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Background: Asthma is characterized by airway hyperresponsiveness, reversible airway obstruction, and 
chronic airway inflammation. It is the most common chronic disease in childhood. However, the diagnosis of 
childhood asthma remains challenging, and there is an urgent need to develop new diagnostic methods.
Methods: To identify biomarkers of asthma in children, we adopted the Orbitrap-based data-independent 
acquisition (DIA) mass spectrometry proteomics method to analyze the serum proteomic signatures of 
children with acute asthma and convalescent children.
Results: We identified 747 proteins in 46 serum samples and 50 differentially expressed proteins (DEPs) 
that distinguished between asthmatic and healthy children. Next, functional enrichment analysis of the DEPs 
was conducted, it was indicated that the DEPs were significantly enriched in immune-related and function 
terms and pathways. Furthermore, we performed statistical analysis and identified MMP14, ABHD12B, 
PCYOX1, LTBP1, CFHR4, APOA1, IGHG4, ANG and IGFALS proteins as the diagnostic biomarker 
candidates. Ultimately, a promising asthma diagnostic model for preschool children based on IGFALS was 
built and evaluated. The area under the curve (AUC) of the IGFALS model was 0.959.
Conclusions: In this study, the DIA proteome strategy was used and the largest number of proteins of 
asthmatic children serum proteomics was identified. The proteomics results showed that the DEPs play the 
central role of the inflammation-immune mechanism in asthma pathogenesis, suggesting that these proteins 
may be used in asthma diagnosis, prognosis, or therapy, and suggested biomarkers for asthma of preschool 
children. In conclusion, our results provide insight into the pathophysiology of asthma. We believe that the 
diagnostic model will facilitate clinical decision-making regarding asthma in preschool children.

Keywords: Asthma; preschool children; serum proteomics; biomarker

Submitted Jun 19, 2023. Accepted for publication Nov 17, 2023. Published online Jan 24, 2024.

doi: 10.21037/jtd-23-974

View this article at: https://dx.doi.org/10.21037/jtd-23-974

80

 
^ ORCID: Hui Ding, 0000-0002-9016-3334; Guocheng Zhang, 0000-0002-7712-4189.

https://crossmark.crossref.org/dialog/?doi=10.21037/jtd-23-974


Ding et al. Serum proteomics of preschool children with asthma66

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2024;16(1):65-80 | https://dx.doi.org/10.21037/jtd-23-974

Introduction

Background

Asthma is the most common chronic disease in childhood 
and is characterized by airway hyperresponsiveness, 
reversible airway obstruction, and chronic airway 
inflammation (1,2). The rates of asthma morbidity and 
hospitalization are higher in preschool-aged children 
than older individuals (3). The lung function trajectory is 
established in childhood, and airway remodelling related to 
asthma develops before 3 years of age (4-7). Therefore, the 
preschool years are a critical time for asthma intervention (8),  
and accurate recognition and diagnosis of asthma in 
preschoolers may be helpful to understand asthma 
symptoms and improve treatment adherence (9).

Rationale and knowledge gap

Because asthma symptoms are recurrent and fluctuant, its 
diagnosis in children remains challenging, and effective 
stand-alone diagnostic tests are scarce (3,10,11). Diagnostic 
algorithms that combine the available tests, such as 
spirometry, bronchodilator reversibility tests, bronchial 
provocation tests to measure bronchial hyperresponsiveness, 
fractional exhaled nitric oxide (FeNO) and allergy tests, 
have recently been proposed by the National Institute for 
Health and Care Excellence and the Global Initiative for 
Asthma (GINA) (10-12). However, the diagnostic accuracy 
of these algorithms in asthma in preschool-aged children is 
uncertain (12-14). Therefore, better diagnostic methods for 
asthma are urgently required. To achieve this, new studies 
are required to identify biomarkers that can differentiate 

between asthmatic and healthy preschool-aged children, 
which can subsequently be incorporated into the diagnostic 
algorithms.

In asthma, certain proteins related to airway obstruction 
and inflammation are produced in tissue cells and secreted 
into the circulation (15). Thus, proteomics is a promising 
approach for the identification of potential asthma diagnostic 
biomarkers of asthma in preschoolers (16). Although 
proteomics has been used to analyze blood samples from 
asthmatic patients in previous studies (17-20), most of 
them used the data-dependent acquisition (DDA) mass 
spectrometry and focused on elderly children or adults. 
Data independent acquisition (DIA) mass spectrometry is a 
parallel-in-time acquisition method with better consistency 
and reproducibility than DDA, and is especially applicable 
to large sample cohort proteomics studies (21-23).

Previous studies have identified several asthma protein 
biomarkers. For example, Nieto-Fontarigo et al. found 
that serum IGFALS is a biomarker of allergic asthma in 
adults (20). Zamora-Mendoza et al. identified that salivary 
interleukin (IL)-8 and IL-10 are biomarkers of childhood 
asthma (24). Another study revealed that sputum LXA4 
could discriminate children with severe asthma from those 
with intermittent asthma (25). Moreover, C7, C3, C4, 
α-1-antitrypsin, PDE7, arginase, UK16 binding protein, 
phospholipase D, and cyclooxygenase were found to 
differentially accumulate in the serum of patients with 
bronchial asthma and of healthy individuals through 
proteomics analysis (26). However, few studies have focused 
on biomarkers for asthma in preschoolers, as it is more 
difficult to diagnose asthma in this population.

