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Research Highlights 

(1) Targeted ethanol injection is a rapid and easy method of selectively damaging the pyramidal 

tract for establishing a rat model of spastic cerebral palsy with gross morphological and pathological 

features typical of the disease. 

(2) Ethanol, as a chemical ablation agent for complete pyramidal tract damage in the rat brain, has 

less impact on other parts of the brain. Thus, the characteristic symptoms and signs of the disease 

can be observed for an extended period of time in the model. 

 

Abstract  
Spastic cerebral palsy is generally considered to result from cerebral cortical or pyramidal tract 

damage. Here, we precisely targeted the left pyramidal tract of 2-month-old Sprague-Dawley rats 

placed on a stereotaxic instrument under intraperitoneal anesthesia. Based on the rat brain ste-

reotaxic map, a 1-mm hole was made 10 mm posterior to bregma and 0.8 mm left of sagittal suture. 

A microsyringe was inserted perpendicularly to the surface of the brain to a depth of 9.7 mm, and 15 

μL of ethanol was slowly injected to establish a rat model of spastic cerebral palsy. After modeling, 

the rats appeared to have necrotic voids in the pyramidal tract and exhibited typical signs and 

symptoms of flexion spasms that lasted for a long period of time. These findings indicate that this is 

an effective and easy method of establishing a rat model of spastic cerebral palsy with good re-

producibility. Ethanol as a chemical ablation agent specifically and thoroughly damages the pyra-

midal tract, and therefore, the animals display flexion spasms, which are a typical symptom of the 

disease. 
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INTRODUCTION 

    

Cerebral palsy is a syndrome caused by 

non-progressive brain injury and 

mental defects during pregnancy, during 

childbirth or after birth up to infancy. Its main 

manifestations include motor dysfunction 

and abnormal posture
[1]

. Surveillance of 

Cerebral Palsy in Europe has shown that 

2–3‰ of newborns per year suffer from 

rebral palsy, and 40–100‰ of preterm ba-

bies and babies with low birth weight are 

found to have cerebral palsy at birth
[2]

. In 

developed countries, the rate of cerebral 

palsy is 1–2.5‰
[3]

. In recent years, neonatal 

mortality and the stillbirth rate have de-

creased significantly with the development 

of obstetric techniques and neonatal medi-

cine; however, the incidence of cerebral 

palsy is gradually increasing
[4]

. Spastic ce-

rebral palsy is the most common type of  



Yu YD, et al. / Neural Regeneration Research. 2013;8(34):3255-3262. 

 3256 

cerebral palsy, accounting for 45–60% of 

cerebral palsy patients. Generally, spastic 

cerebral palsy is considered to be caused by 

cerebral cortical or pyramidal tract damage. 

Patients with spastic cerebral palsy usually 

appear to have increased muscle tone, 

hyperreflexia, pathological reflex and other 

signs, with varying degrees of limb paraly-

sis
[5]

. The pathogenesis of cerebral palsy is 

still unclear, and there is still no effective 

treatment
[4, 6-8]

. Therefore, the clinical treat-

ment of cerebral palsy is in need of signifi-

cant advancement. The establishment of a 

stable and reliable animal model has become 

an important aim in the study of spastic ce-

rebral palsy
[9-12]

. 

 

There are numerous studies on the use of 

animal models of spastic cerebral palsy. 

These include models generated by infection, 

ischemia and hypoxia, and bilirubin-induced 

brain injury
[13-20]

. Sun and Li
[21]

 successfully 

prepared a rabbit model of cerebral palsy 

similar to human kernicterus by intraperito-

neal injection of 300 mg/kg bilirubin. Mallard 

et al 
[22]

 performed unilateral uterine artery 

ligation in pigs at 30 days of pregnancy to 

prepare a pig model of intrauterine ischemia 

and hypoxia. Zhang and colleagues
[23]

 re-

moved part of the cerebral cortex and me-

dulla via a skull opening to generate a model 

in rats. Du
[24]

 exposed the motor cortex and 

inserted a microsyringe to a depth of 2 mm 

for injection of 10 μL ethanol to damage the 

motor cortex. Dixon et al
 [25] 

rapidly injected 

saline into the rat brain to increase intra-

cranial pressure and damage brain tissue. 

