the initial run, the flag
-t 0 enables the automatic retrieval of PDB files, which are saved in the main AUTO-MUTE 2.0 folder.The flag -m 0 requests that predictions
(sample output ddG RF.txt) be made using our previously trained random forest (RF) supervised classification model. For each requested
mutant, a predicted stability category and a confidence measure (%) for the prediction are provided in the table under column headings
labeled Stability and Confid., respectively.The flag -t 1 is used with the second run since the PDB files have already been downloaded, and the
flag -m 2 requests that predictions (sample output ddG REPTree.txt) be made using our previously trained tree regression (REPTree) model.
In this case, a predicted stability change value for each requested mutant is provided in the table under the column heading labeled ddG.
A glossary of terms (Glossary.txt) defining all table column headings to the right of the predictions is provided in the main folder. Briefly,
parameters Vol., sT, Loc., and Num. characterize the mutated position C-alpha vertex with respect to the tessellation of the protein structure,
while SS refers to the secondary structure at the mutated position, and these parameters are also discussed in Section 2.2 of the Methods. Not
shown here are similar predictions based on two additional models that are available with this stability changes ddG.pl program: support
vector machine classification (-m 1) and support vector regression (-m 3). Details for all the programs are available from the README file in
the main folder, as well as by typing “perl <program name>” without any flags at the command-line and hitting enter.

(a)

mutants.txt
3phvA D25E 25 7
3phvA T31A 25 7
4lyzA A31V 25 7
4lyzA D101R 25 7
1benD L15Q 25 7
1rn1C Q25K 25 7
1g35B H69N 25 7
1g35B L90M 25 7
1pohA K49E 25 7

(b)

C:\AutoMute2>perl stability changes ddG.pl -t 0 -f mutants.txt -m 0 -o sample output ddG RF.txt
sample output ddG RF.txt

PDB ID Chain Mutation Stability Confid. Temp. pH Vol. sT Loc. Num. SS
3phv A D25E Decreased 0.62 25 7 14.6 0.16 B 0 C
3phv A T31A Decreased 0.64 25 7 14.1 0.14 B 0 S
4lyz A A31V Increased 0.86 25 7 19.5 0.10 B 0 H
4lyz A D101R Increased 0.85 25 7 17.7 0.18 S 6 C
1ben D L15Q Decreased 0.90 25 7 10.9 0.13 U 1 H
1rn1 C Q25K Increased 0.96 25 7 8.7 0.14 S 6 H
1g35 B H69N Decreased 0.67 25 7 15.2 0.18 S 4 S
1g35 B L90M Decreased 0.85 25 7 18.9 0.13 B 0 H
1poh A K49E Increased 1.00 25 7 10.1 0.12 S 4 H

(c)

C:\AutoMute2>perl stability changes ddG.pl -t 1 -f mutants.txt -m 2 -o sample output ddG REPTree.txt
sample output ddG REPTree.txt

PDB ID Chain Mutation ddG Temp. pH Vol. sT Loc. Num. SS
3phv A D25E −1.95 25 7 14.6 0.16 B 0 C
3phv A T31A −1.38 25 7 14.1 0.14 B 0 S
4lyz A A31V 1.23 25 7 19.5 0.10 B 0 H
4lyz A D101R 0.24 25 7 17.7 0.18 S 6 C
1ben D L15Q −1.64 25 7 10.9 0.13 U 1 H
1rn1 C Q25K 0.61 25 7 8.7 0.14 S 6 H
1g35 B H69N −0.60 25 7 15.2 0.18 S 4 S
1g35 B L90M −0.90 25 7 18.9 0.13 B 0 H
1poh A K49E 1.37 25 7 10.1 0.12 S 4 H
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(iii) stability changes dTm.pl,
(iv) activity changes.pl,
(v) human nsSNPs.pl.