Objective

In the present study, to obtain in-depth and reliable serum 
proteome data for asthma and identify potential diagnostic 
biomarkers of asthma in preschool children, we conducted 
Orbitrap-based DIA mass spectrometry serum proteomics 
analysis in asthmatic preschool children using the Orbitrap 
Exploris 480 platform. Combining bioinformatics and 
statistical analyses, we identified critical signalling pathways 
and candidate biomarker proteins related to asthma in 
preschool children. Finally, a preschool children asthma 
diagnostic model was constructed using a biomarker panel. 
We present this article in accordance with the STARD 
reporting checklist (available at https://jtd.amegroups.com/
article/view/10.21037/jtd-23-974/rc).

Highlight box

Key findings
• An asthma diagnostic model for preschool children based on 

IGFALS was built and evaluated.

What is known and what is new?  
• The diagnosis of childhood asthma remains challenging, and there 

is an urgent need to develop new diagnostic methods.
• We adopted the data-independent acquisition proteomics method 

to screen asthma diagnostic biomarker for children.

What is the implication, and what should change now? 
• Our results provide insight into the pathophysiology of asthma. We 

believe that the diagnostic model will facilitate clinical decision-
making regarding asthma in preschool children.

https://jtd.amegroups.com/article/view/10.21037/jtd-23-974/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-23-974/rc
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Methods

Participants and serum sample collection

A set of 46 children were recruited from The Second 
Affiliated Hospital of Shaanxi University of Chinese 
Medicine between 2020 and 2021. The children were 
divided into three study cohorts: acute exacerbation 
of asthma [Asthma; n=17, children who were suffering 
from suddenly wheeze, cough, shortness of breath, chest 
tightness and other symptoms, being diagnosed as acute 
asthma exacerbations according to GINA 2019 (10)], 
convalescent asthma (Conva; n=19, children whose asthma 
symptoms disappeared with or without treatment and lung 
function returned to normal for more than 3 months), and 
healthy controls (Health; n=10). Children with a diagnosis 
of immune disease, chronic kidney disease, or other 
diseases affecting serum proteins were excluded. All clinical 
diagnoses followed the 2019 Global Initiative for Asthma 
guidelines (10). On the morning after the children were 
admitted to the hospital without drug treatment, blood 
samples (4 mL) were collected, placed at room temperature 
(22–25 ℃) in the dark for 1 hour, and then centrifuged at 
3,000 rpm at 4 ℃ for 15 minutes to separate the serum. 
Finally, the serum was aliquoted and stored in a refrigerator 
at −80 ℃. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The research 
protocol was approved by the Ethics Committee of The 
Second Affiliated Hospital of Shaanxi University of Chinese 
Medicine (No. CYL-SQ202216). All of the participants’ 
guardians provided written informed consent.

Protein extraction and trypsin digestion

First, the serum samples were centrifuged at 12,000 g at  
4 ℃ for 10 minutes to remove the cellular debris. Then, the 
supernatant was retained, and the protein concentration 
of the serum was determined using a bicinchoninic acid 
(BCA) kit (ThermoFisher Scientific, Waltham, MA, 
USA) according to the manufacturer’s instructions. Then, 
the serum protein solution was reduced with 5 mM 
dithiothreitol for 30 minutes at 56 ℃ and alkylated with  
11 mM iodoacetamide for 15 minutes at room temperature 
in darkness. Trypsin was added at a ratio of 1:50 (trypsin/
protein mass ratio) for the first overnight digestion and 
at a ratio of 1:100 for the second 4-hour digestion. The 
digested peptides were demineralized using C18 Ziptips 
(Millipore, Darmstadt, Germany), eluted with 0.1% 
TFA (Trifluoroacetic Acid) in 50–70% acetonitrile and 

then lyophilized and redissolved in 1% formic acid 5% 
acetonitrile. The iRT (indexed retention time) peptides 
(Biognosys, Schlieren, Switzerland) were spiked into the 
sample prior to LC-MS/MS (liquid chromatography-
tandem mass spectrometry) analysis according to the 
manufacturer’s instructions.

High pH reversed-phase fractionation

The processed peptide solutions of subjects were 
equivalently pooled and further fractioned by high pH 
reversed-phase separation with a Dionex UHPLC (ultra 
performance liquid chromatography, ThermoFisher 
Scientific, Waltham, MA, USA) and Ethylene Bridged 
Hybrid C18 column (Waters) at 40 ℃ with a 0.2 mL/min 
flow and a 60 minutes ACN (acetonitrile) gradient (5–30%) in  
5 mM ammonium formate (pH 10). Fractions were 
collected at 1 minute intervals and pooled into 12 fractions. 
Then, each fraction was lyophilized and redissolved in 1% 
formic acid 5% acetonitrile.

