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Abstract

Research on brain disorders with a strong genetic component and complex heritability, such

as schizophrenia, has led to the development of brain transcriptomics. This field seeks to

gain a deeper understanding of gene expression, a key factor in exploring further research

issues. Our study focused on how genes are associated amongst each other. In this

perspective, we have developed a novel data-driven strategy for characterizing genetic

modules, i.e., clusters of strongly interacting genes. The aim was to uncover a pivotal com-

munity of genes linked to a target gene for schizophrenia. Our approach combined network

topological properties with information theory to highlight the presence of a pivotal commu-

nity, for a specific gene, and to simultaneously assess the information content of partitions

with the Shannon’s entropy based on betweenness. We analyzed the publicly available

BrainCloud dataset containing post-mortem gene expression data and focused on the

Dopamine D2 receptor, encoded by the DRD2 gene. We used four different community

detection algorithms to evaluate the consistence of our approach. A pivotal DRD2 commu-

nity emerged for all the procedures applied, with a considerable reduction in size, compared

to the initial network. The stability of the results was confirmed by a Dice index�80% within

a range of tested parameters. The detected community was also the most informative, as it

represented an optimization of the Shannon entropy. Lastly, we verified the strength of con-

nection of the DRD2 community, which was stronger than any other randomly selected

community and even more so than the Weighted Gene Co-expression Network Analysis

module, commonly considered the standard approach for such studies. This finding sub-

stantiates the conclusion that the detected community represents a more connected and

informative cluster of genes for the DRD2 community, and therefore better elucidates the

behavior of this module of strongly related DRD2 genes. Because this gene plays a relevant

role in Schizophrenia, this finding of a more specific DRD2 community will improve the

understanding of the genetic factors related with this disorder.
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Introduction

Converging evidence suggests that risk for complex heritable diseases is associated with several

interacting genes possibly merging in molecular modules or pathways [1], whose identification

is key to shed light on the biology of brain diseases. Gene co-expression implicates genetic

communities that may be relevant for schizophrenia [2–4]. However, it is crucial that the num-

ber of genes in these modules, also called communities of genes, should not be too large,

because modules comprising of hundreds of genes are often too populated to gain meaningful

biological insights [5]. In this regard, risk for schizophrenia is associated with common poly-

morphisms, each adding a small effect on the probability of illness. The fact that gene expres-

sion is co-regulated and pathways are likely co-expressed strongly influences the organization

of molecular pathways [6]. This may be also the case of schizophrenia genes and consequently

risk genes for this illness may be linked through co-expression pathways [7–9]. In this study,

we investigated brain-specific gene co-expression in a brain region crucially involved in

schizophrenia, i.e., the dorsolateral prefrontal cortex to detect molecular pathways of risk

genes. The DRD2 gene coding for the D2 dopamine receptor is an optimal candidate for inves-

tigating the genetic architecture of schizophrenia-related molecular pathways because of its

genome-wide association with diagnosis of this brain disorder and for its well established role

in its biological underpinnings [10]. Thus, we developed a novel approach to investigate in

healthy subjects a number of genes strongly linked with DRD2. The development and availabil-

ity of an increasing number of precision techniques to quantify gene transcription challenges

the field of molecular psychiatry. In this context, gene co-expression network analysis

addresses the need to formalize, include and manage all the information originating from

genetic data [11]. The rationale is to investigate a network whose edges are represented by cor-

relation measurements between gene expressions, with genes being the nodes of the graph

[12]. This approach integrates information related to multiple genes, rather than targeting sin-

gle candidate genes. Because genes interact with each other and are co-regulated by molecular

agents (e.g., transcription factors, miRNA), the investigation of gene co-expression networks

yieldss greater biological plausibility than single gene studies [13]. Several approaches have

been proposed to investigate gene co-expression networks. In particular, Weighted Gene Co-

expression Network Analysis (WGCNA) [14] can be considered as a strategy for this study.

WGCNA provides a network identification based on the similarity of genetic trascription-level

profiles across individuals by defining clusters of co-expressed genes. A strength of WGCNA

is that connections are graded, i.e., all genes are connected at variable degrees. This procedure

enhances the sensitivity to detect weak genetic links and takes also into account the scale-free

organization of known biological networks [15]. However, the clusters detected by WGCNA,

called gene modules, are only partially replicable across different datasets [16]. Consequently,

we proposed an unconventional application of hard threshold analysis. The standard use of

WGCNA implicates loss of information and sensitivity when implementing thresholding [17].

Our main goal therefore was to detect a pivotal gene community, beginning with a WGCNA

study conducted in a previous work [18] where a DRD2 co-expression module was found. We

developed additional analyses based on the study of topological properties of the detected com-

munity and its information content. For this purpose, we compared and tested our proposed

method on four different community detection algorithms: Fasts Greedy, Louvain, InfoMap,

Walktrap. We aimed to demonstrate that the community found using our methodology was a

pivotal gene community and it emerged consistently when we applied different community

detection algorithms. This community could represent a more accurate model of the co-

expression interactions of the DRD2 gene relative to the WGCNA module we previously

investigated.
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1 Materials and methods

The publicly available BrainCloud dataset [19] was employed to extract gene expression data,

focusing on the dopamine D2 receptor. This dataset was developed through a collaboration

between the Lieber Institute for Brain Development and the National Institute for Mental

Health (NIMH) and contains the post-mortem gene expression data of 268 subjects without

neuropathological or neuropsychiatric diagnosis. We only selected observations with RNA

integrity numbers (RIN) greater than 7.0 owing to the higher quality of the tissue sample [20].