Wu
[26] 

and Yu
[27]

 established a model of spas-

tic cerebral palsy by electrical pyramidal tract 

damage. Studies from Delcour
[28]

 and Vot-

tier
[29]

 showed that prenatal ischemia can 

cause white matter injury, thereby leading to 

cerebral palsy symptoms in rats. Repeated 

intraperitoneal or intrauterine injection of 

mucopolysaccharides into pregnant rats can 

stimulate the production of inflammatory cy-

tokines that damage oligodendrocytes, pro-

mote the synthesis of other cytokines, and 

increase nitric oxide synthesis, neutrophil 

infiltration, and adhesion molecule expres-

sion, thereby inducing white matter lesions in 

the immature brain tissue
[30-31]

. Intraperito-

neal injection of lipopolysaccharide induces 

localized endotoxin-mediated damage to the 

white matter, which is closely related to the 

local concentration of the lipoglycan in the 

tissue
[32]

. Neonatal ischemia-hypoxia can 

cause cerebral palsy in neonatal rats, with 

neuropathological features similar to hu-

mans
[33]

. Another study showed that intra-

uterine injection of mucopolysaccharides via 

the vagina, performed in rats at 15 days of 

pregnancy, produces behavior changes in 

the neonatal rats 1–21 days after birth
[34]

. 

Some studies showed that neonatal rats 

were subject to intrauterine injection of mu-

copolysaccharides, and then placed in a 

hypoxic environment to establish a cerebral 

palsy model. In addition, prenatal and peri-

natal hypoxia-ischemia is used by many 

scholars to establish a rat model of cerebral 

palsy
[35]

. Currently, the most common me-

thod of establishing a cerebral palsy model 

is subjecting neonatal rats to unilateral caro-

tid artery ligation, followed by placement in 

an anoxic environment
[36]

. A combination 

method is used by some researchers for 

establishing cerebral palsy models. For 

example, Girard and colleagues
[37]

 com-

bined mucopolysaccharide injection with 

carotid artery ligation in pregnant rats, which 

were placed in a hypoxic environment 

postoperatively to create the cerebral palsy 

model. 

 

The inflammatory response during cerebral 

hypoxic-ischemic reperfusion promotes 

secondary brain damage, which is one of 

the main causes of hypoxic-ischemic in-

jury
[38-40]

. Interleukin-1β, a cytokine found in 

the early stage of hypoxic-ischemic brain 

injury, is a critical signaling molecule in the 

nerve-endocrine-immune system
[41]

. Zhang 

et al 
[42]

 found that interleukin-1β is involved 

in the pathogenesis of brain injury in adult 

rats during cerebral ischemia-reperfusion. 

Intrauterine infection in pregnant rats can 

increase the mRNA levels of interleukin-1β 

and tumor necrosis factor in the brain of 

neonatal rats in a dose-dependent manner. 

Elevated expression of glial fibrillary acidic 

protein is found in the hippocampus and 

cortex, and the number of astrocytes    

increases. The levels of myelin basic protein
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decrease and oligodendrocyte activity is altered
[43]

. In-

flammatory cytokines can cause white matter lesions in 

the immature brain by stimulating other cytokines, and by 

promoting nitric oxide synthesis, neutrophil infiltration 

and adhesion molecule expression, as well as by killing 

oligodendrocytes
[44]

. Derrick et al 
[45]

 established an 

intrauterine ischemia and hypoxia model in pregnant 

rabbits to simulate birth injuries caused by placental ab-

ruption. However, atypical symptoms or symptoms that 

are of limited duration in these animal models produced 

by the above methods limit the in-depth study of spastic 

cerebral palsy. Therefore, we precisely targeted the py-

ramidal tract using a stereotaxic instrument and used a 

microsyringe for ethanol injection, aiming to establish a 

new rat model of spastic cerebral palsy. 

 

 

RESULTS 

 

Quantitative analysis of experimental animals 

Twelve male Sprague-Dawley rats were randomly as-

signed into model and control groups, with six rats in each 

group. Rats in the model group were given an intracranial 

injection of ethanol, targeting the left pyramidal tract, to 

establish a model of spastic cerebral palsy. In the control 

group, only a microsyringe was inserted into the brain. At 

the end of observation, one rat died from anesthesia 

overdose in each of the two groups. In the end, five rats 

from each group were included in the final analysis. 