DDA LC-MS/MS analysis and spectral library generation

To generate the spectral library, DDA-MS analysis was 
employed and performed on an Easy-nLC 1200 UPLC 
(ultra performance liquid chromatography) system in 
tandem with an Orbitrap Exploris 480 mass spectrometer 
(ThermoFisher Scientific, Waltham, MA, USA). First, 
each peptide fraction was loaded onto the Easy-nLC 
1200 UPLC system and separated within a 120-minute 
linear gradient from 95% solvent A (0.1% formic acid/2% 
acetonitrile/98% water) to 28% solvent B (0.1% formic 
acid/80% acetonitrile) at a flow rate of 250 nL/min at 50 ℃. 
The mass spectrometer was operated in the data-dependent 
mode. A full MS scan from 350 to 1500 m/z was acquired 
at high resolution R=120,000 (defined at m/z=400); MS/
MS scans were performed at a resolution of 30,000 with 
an isolation window of 4 Da and higher energy collisional 
dissociation (HCD) fragmentation with collision energy 
(CE) of 30%±5%. Dynamic exclusion was set at 30 s.

The raw data were processed using the Pulsar search 
engine in Spectronaut X (Biognosys, Schlieren, Switzerland) 
and searched against the UniProt Homo sapiens proteome 
database within the default parameters to generate the 
spectral library. The digestion enzyme was specific trypsin 
enzyme with 2 missed specialized cleavages, the fixed 
modification was carbamidomethyl of cysteine, and the 
variable modification was oxidation of methionine. The 
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iRTs were calculated from the iRT median of all DDA runs. 
Fragment ions for the targeted data analysis were selected 
from 300–1,800 m/z, minimal relative intensity was set 
as >5% and fragment ion number >3. The false discovery 
rate (FDR) was set as 1% for protein and peptide spectrum 
matches. Protein inference was performed using the ID 
Picker algorithm within the Spectronaut software.

DIA LC-MS/MS analysis

DIA-MS was performed using the same LC-MS system 
and the same LC linear gradient method as DDA-MS. 
For MS/MS acquisition, the DIA mode was set for 50 
variable isolation windows according to the full width at 
half maximum (FWTH), and the specific window lists 
were constructed based on the respective DDA data of the 
pooled sample. The full scan was set as 1200,000 over the 
m/z range from 350 to 1,500, followed by DIA scans with 
resolution 30,000; CE: 30%±5%; AGC target: 1e6 and 
maximal injection time: 54 microseconds. The DIA raw files 
were processed with Spectronaut X (Biognosys, Schlieren, 
Switzerland) and the default parameters. The retention 
time prediction type was dynamic iRT, the correction factor 
was window 1, and interference correction on the MS2 level 
was enabled. Systematic variance was normalized by a local 
normalization strategy. The FDRs of peptide precursors and 
proteins were both estimated with the mProphet approach at 
a cut-off of 1%. The summed peak areas of the peptide MS2 
fragment ions were calculated as the protein intensity. All 
results were filtered by the Q value and FDR 1% cut-off.

Bioinformatics and statistical analysis

All identified serum proteins were annotated using Gene 
Ontology (GO; https://geneontology.org/) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) databases 
(http://www.genome.jp/kegg/), and then the functional 
enrichment analysis of the differentially expressed proteins 
(DEPs) was performed by R package clusterProfiler with 
the over-representation analysis method. SIMCA 14 
software (Umetrics AB, Sweden) was used for unsupervised 
PCA and supervised orthonormal partial least squares 
discriminant analysis (OPLS-DA) of the acquired proteome 
data. The significantly different proteins were identified 
using a criterion of FC >1.5 and Mann-Whitney U test P 
value <0.05. Heatmap analysis was performed using TBtools 
(https://github.com/CJ-Chen/TBtools). R (version 4.0.3) 
and SPSS (version 28) were used to perform functional 

enrichment and statistical analyses, such as the area under 
the curve (AUC). The significantly enriched GO functions 
and KEGG pathways were examined using Fisher’s exact 
test P value <0.05. All the P values obtained above were 
adjusted with FDR method by the function P.adjust in R.

Results

Clinical characteristics of the study patients

In total, 46 children were divided into three groups: acute 
exacerbation of asthma (Asthma; n=17), convalescent 
asthma (Conva; n=19), and healthy controls (Health; n=10). 
To identify the asthma biomarkers in preschoolers, 7, 10, 
and 7 preschoolers (aged <5 years) were included in the 
Asthma, Conva, and Health groups, respectively. The clinical 
characteristics of each group are displayed in Table 1 and 
table available at https://cdn.amegroups.cn/static/public/jtd-
23-974-1.xlsx. As shown, the forced expiratory volume in 
one second (FEV1) of children with acute asthma was lower 
than that of children in Conva and Health groups. However, 
the FEV1/FVC (forced vital capacity) of children with acute 
asthma was higher than that of children in the Conva and 
Health groups (Table 1). The neutrophil counts were higher, 
and the lymphocyte count was lower, in the Asthma group 
compared with the Conva and Health groups (Table 1). The 
eosinophil count, FeNO, and immunoglobulin E (IgE) of 
children in the Asthma and Conva groups were significantly 
higher than those in the Health group (Table 1).