Entering the command “perl <program name>” returns
detailed information, including proper usage of required and
optional flags (-t, -f, -m, and -o) after the program name.
All PDB files of protein chains for which mutant predictions
are requested should first be saved in the main folder and
named pdbXXXX.ent, where XXXX is the 4-character PDB
ID, a process that can be performed automatically by the
program (-t 0) or manually by the user ahead of time (-
t 1). The main folder should also contain a text file of the
prediction requests (-f <mutant data filename>), such that
the data items on each line describe a single mutant and
are separated by spaces or tabs (e.g., “3phvA D25E 25 7”
or “1gvpA S20T”; see README file in the main folder
for additional details). Each of the three stability change
predictors offers two supervised classification models (-m 0,
-m 1) and two regression models (-m 2, -m 3) from which
to select (see README file for details about the models);
this flag is not applicable with the activity changes.pl and
human nsSNPs.pl programs, each of which generates pre-
dictions with a single, distinct random forest (RF) classifier
trained using published experimental data. Lastly, users can
optionally specify an output file to be used for prediction
results (-o <output filename>); otherwise, results appear on
the command-line screen (standard output). Table 1 provides
supervised classification (RF) and tree regression (REPTree)
predictions obtained for a sample text file of protein mutants
using the program stability changes ddG.pl.

Three temporary files populate the main AUTO-MUTE
2.0 folder: dinputs.txt retrieves the protein chain C-alpha
coordinates formatted as an input file for the Qhull software
package, doutputs.txt stores the tessellation information that
Qhull provides as output, and test vector.arff contains the
feature vectors for all the requested mutants in a file format
that can be processed for prediction by the models we
trained using theWeka software package.The AUTO-MUTE
2.0 programs should be executed consecutively, as parallel
runs will yield errors stemming from simultaneous use
of these temporary files by more than one program. Two
subdirectories are found in the main folder: one for extensive
support codes used in deriving themutant feature vectors that
appear in the test vector.arff file and the other for housing the
trainedmodels that are used in generatingmutant predictions
from these vectors. Training sets, model performance data,
and detailed prediction comparisons with related methods
that demonstrate an improvement using our approach are
published elsewhere [7, 8, 15, 16], although this material is
also available as supporting documentation on the AUTO-
MUTEwebsite, accessible from the “details” link provided on
the input page for each prediction tool.

4. New Features Integrated into
AUTO-MUTE 2.0

As a response to the limited capability of the web server,
and in support of the evolving “big data” environment,

the number of predictions from a single run of any program
in the new AUTO-MUTE 2.0 stand-alone software is now
unrestricted and depends only on the quantity of mutants
requested in the submitted text file. These single residue
replacements all may correspond to a single protein chain, or
theymay involve any number of distinct structures, so long as
each line in the text file submitted to the programprovides the
necessary information about the requested mutant. As fully
described in the README file located in the main AUTO-
MUTE 2.0 folder, all five programs require that each line
includes the 4-character PDB ID with an attached letter indi-
cating the protein chain (e.g., 3phvA), as well as the requested
mutation (e.g., D25E) in the form (native residue)(position
number)(replacement residue). An important exception
applicable only to the two programs stability changes ddG.pl
& stability changes ddG H2O.pl requires that temperature
(∘C) and pH for each mutant also be included in the text
file (e.g., 3phvA D25E 25 7), where 25∘C and pH = 7 are
appropriate default values (Table 1).

Next, single residue substitutions in personal (non-PDB)
model structures can now be predicted and may be included
in the same text file with mutations occurring in PDB
structures; however, for proper processing by the programs,
they should be (1) given randomly selected 4-character IDs
and named pdbXXXX.ent similar to PDB files, (2) formatted
identical to PDB files with respect to their HELIX, SHEET,
and ATOM lines, and (3) placed in the main AUTO-MUTE
2.0 folder and used with the manual (-t 1) option when
running the programs. Details are available from the PDB
about how to appropriately format the HELIX and SHEET
lines (http://www.wwpdb.org/documentation/format32/sec-
t5.html) as well as the ATOM lines (http://www.wwpdb.org/
documentation/format32/sect9.html#ATOM).