 

Targeted injection of ethanol effectively established a 

model of spastic cerebral palsy in Sprague-Dawley rats 

By 18 hours after modeling, rats in the model group had 

no activity or food intake, and exhibited listlessness, ob-

vious flexion spasms of the right forepaw and hind limbs 

(supplementary Video 1 online), and increased muscle 

tension in the right upper and lower limbs. At 36 hours 

postoperatively, the rats had a small amount of active 

food intake and movement, and mental status also im-

proved. During exercise, claudication of the right limbs 

was apparent, and active and passive activities were 

accompanied with a clockwise circling movement with a 

diameter of about 20 cm (supplementary Video 2 online), 

and flexion spasm of the right limbs persisted. After 48 

hours, the diet in the model group was slightly improved, 

but still worse than in the control group. Greater activity 

was displayed by the model rats, and mental status con-

tinued to improve; however, flexion spasms still persisted. 

By 72 hours after modeling, the diet in the model rats had 

begun to normalize, and mental status and physical ac-

tivity were nearly normal, and flexion spasms of the right 

limbs had stabilized (Figure 1A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the control group, the rats had decreased activity and 

food intake, and poor mental status, but without flexion 

spasm of the right limbs, within 18 hours after surgery. 

Muscle tension was similar for the bilateral limbs, and 

their functioning was normal. After 36 hours, mental 

status, activities, and food intake were becoming normal. 

The rats in the control group completely recovered their 

activities, food intake and mental status 72 hours post-

operatively (Figure 1B). 

 

Targeted injection of ethanol produced a localized 

pyramidal tract lesion in Sprague-Dawley rats 

Hematoxylin-eosin staining showed that at 72 hours 

postoperatively, the rats in the model group had necrotic 

voids in the pyramidal tract, but without injuries to other 

brain regions. In the control group, the pyramidal tract 

was normal (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCUSSION 

 

Advantages and disadvantages of targeted ethanol 

injection for establishing a rat model of spastic 

cerebral palsy 

The stereotactic technology used in the present study 

Figure 1  Rat behavior 72 hours postoperation. 

(A) Spasms of the right limbs were visible in the model 
group. (B) No abnormalities were found in the limbs of rats 
in the control group. 

A B 

Figure 2  Morphology of the pyramidal tract 72 hours after 
surgery (hematoxylin-eosin staining, optical microscope,  

× 40). 

(A) Rats in the model group appeared to have necrotic 
voids in the pyramidal tract. (B) No abnormalities were 
found in the pyramidal tract of control rats. 

A B 
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provides for more accurate positioning, thereby mini-

mizing surgical errors and significantly improving the 

reproducibility of the experiment. Neonatal and pregnant 

rats have been used to establish models of cerebral 

palsy. However, confounding factors can influence the 

pathophysiology in neonatal and pregnant rats. Addi-

tionally, neonatal and pregnant rats are much less re-

sistant and tolerant to surgery than adult rats. Moreover, 

adult rats are inexpensive, easy to feed, and easy to test 

behaviorally. In particular, the large brain volume in adult 

rats facilitates pathological and biochemical analysis of 

the brain tissues
[46]

. Therefore, adult rats were preferred 

over neonatal and pregnant rats in the present study. 

Ethanol, a chemical ablation agent used in our study, is a 

better alternative to electrical stimulation to destroy the 

pyramidal tract. The brain is the body’s nerve center, and 

nerve impulse conduction is an electrochemical 

process
[47]

. Although the electric current is only dis-

charged from the tip of the insulated needle, the current 

conduction path when discharging is uncontrolled. Al-

though the current damages the pyramidal tract, we 

cannot control or monitor its impact on the other parts of 

the brain. In comparison, ethanol destroys the pyramidal 

tract completely without damaging the other parts of the 

brain, thereby helping to maintain the specific signs and 

symptoms of spastic cerebral palsy for a long period of 

time. The chemical damage by ethanol is fast and direct, 

and requires no complex operations or cumbersome 

experimental procedures. Previous studies mostly fo-

cused on methodology or examination of microscopic 

morphological changes, and some scholars emphasized 

the histological changes. Spiegler et al 
[48] 

occluded four 

uterine arteries in maternal rats at 18 weeks of preg-

nancy for 45 minutes, and then collected the brain tissue 

of neonatal rats for histological examination. Periventri-

cular leukomalacia is the major pathological feature of 

neonatal hypoxic-ischemic brain damage, and is the 

main cause of cerebral palsy
[49]