Summary of the proteomic discovery and functional 
alterations related to asthma

To analyze the serum proteome of asthmatic children, a total 
of 747 proteins were identified in 46 serum samples using 
DIA-MS proteome sequencing (Figure 1 and table available 
at https://cdn.amegroups.cn/static/public/jtd-23-974-2.
xlsx). The principal component analysis (PCA) showed that 
the serum proteomes could discriminate between the three 
study groups (Figure 2A). To identify the asthma biomarkers 
in children, 49 significantly altered proteins [fold-change 
(FC) >1.5, Mann-Whitney U test P value <0.05 and 
FDR Q value <0.05] were identified between the Asthma 
and Health groups after data filtration (Figure 2B,2C;  
Table 2), such as IGFALS, TNXB, LCAT, MMRN1, 
IGFBP3, APOA1, MADCAM1, PKM, AMY2A, PZP, 
IGHV3-38, ABHD12B, ANTXR2, IGF1, and AGT. 
Meanwhile, 62 proteins were significantly differentially 

http://www.genome.jp/kegg/
https://cdn.amegroups.cn/static/public/jtd-23-974-1.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-974-1.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-974-2.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-974-2.xlsx
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Table 1 Clinical and demographic characteristics of the study subjects

Characteristics Asthma (n=17) Conva (n=19) Health (n=10) P value†

Age, years 5.6 (2.3–12) 4.88 (1.4–9) 3.94 (2–6.6) NA

Sex (male/female) 11/6 11/8 5/5 NA

Baseline treatment

ICS-LABA 1 0 0 NA

ICS 7 11 0 NA

OCS 0 0 0 NA

Montelukast sodium 1 4 0 NA

BMI (kg/m2) 17.44 (12.94–23) 16.51 (12.77–22.7) 15.263 (12.5–17.1) NA

FEV1 (%) 46.78 (11.6–101.8) 64.74 (15.8–108.1) 64.34 (31.5–133.6) 0.3272

FEV1/FVC (%) 64.43 (19.7–108.9) 61.78 (19.5–101.4) 59.55 (31.3–108.9) 0.9843

Neutrophils (103 cells/μL) 4.65 (0.71–10.94) 3.55 (1.98–7.75) 2.44 (0.78–5.95) 0.03661

Lymphocytes (103 cells/μL) 2.38 (1.09–3.65) 3.55 (2.4–6.64) 3.26 (0.77–5.24) 0.0005432

Monocytes (103 cells/μL) 0.63 (0.35–1.23) 0.47 (0.26–1.2) 0.61 (0.24–1.05) 0.06703

Eosinophils (103 cells/μL) 0.29 (0.01–0.65) 0.33 (0.06–1.05) 0.134 (0.04–0.3) 0.03787

Basophils (103cells/μL) 0.027 (0–0.08) 0.028 (0.01–0.08) 0.069 (0.01–0.44) 0.6461

FeNO (ppb) 20.06 (3.7–53) 17.4 (2.9–63.5) 11.02 (4.4–18.1) 0.437

IgE (IU/mL) 376.45 (3.5–1,409) 230.49 (7.97–1,000) 32.16 (3.5–127.02) 0.005725

Data are presented as median (IQR) or number. †, Kruskal-Wallis test P value. ICS-LABA, inhaled corticosteroids-long-acting beta-agonist; 
ICS, inhaled corticosteroids; OCS, oral corticosteroids; BMI, body mass index; FEV1, forced expiratory volume in one second; FVC, forced 
vital capacity; FeNO, fractional exhaled nitric oxide; IgE, immunoglobulin E; IQR, interquartile range.

Asthma cohort 

Conva cohort 

Health cohort

Blood samples

Protein extraction

Tryptic digestion

Orbitrap DDA-MS

Orbitrap DIA-MS

Spectral library generation

Data analysis

Identification  & quantification

Biomarker candidatesBiomarkers’ evaluationValidated biomarkersELISA validation

Figure 1 Brief workflow of the serum DIA-MS proteomics analysis. DDA-MS, data-dependent acquisition mass spectrometry; DIA-MS, 
data-independent acquisition mass spectrometry; ELISA, enzyme-linked immunosorbent assay.
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expressed between the Conva and Health groups (Figure 
2C and table available at https://cdn.amegroups.cn/static/
public/jtd-23-974-3.xlsx). Interestingly, there were 19 
common DEPs between the Conva and Asthma groups 
compared with the Health group (Figure 2C). The cluster 
analysis indicated that these 19 common DEPs in the 
Asthma, Conva, and Health groups could be distinguished in 
an unsupervised clustering analysis (Figure 2D).