Third, any NMR structure file in the PDB that contains
multiple models can now be submitted, and the C-alpha
atomic coordinates provided in Model 1 are those used for
tessellating the corresponding protein. This decision is based
on the fact that firstmodel in such PDBfiles is reserved for the
one representative model that is closest to the average model
(http://deposit.rcsb.org/depoinfo/print nmr.html); hence,
Model 1 provides the most reliable set of coordinates for
generating the most accurate predictions using our method-
ology. With respect to “minimized average structure” NMR
files in the PDB, these pose no difficulty for either the online
server or AUTO-MUTE 2.0 since the files each contain a
single set of atomic coordinates for their respective proteins.
Lastly, protein chains with multiple conformation C-alpha
atoms, as well as those with sequentially numbered residues
in the ATOM lines that start with a negative number, are now
no longer excluded and can be processed by AUTO-MUTE
2.0.

On the other hand, the following restrictions have
remained in place and will generate error messages: protein
chains cannot be used if their structural coordinate files
contain nonsequential residue numbering (gaps) or non-
standard amino acids, and predictions for mutated positions
connected to fewer than six neighbors cannot be processed.
Any protein chain with a gap has a sequential run of missing
residues in its 3D structure, making C-alpha coordinates
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unavailable for these positions; hence, the Delaunay tes-
sellation of such a structure will be faulty, consisting of
numerous tetrahedra that falsely identify residue quadru-
plets at their vertices as nearest neighbors and leading to
erroneous predictions. Researchers encountering such PDB
structures may overcome this restriction by modeling the
gapped segments and using their modified structure files,
which are sequentially numbered and contain C-alpha coor-
dinates for all residues. Nonstandard amino acids cannot
be incorporated due to the fact that our computational
mutagenesis methodology relies on a four-body statistical
potential defined over a standard 20-letter protein alphabet
(i.e., there are no scores for residue quadruplets that contain
nonstandard amino acids). And any mutated position with
fewer than six neighbors is relatively well isolated in its
local environment, violating a fundamental condition in our
method for deriving a complete feature vector for themutant.

5. System Requirements

Both Perl (including the CPAN library) and Java are freely
available and should be installed prior to running AUTO-
MUTE 2.0. Cygwin users should initially install the Qhull
software from the online package list (http://cygwin.com/
cygwin/packages/); Qhull already comes bundled with the
AUTO-MUTE 2.0 downloads for PC and Mac. The AUTO-
MUTE 2.0 folder contains the Weka file weka.jar, to which
the computer CLASSPATHenvironment variablemust point,
as described on the Weka website (http://weka.wikispaces
.com/CLASSPATH). Qhull and Weka are freely available
software tools used without modification by AUTO-MUTE
2.0. Finally, web access is required for automatic (-t 0) PDB
file downloads.

6. Conclusion

In summary, AUTO-MUTE 2.0 is a stand-alone software
package for structure-based prediction of protein functional
changes upon single residue replacements. A number of addi-
tional features have been integrated into this new portable
alternative to our original web-based predictors, based on
substantial feedback provided by members of the scientific
community. One critical enhancement now allows for the
batch prediction of an unrestricted number of mutants
(associatedwith one ormultiple proteins) from a single run of
a program, hence addressing needs of researchers conducting
protein mutagenesis studies in a “big data” environment.
Additional modifications made to the original programs
now also enable predictions to be obtained for mutants
associated with a wider array of admissible protein struc-
ture files, including all personal (non-PDB) models; NMR-
derived structures consisting of multiple models; structure
files for which one or more amino acid residues have mul-
tiple conformation C-alpha atoms; and structure files with
sequentially numbered residues that begin with a negative
number. Finally, all of the original Java and PHP codes used
for the online server were rewritten andmodified for AUTO-
MUTE 2.0 using Perl, a language especially popular among

researchers in the biological sciences having only a modest
programming background. The programs were written in
a straightforward manner that excluded the object-oriented
paradigm, thus offering bench scientists an opportunity to
easily comprehend the underlying logic and to even reuse or
modify portions of the Perl codes in accordance with their
particular needs.
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