. Numerous experimental 

studies have focused on periventricular leukomalacia, 

oligodendrocyte loss and glial cell proliferation
[50-51]

. Rid-

dle et al 
[52]

 observed changes to the sheep brain after 

acute hypoxia and ischemia reperfusion by measuring 

the blood flow distribution, oxygen saturation and patho-

logical indexes in fetal sheep brain tissue, and found that 

periventricular white matter injury in the animal model 

was pathologically similar to white matter lesions in pre-

term infants. In a study by Wang et al
 [53]

, 5-day-old 

postnatal rats underwent intracranial injection of 

3-nitropropionic acid. The pathological changes in the 

brain tissues included widespread damage to the white 

matter and cerebral cortex, corpus callosum atrophy and 

ventricular dilatation. 

In our experiment, the microsyringe was vertically in-

serted into the pyramidal tract with no damage to other 

parts of the brain. Postoperative signs of flexion spasms 

were very obvious, but there were other symptoms as 

well. The control group was established to verify that 

ethanol is the prime agent destroying the pyramidal tract, 

rather than the microsyringe needle. In addition, we 

conducted preliminary experiments with many reagents, 

such as normal saline and hypertonic saline, to deter-

mine whether ethanol destroys the pyramidal tract by 

simply occupying volume. However, we found that there 

were no signs of flexion spasm in adult rats administered 

normal saline, hypertonic saline or other liquid reagents 

after recovery from anesthesia, indicating that liquid 

reagents induce no substantial damage to the brain. 

Moreover, the injected ethanol could also be absorbed 

after destroying the pyramidal tract. We also attempted 

to destroy the pyramidal tract using heavy metals such 

as mercury, but the rats died postoperatively before re-

covery from anesthesia. After the injection of ethanol, the 

drilling hole was sealed with wax, which not only effec-

tively stopped the bleeding, but also prevented blood 

from entering the drilling hole and prevented normal sa-

line from entering the needle tract during postoperative 

rinsing, helping to avoid dilution of the ethanol. It is very 

important to rigorously conduct the experiments, espe-

cially in studies on dose-effect and time-dependent rela-

tionships. Furthermore, the needle insertion sites and 

injection zones were positioned in reference to The Rat 

Brain in Stereotaxic Coordinates (3
rd

 edition), precisely 

using a stereotaxic instrument, thereby ensuring target-

ing accuracy during injection. 

 

Precautions during targeted injection of ethanol for 

establishment of the rat model of spastic cerebral 

palsy 

We should closely observe the rat’s breathing and heart 

beat throughout the experimental procedures, including 

anesthesia. A 20 mL syringe and a urinary catheter are 

necessary for suctioning to avoid suffocation in rats in 

case there are signs of airway obstruction
[53]

. Inaccurate 

three-dimensional coordinates could make the microsy-

ringe needle deviate from the target site, thereby result-

ing in a failed experiment or unsatisfactory experimental 

results. In addition, stable skull fixation, without penetra-

tion of the bilateral tympanic membranes, is required. 

However, this was relatively poor in our experiment. 

Therefore, researchers should be careful and gentle 

during the operation to avoid loosening and dislocation of 

the skull. In particular, excessive force during the tar-

geted injection will not only increase experimental errors, 

but will also damage the microsyringe, thus causing ex-
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perimental failure. For the three-dimensional coordinates, 

the target site should not be selected 0.7 mm anterior to 

the line between the ears and 1 mm to the midline, so as 

not to damage the sinus and cause bleeding. However, 

we inserted the microsyringe 1 mm distal to the sagittal 

suture, which resulted in more bleeding during the expe-

riment. In this experiment, we had to carry out the tar-

geted injection of ethanol after hemostasis. 

 

The rat model of spastic cerebral palsy prepared using 

the method described in this study exhibits obvious signs 

of limb spasms, which continue to manifest for an ex-

tended period of time. The operating procedure is simple 

and standardized with perfect repeatability and accurate 

positioning. The experimental results are described qua-

litatively. Further studies are required to determine the 

optimal ethanol dose and the dose-effect and time- effect 

relationships. 