GO, KEGG and Reactome enrichment analyses of the 
altered proteins

Based on GO annotation results (table available at https://
cdn.amegroups.cn/static/public/jtd-23-974-4.xlsx), 
functional enrichment analysis of DEPs between the Asthma 

and Health groups was performed. Fisher’s exact test P 
value was used to determine the significance (Table S1). 
GO terms with a Fisher’s exact test P value <0.05 (Q value 
<0.05) were considered significantly enriched (Figure 3A). 
As shown, the DEPs were significantly enriched in immune 
system-related biological processes, such as the chemokine-
mediated signaling pathway, positive regulation of leukocyte 
chemotaxis, regulation of granulocyte chemotaxis, positive 
regulation of leukocyte migration, positive regulation of 
neutrophil migration, regulation of neutrophil migration, 
regulation of neutrophil chemotaxis, regulation of leukocyte 
chemotaxis, and positive regulation of chemotaxis (Figure 
3A). In terms of molecular functions, the DEPs were 
significantly enriched in immune-related functions, such as 
CXCR chemokine receptor binding, chemokine receptor 
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Table 2 The common DEPs of Conva vs. Health and Asthma vs. Health

Gene Description
Conva/Asthma Conva/Health Asthma/Health

FC P value FC P value FC P value

MADCAM1 Mucosal addressin cell adhesion molecule 1 1.09 7.13E–01 1.98 8.46E–03 1.82 5.33E–03

TPM4 Tropomyosin alpha-4 chain 0.43 4.72E–01 0.20 1.76E–03 0.46 2.03E–02

TNXB Tenascin-X 0.58 5.52E–01 1.87 9.07E–03 3.20 1.42E–03

IGFBP3 Insulin-like growth factor-binding protein 3 0.97 7.07E–01 1.61 1.66E–03 1.66 3.20E–03

PKM Pyruvate kinase 0.96 7.54E–01 1.76 3.52E–02 1.82 5.58E–03

ANTXR2 Anthrax toxin receptor 0.66 6.61E–01 1.96 1.85E–02 2.99 1.51E–02

AGT Angiotensinogen 0.90 3.97E–01 1.75 1.13E–03 1.93 1.75E–02

COL1A1 Collagen alpha-1(I) chain 1.26 3.00E–01 1.92 4.08E–03 1.52 4.04E–02

APOA1 Apolipoprotein A-I 0.42 1.86E–01 1.54 3.52E–02 3.69 3.20E–03

PF4 Platelet factor 4 1.60 1.14E–02 2.94 4.57E–06 1.84 1.75E–02

LCAT Phosphatidylcholine-sterol acyltransferase 0.99 7.78E–01 1.55 6.66E–03 1.57 1.42E–03

IGF1 Insulin-like growth factor I 0.95 8.45E–01 3.28 4.25E–03 3.44 1.66E–02

MGP Matrix Gla protein 1.49 1.65E–02 2.38 8.69E–05 1.60 2.68E–02

TIMP2 Metalloproteinase inhibitor 2 1.20 3.50E–01 1.94 3.55E–03 1.62 2.31E–02

PZP Pregnancy zone protein 0.64 2.57E–01 2.11 4.45E–02 3.31 9.34E–03

IGFALS Insulin-like growth factor-binding protein complex 
acid labile subunit 

0.80 1.21E–01 1.62 7.79E–03 2.03 5.74E–04

BTD Biotinidase 1.06 8.51E–01 1.73 7.79E–03 1.62 2.70E–02

MMRN1 Multimerin-1 0.93 5.94E–01 1.62 3.96E–02 1.73 1.76E–03

ABHD12B Protein ABHD12B 1.27 1.56E–01 3.27 3.88E–04 2.57 1.29E–02

CD93 Complement component C1q receptor 1.08 9.75E–01 2.35 2.41E–02 2.18 2.03E–02

DEP, differentially expressed protein; FC, fold change.

binding, chemokine activity, and G-protein-coupled 
receptor binding (Figure 3A). The DEPs were significantly 
enriched in the cellular processes of sarcoplasmic reticulum, 
growth cone, site of polarized growth, and sarcoplasm terms 
(Figure 3A).

Next,  KEGG pathway enrichment analysis  was 
conducted (Tables S2). As expected, the DEPs were 
significantly enriched in immune-related pathways, such as 
the chemokine signaling pathway, viral protein interactions 
with cytokines and cytokine receptors, cytokine-cytokine 
receptor interaction, p53 signaling pathway, and TGF-
beta signaling pathway. In addition, fat digestion and 
absorption, cholesterol metabolism, and vitamin digestion 
and absorption pathways were enriched (Figure 3B).

Besides, the Reactome pathway analysis were performed 

in the Reactome Pathway Database (https://reactome.org/) 
(Table S2). The regulation of insulin-like growth factor 
(IGF) transport and uptake by insulin-like growth factor 
binding proteins (IGFBPs), post-translational protein 
phosphorylation, platelet degranulation, response to 
elevated platelet cytosolic Ca2+, platelet activation, signaling 
and aggregation, hemostasis and chylomicron assembly 
reactome pathways were significantly enriched (Figure 3C).

Biomarker candidates for preschool children with asthma

A total of 50 DEPs were identified between Asthma 
and Health groups. Multivariate PCA revealed that the 
DEPs could distinguish between Asthma and Health 
subjects (Figure 4A and Figure S1A). To examine the 

https://cdn.amegroups.cn/static/public/JTD-23-974-Supplementary.pdf
https://reactome.org/
https://cdn.amegroups.cn/static/public/JTD-23-974-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-23-974-Supplementary.pdf
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potential usefulness of these proteins for distinguishing 
between Asthma and Health groups, OPLS-DA models 
were constructed (Figure 4B and Figure S1B). After 200 
permutation tests, the R2 and Q2 of the OPLS-DA 
model of Asthma and Health groups were 0.53 and −0.45, 
respectively (Figure S1C), and those of the OPLS-DA 
model of preschool Asthma and Health groups were 0.766 
and −0.491, respectively (Figure S1D), indicating that these 
models were well-fitted and had reliable predictive ability. 
The proteins MMP14, ABHD12B, PCYOX1, LTBP1, 
CFHR4, APOA1, IGHG4, ANG, and IGFALS significantly 
contributed to the discrimination between asthmatic 
and healthy children [predictive variable importance in 
projection (VIPpred) >1] and were considered biomarker 
candidates (Table 3 and Table S3). The relative expression 
levels of these candidate biomarkers are shown as boxplots 
in Figure 4C. Interestingly, these candidates except 
PCYOX1 showed significantly higher relative abundance 
in the Asthma cohort compared with the Health cohort. 
In particular, ANG, APOA1, IGFALS, and LTBP1 levels 
showed a gradually decreasing trend from Asthma to Conva 
and then to the Health cohorts (Figure 4C). Moreover, we 

performed a correlation analysis between these potential 
biomarkers and the clinical data of the patients using 
the spearman method (Figure S2). The results showed 
that APOA1 and IGFALS were significantly positively 
correlated with IgE, but negatively correlated with 
lymphocytes (Figure S2).

Development and evaluation of the biomarker-based 
diagnostic model for asthmatic preschoolers

To better present the differences in the abundance of 
candidate biomarkers among preschooler asthmatics, 
the heatmap of six candidate biomarkers was plotted 
using TBtools (Figure 5A). As shown, all proteins had 
significantly higher abundances in preschoolers with asthma 
than healthy preschoolers, especially ANG, APOA1, and 
IGFALS (Figure 5B). Next, the six proteins were subjected 
to receiver operating characteristic curve (ROC) analysis 
to evaluate their sensitivity and specificity in discriminating 
asthmatic individuals from healthy children (Table 4). Some 
candidate proteins were able to diagnose asthma with an 
AUC value >0.8 in all-aged children and preschool children. 
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Table 3 The potential candidates protein biomarker of children asthma

Biomarkers
Relative abundance mean†

P value‡

Health Conva Asthma

IGFALS 2.44E+06 3.96E+06 4.96E+06 5.00E–03

APOA1 3.40E+07 5.23E+07 1.26E+08 1.90E–03

LTBP1 4.10E+04 6.75E+04 9.73E+04 9.10E–02

ANG 3.17E+05 4.57E+05 6.83E+05 2.50E–02

ABHD12B 2.23E+05 7.29E+05 5.72E+05 5.00E–03

MMP14 1.07E+04 1.94E+04 3.60E+04 4.40E–02
†, relative abundance is LC-MS/MS intensity; ‡, P value means Kruskal Wallis test P value. LC-MS/MS, liquid chromatography-tandem 
mass spectrometry.
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These proteins included IGFALS, APOA1, and LTBP1, 
suggesting their superior diagnostic value (Table 4). To 
construct an asthma diagnostic model, we performed two-
logistic regression analysis and ROC analysis for the six 
protein biomarkers. As a result, IGFALS was proposed as a 
biomarker for childhood asthma (Table 4). For the diagnosis 
of asthma in children (preschool- and school-aged children), 
the AUC of the IGFALS model was 0.882 with asymptotic 
significance of 0.001 (Table 4). Moreover, the AUC of the 
IGFALS model was 0.959 (asymptotic significance: 0.004) 
for preschool asthma prediction (Figure 5C and Table 4). In 
order to verify the reliability of the biomarkers, we used 
ELISA (enzyme-linked immunosorbent assay) to measure 
the contents of IGFALS, LTBP1 and APOA1 in the 
validation set samples. And ROC analysis was carried out. 
In results, the AUC of the IGFALS model of ELISA data 
was 0.897 (Figure 5D), indicating that this diagnostic model 
based on IGFALS was useful for our cohort and may have 
significant diagnostic potential for the diagnosis of asthma 
in preschool-aged children.