 

Characteristics and application of the targeted 

injection of ethanol for establishment of the rat 

model of spastic cerebral palsy 

The animal model described in the present study shows 

obvious symptoms of flexion spasms and typical signs 

that endure for a long term. The modeling method is 

simple and standardized with good repeatability. Based 

on this model, we can carry out in-depth studies of the 

pathology of cerebral palsy and assess treatment strate-

gies for the disease. For example, the model can allow 

us to examine the changes in the central nervous system 

and peripheral nerves during cerebral palsy. We can also 

investigate whether end-to-end anastomosis of the 

nerves that control the flexor and extensor muscles can 

alleviate the flexion spasms. Using this model, we can 

also investigate whether nerve growth factor treatment or 

partial transplantation of the pyramidal tract can accele-

rate the disappearance of flexion spasms when the most 

typical symptoms appear, allowing researchers to ex-

plore new approaches and methods for the treatment of 

cerebral palsy and other brain injuries. In addition, while 

the symptoms are maintained for an extended period in 

this model, they gradually disappear. Therefore, we can 

explore the mechanisms underlying recovery from the 

flexion spasms. Such studies may provide insight that 

will help accelerate recovery from cerebral palsy. 

 

Although there has been significant progress in our un-

derstanding of disease pathogenesis and animal model 

preparation, it is necessary to identify better indicators of 

the disease and to generate novel animal models that 

better simulate spastic cerebral palsy
[54]

. In this study, we 

targeted the pyramidal tract to establish a rat model of 

spastic cerebral palsy. The method is rapid and easy, 

and produces a model with manifestations, pathological 

changes and symptoms typical of cerebral palsy. 

 

 

MATERIALS AND METHODS 

 

Design 

A randomized, controlled, animal experiment. 

 

Time and setting 

All experiments were performed at the Experimental 

Animal Center, the Third Hospital of Hebei Medical Uni-

versity, China from September 2010 to March 2012. 

 

Materials 

A total of 12 male Sprague-Dawley rats of specific patho-

gen-free grade, aged 2 months and weighing 250 ± 12 g 

were provided by the Experimental Animal Center, the 

Third Hospital of Hebei Medical University, China (certifi-

cate No. SYXK (Ji) 2008-0026). The rats were housed in a 

feeding room, specific pathogen-free grade, at 22 ± 1°C, 

50–70% humidity, with a 12-hour light/dark cycle (illumina-

tion: 150–200 lx). All experimental procedures were in 

accordance with the Guidance Suggestions for the Care 

and Use of Laboratory Animals, published by the Ministry 

of Science and Technology of China
[55]

. 

 

Methods 

Animal anesthesia 

The rats were anesthetized by intraperitoneal injection of 

10% chloral hydrate (0.004–0.005 mL/g). Then, we 

closely observed the vital signs of anesthetized rats. The 

rats were anesthetized successfully if they exhibited the 

following: deeper and slower breathing, limb and muscle 

weakness, delayed corneal reflex, and no response to 

sharp stimulation of the tail
[56]

. 

 

Fixation of rats 

First, the rats were placed in a stereotactic apparatus 

(Anhui Zhenghua Biologic Apparatus Facilities Co., Ltd., 

Huaibei, Anhui Province, China) with the root of the incisor 

hooked firmly with the incisor fixator. Then, the left and 

right ear bars were inserted into the rat ears, followed by 

appropriate pressure until the rats appeared to have 

slightly protruding eyes, and we tightened the knob of the 

ear bars. We adjusted the incisor to align the bregma with 

the lambda
[57]

. When the incisor bar was located at 3.9 ± 

0.5 mm below the horizontal plane, the rat skull was in the 

horizontal position. To avoid loosening of the skull during 

surgery, we checked again whether each knob was tigh-

tened. After checking, the rat head should be stably and 
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firmly fixed on the stereotactic apparatus. 

 

Preoperative preparation 

The rat skull was exposed and disinfected with iodine in 

alcohol and ethanol. The microsyringe (Zhenhai Glass 

Instrument Factory, Ningbo, Zhejiang Province, China) 

containing ethanol (Shanghai Nanxiang Reagent Co., 

Ltd., Shanghai, China) was fixed firmly in the stereotactic 

apparatus. 