Discussion

Key findings

In our pilot study, we adopted the DIA-MS method to 
analyze the serum proteome signatures of children with 
acute and convalescent asthma. As a result, we identified 
50 DEPs that could clearly separate asthmatic and healthy 
subjects. Furthermore, MMP14, ABHD12B, PCYOX1, 
LTBP1, CFHR4, APOA1, IGHG4, ANG, and IGFALS 
proteins, which made major contributions to asthma 
discrimination, were identified and considered candidate 
diagnostic biomarkers. Ultimately, a promising preschooler 

asthma diagnostic model based on IGFALS was constructed.

Strengths and limitations

Given that the diagnosis of asthma in children remains 
challenging, effective stand-alone diagnostic tests are 
scarce (3,10,11). We built a diagnostic model for asthma in 
preschoolers based on IGFALS levels. The AUCs of the 
IGFALS model indicated that this diagnostic model worked 
well and may have significant potential diagnostic value 
for the diagnosis of asthma in preschoolers. IGFALS may 
have significant clinical application applications and may 
facilitate clinical decision-making in preschooler asthmatic 
patients.

However, several limitations still exist in our current 
study. Firstly, the number of samples enrolled in the current 
study is still limited. Only a small cohort of preschool 
children with asthma was included in this study. Secondly, 
the serum samples applied in our current study were 
collected at the single-time point. Thirdly, our current 
study was a single centre research, and all samples were 
collected from Chinese Han population, reproducibility and 
accuracy in other populations require further investigation.

Comparison with similar researches

MS-based proteomic approaches are widely used for disease 
biomarker discovery (27-29). With regard to asthma, several 
serum proteomic studies have been conducted (15,20,30,31), 
but none have adopted the DIA-MS strategy or focused 
on preschool aged asthma (15,20,30,31), but none have 
adopted the DIA-MS strategy or focused on preschool aged 
asthma. In other papers, 103 (15) and 217 (20) proteins 
were identified in the serum by isobaric tags for relative 

Table 4 The information of the two-logistic regression and the ROC analysis of biomarker candidates

Biomarkers
ROC (all age) ROC (preschool)

AUC 95% CI Asymptotic significance AUC 95% CI Asymptotic significance

IGFALS 0.882 0.746–1.000 0.001 0.959 0.864–1.000 0.004 

APOA1 0.835 0.684–0.987 0.114 0.918 0.772–1.000 0.350 

LTBP1 0.847 0.676–1.000 0.199 0.796 0.518–1.000 0.108 

ANG 0.794 0.581–1.000 0.496 0.816 0.533–1.000 0.784 

ABHD12B 0.788 0.614–0.962 0.655 0.694 0.377–1.000 0.125 

MMP14 0.671 0.465–0.876 0.052 0.837 0.618–1.000 0.267 

ROC, receiver operating characteristic curve; AUC, area under the curve; CI, confidence interval.
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and absolute quantitation (iTRAQ) (DDA-MS strategy) 
proteomics and 347 proteins were identified in plasma using 
a tandem mass tag (TMT) quantitative proteomics (DDA-
MS strategy) (31). Here, we performed DIA-MS proteomics 
and obtained the largest asthma serum proteome of 747 
proteins ever reported, reflecting the advantage of the DIA 
strategy over the DDA strategy in terms of the number of 
proteins identified.

Explanations of findings

Inf lammation and a irway remodel l ing,  the  main 
pathophysiological characteristics of asthma, result in 
immune system imbalance and airway hyperresponsiveness 
(1,2). Thus, asthma development is often accompanied 
by changes in inflammatory mediators, chemokines, and 
cytokines (32-34). In this study, 50 DEPs were identified 
between asthmatic and healthy individuals. The GO and 
KEGG enrichment analyses showed that these DEPs 
were significantly enriched in immune cell chemotaxis-
related GO terms and chemokine- and cytokine-related 
signal pathways, consistent with the asthmatic pathological 
characteristics and previous results (15,20,30,35). Among 
these DEPs, proteins involved in leukocyte chemotaxis or 
migration, such as PPBP, PF4, PF4V1, and THBS1, were 
upregulated in asthmatic patients, implying recruitment 
of certain leukocytes. The asthmatic children had higher 
neutrophil and eosinophil counts compared with healthy 
children, confirming the recruitment of leukocytes. 
Previous studies have suggested that neutrophil counts are 
associated with asthma exacerbations (36,37). Moreover, 
chemokines are related to neutrophilic and eosinophilic 
inflammation in asthmatic patients (38). Our results further 
confirmed the abovementioned conclusions and identified 
several biomarkers for childhood asthma, such as MMP14, 
ABHD12B, LTBP1, APOA1, IGHG4, ANG, and IGFALS.

Early studies have found the dominance of the IGHG2*n 
allele in childhood asthma and allergy patients (39,40). 
Another study showed a dose-based relationship between 
IGHG2*n and IgE sensitization as risk factors for IgE-
mediated asthma, while the opposite relationship was noted 
for non-IgE-mediated asthma (41). Moreover, Ooka et al. 
used unsupervised machine learning methods to synthesize 
clinical, viral, and serum proteome data to identify 
bronchiolitis endotypes in infants hospitalized for physician-
diagnosis of bronchiolitis and found that endotype 1 infants 
with high proportion of IgE sensitization and rotavirus 
(RV) infection also had dysregulated NFκB pathways 

and significantly higher risks for developing asthma and 
endotype 2 infants with low proportion of IgE sensitization 
and high proportion of respiratory syncytial viral (RSV) 
or RV infection had dysregulated tumor necrosis factor 
(TNF)-mediated signalling pathway and significantly higher 
risks for developing asthma (42). In this study, IGHG2 and 
IGHG4 showed increased abundance in both cohorts with 
acute and convalescent asthma, but had significantly lower 
levels in healthy controls. These results further confirm the 
importance of IGHG2 and IGHG4 in asthma.

Previous results suggest that APOA1, the major structural 
protein of high-density lipoproteins (43), modulates airflow 
obstruction and airway inflammation in asthma (44,45). 
Recent clinical studies showed that APOA1 was significantly 
differentially expressed in the bronchoalveolar lavage 
fluid and serum of asthmatic patients (46-48), consistent 
with our serum proteome findings. These results revealed 
the importance of APOA1 in the asthmatic pathological 
mechanism and displayed the potential role of APOA1 as a 
diagnostic biomarker.

TGF-β can induce multiple cellular responses, such as 
differentiation, apoptosis, survival, and proliferation, and 
is implicated in the development of asthma (49). LTBP1, 
which encodes a protein that maintains TGF-β in the latent 
extracellular matrix (ECM)-bound form, can regulate TGF-β 
activity (50). Therefore, LTBP1 may play important roles 
in asthma development. It has been shown that LTBP1 
is differentially expressed in asthma patients through 
transcriptome and real-time polymerase chain reaction (PCR) 
analysis (51,52). Our proteome analysis also found that LTBP1 
was significantly accumulated in the serum of asthmatic 
patients, which is consistent with the previous results.

In asthma, airway angiogenesis is a prerequisite for 
airway remodelling (53-55). The angiogenin (ANG) protein 
plays a critical role in angiogenesis (56). Our proteomics 
analysis found that ANG is a significant DEP between 
asthmatic and healthy children. Several previous studies 
have reported that ANG was differentially accumulated 
between asthmatic patients and healthy controls (57-59), 
indicating its biomarker potential for asthma diagnosis. The 
matrix metalloproteinase (MMP) family was demonstrated 
as having a critical role in airway remodeling and could also 
compromise lung function under certain circumstances (60). 
Our results suggest that the MMP14 abundance differed 
between asthmatic and healthy children, consistent with a 
previous report (61). Meanwhile, in a previous study, TNXB 
was found to differently accumulate between children with 
and without asthma (15). There have been few reports 
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regarding the role of ABHD12B in asthma, which requires 
further investigation.

IGFALS, a member of the IGF family associated with 
asthma pathogenesis. IGF family proteins such as IGF1 and 
IGF2 can promotes subepithelial fibrosis, inflammation, 
hyperresponsiveness, and smooth muscle cell hyperplasia in 
the airways (62). And the level of IGF1 could be decreased 
by anti-IgE antibody such as omalizumab (20). In this study, 
DEPs were significantly enriched the Regulation of IGFBPs 
pathway, and IGFALS was found highly expressed in 
asthma patients and being significantly positively correlated 
with the IgE level, suggesting that IGFALS may play a 
similar role as IGF1 or IGF2 in the pathogenesis of asthma, 
and its level could also be regulated by anti-IgE antibody. 
IGFALS has been reported as a serum biomarker of asthma 
in a previous study (15,20). We built a diagnostic model for 
asthma in preschoolers based on IGFALS, further indicating 
that IGFALS is a diagnostic biomarker for asthma.

Implications and actions needed

Future studies with a larger cohort would be required to 
verify the sensitivity and specificity of biomarkers such as 
IGFALS, LTBP1, and APOA1 in differentiating children 
with asthma from healthy controls. We follow up partial 
patients and will collect their plasma samples regularly 
in the next 2 years to obtain the correlation between the 
protein expression changes and the asthma progression. 
The reproducibility and accuracy of our results in other 
populations required further investigation.

Conclusions

In conclusion, we adopted the DIA-MS method to analyze 
the serum proteome signatures of children with acute and 
convalescent asthma. A total of 747 protein were identified 
in serum and 50 DEPs were found between asthmatic 
and healthy children. The GO and KEGG enrichment 
analyses showed that these DEPs were significantly 
enriched in immune cell chemotaxis-related GO terms and 
chemokine- and cytokine-related signal pathways, further 
confirming the central role of the inflammation-immune 
mechanisms in asthma pathogenesis. Several alternative 
asthma biomarkers, such as IMMP14, ABHD12B, LTBP1, 
APOA1, ANG, and IGFALS, were discovered in serum 
proteomes by statistical analysis. Ultimately, a preschooler 
asthma diagnostic model based on IGFALS was evaluated. 
We believe that the proteome results will provide insight 

into the pathophysiology of asthma, and the diagnostic 
model will facilitate clinical decision-making in preschooler 
asthmatic patients.
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