 

Preparing the model of spastic cerebral palsy 

A parietal incision about 2-cm-long was made over the 

midline through the skin, subcutaneous tissue, deep fascia 

and periosteum, layer by layer, with the cut skin fixed on 

the stereotactic apparatus. After removal of the perios-

teum, the bregma and sagittal suture were exposed (Fig-

ure 3A). Based on The Rat Brain in Stereotaxic Coordi-

nates (3
rd
 edition)

[57]
, the stereotaxic coordinates were 

determined: a hole, about 1 mm in diameter, was drilled  

10 mm posterior to bregma, 0.8 left of sagittal suture, and 

9.7 mm ventral to dura (Figure 3B). Then, we determined 

whether there were deviations from the stereotaxic coor-

dinates (Figure 3C). If bleeding, cotton balls with saline 

were used for hemostasis by compression rather than 

repeated rubbing. The drilling was stopped when the bit 

reached the dura mater. A 5 mL syringe needle was used 

to determine whether the hole was drilled through the skull 

to avoid damage to the microsyringe needle during inser-

tion. Then, the microsyringe needle was vertically inserted 

into the cranium to a depth of 9.7 mm (Figure 3D) for in-

tracranial injection of 15 μL ethanol. After injection, the 

microsyringe was removed and brain cottons were used 

for adequate hemostasis by compression. Afterwards, the 

drilled hole was sealed with bone wax and the wound was 

rinsed with normal saline and sewed (Figure 3E). In the 

control group, the microsyringe was inserted into the brain 

without ethanol injection. 

 

Postoperative treatment 

The rats were removed from the stereotactic apparatus 

and placed in a 25–28°C environment. Before awakening, 

the rats were monitored for general conditions. Generally, 

the rats would recover from anesthesia at postoperative 

2 hours.  

 

The symptoms and signs were compared between the 

model and control groups within 24 hours postoperatively. 

Rats were only given feeding without postoperative 

dressing or antibiotic treatment. 

 

Gross observation 

Detailed observations were done for food intake, activity, 

mental state, and spasticity in rats at 18, 36, 48 and    

72 hours postoperatively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pathological observation of the pyramidal tract using 

hematoxylin-eosin staining 

Approximately 72 hours after surgery, one rat was ran-

domly selected from each of the two groups. After anes-

thetization with 10% chloral hydrate (0.004–0.005 mL/g), 

the rats were placed in a sterile operating table to open 

the parietal incision and clear the wound and subcuta-

neous hematoma. The original incision was extended 

from the tip of the rat nose to the neck to expose the 

entire skull clearly. The bone wax filling the drilled hole 

was removed. A transverse incision was made using a 

wire saw from the eyebrow area through the temporal 

line to the external occipital protuberance, which was not 

too deep. Then, the skull was opened along the trans-

verse incision to separate the bone marrow from the 

spinal canal at the foramen magnum using a small cut-

ting bit. A micro scissor was used to cut off the olfactory 

bulb and optic nerve, and then, a knife was inserted into 

the sella to isolate the pituitary gland.  

 

Finally, the brain with the pituitary gland was taken out. 

After removal of the dura mater, the brain was im-

mersed in formalin for 3 days to fix the brain tissue
[58]

. 

After fixation, the brain tissue was dehydrated, cleared 

and immersed in paraffin. Then the tissue specimen 

was placed in melted paraffin wax until solidified. The 

Figure 3  Process of preparing a rat model of spastic 
cerebral palsy. 

(A) Expose the bregma and sagittal suture. (B) Accurate 
orientation. (C) Drill the parietal bone. (D) Insert the 
microsyringe into the skull. (E) Sew up the incision. 

A B 

C D 

E 
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paraffin block was trimmed, placed on the wooden 

holder and cut into slices, 5 μm in thickness. The slices 

were immersed in 40°C water, then baked in a 65°C 

oven for 30 minutes, and finally stained with hematox-

ylin-eosin. An optical microscope (Shanghai Bimu In-

strument Co., Ltd., Shanghai, China) was used for pa-

thological and morphological observation of the rat 

brain tissues.  
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