Furthermore, Caucasian and African American subjects were included in the final sample

because of the low number of observations in the Hispanic and Asian groups. The final dataset

included 199 subjects with a mean age of 32 ± 20 years (range: 0–77 years). The meta-data for

each subject are available in BrainCloud and include demographic variables such as age, sex

and ethnicity, as well as sample quality features (RIN, pH, post-mortem interval). The novel

methodological pipeline implemented consists of seven main steps, as summarized in Fig 1,

which are to: (1) identify a WGCNA module including a target gene; (2) apply correlation

measures to define the network of co-expressed genes; (3) study the topological properties of

the network; (4) implement four community detection methods to study the structure of the

community detected; (5) summarize the topological properties of the detected community in a

new composite index—the Pivotal Module Index—that identifies a strategic and cohesive

community for the target gene; (6) use the information theory applied to the hard threshold

analysis to compute the informativeness of the community structure and confirm the findings

of the topological analysis; and, lastly, (7) detect a pivotal community for the target gene and

confirm its stability.

Fig 1. Flowchart of the methodology. After the identification of a WGCNA community with a target gene, correlation measures have been applied to

build a co-expression gene network. The combined study of the network’s topological properties with information entropy, through a threshold analysis,

led to the detection of a pivotal community for the target gene.

https://doi.org/10.1371/journal.pone.0190110.g001
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1.1 Identifying a WGCNA module and target gene

This step of our methodology refers to a previous work in which we used the WGCNA to

investigate a dataset of 23,636 genes and characterize the co-expression network, including the

long isoform of DRD2 (i.e., D2L) [18]. The transcriptomic context of this gene was studied in

order to translate the genetic variation of the DRD2 community into imaging and clinical phe-

notypes. We found 84 genes that clustered with DRD2 in a module enriched for DNA packag-

ing, and involved in the regulation of dopamine secretion, and also in schizophrenia risk.

1.2 Correlation measures for a network of co-expressed genes

We implemented a hard threshold analysis on the module defined by WGCNA, containing

the DRD2 gene, to further specify the co-expression network [21]. In this way we applied

WGCNA to obtain a first coarse clustering and then combined it with a deep characterization

of the module of interest through the use of hard thresholding.

Starting from the 85 gene expressions xi, i = 1, . . ., 85, and the 199 subjects selected, we

measured the absolute value of Pearson’s pairwise correlations sij to define the network of co-

expressed genes [22]:

sij ¼ jcorðxi; xjÞj: ð1Þ

We did not considered the sign of the correlation since we focused on the strength of the rela-

tionship between the pairs of genes, while we were not interested in the direction of such rela-

tionship [15]. Hence, we obtained ‘adjacency matrix A’, where each elements aij = f(sij) is a

function of the correlation measurements and measures the weight of the connection between

two nodes of the network. This matrix formally represents the weighted graph and it is usually

elaborated by applying two different thresholding methods: the soft thresholding, which is

based on a power of the sij and the hard thresholding, based on the following matrix formula:

aij ¼ signumðsij; tÞ ¼
1 if sij � t

0 if sij < t

8
<

:
ð2Þ

where t is the threshold value.

In this step of analysis we wished to emphasize that we had already exploited soft thresh-

olding procedures, given that our initial network is a WGCNA module. Consequently, we

investigated the possibility to further fractionating the WGCNA module by means of a hard

threshold analysis.

1.3 Topological properties of the network

To select the best threshold value, we studied the trend of the main network’s topological prop-

erties while uniformly varying the t threshold. The intrinsic hypothesis is that a varying thresh-

old for pairwise correlations can be used to highlight the existence of network communities

that persist for different thresholds as well. Because the presence of a community structure

affects the network properties, we expect this type of organization to clearly emerges while

exploring a wide range of thresholds. Several topological properties have been investigated,

namely: degree, betweenness, diameter, eccentricity and length of detected community.

Briefly, the degree, ki, identifies the amount of connections that the node i has in comparison

to all other nodes in the network j, with j = 1, . . ., N and it is defined as follows:

ki ¼
X

j2N

aij; ð3Þ
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where aij are the elements of the adjacency matrix, A. The aij elements have binary or continu-

ous values for either a soft or a hard threshold, respectively, depending on the nature of the

adjacency matrix. In the first case, also known as weighted networks, this quantity is called

‘strength’. For each node i, it represents the sum of the weights extended to the node-con-

nected neighbors and indicates the overall strength of the node connectivity. Betweenness, bi,
is another centrality measure that evaluates the role of the node in connecting each other cou-

ple of genes. Thus, it emphasizes the pathway of the considered node with respect to all possi-

ble pathways in the entire network:

bi ¼
X

j;k2N;j6¼k

njkðiÞ
njk

ð4Þ

In this equation njk represents the number of geodesics between node j and k, while njk(i)
is the number of geodesics between the same genes, passing through node i. A geodesic

between two nodes j and k is defined to be the shortest path connecting a node j with a node

k. Given that betweenness takes into account the level of criticality in connecting alternating

pairs of nodes in the network, it can present a global view of the complex networks structure.

Furthermore, we examined the diameter property D, which is the maximum geodesic of a

graph. This can be considered the size measure of the graph itself. Another property we

explored was eccentricity. For each node i, the eccentricity is defined as the maximum geode-

sic starting from node i. Accordingly, this can be considered a geometrical alternative mea-

sure of centrality. The last important property in community detection is the length of the

detected community, i.e., the number of nodes belonging to the community. Hence, modules

comprising hundreds of genes might be too general to gain biological insight, while modules

with few genes typically lose the meaning of community. All these properties, with the excep-

tion of diameter, which is already a global network property, were considered on average to

characterize the network behavior.

1.4 Module structure: Four community detection methods

To the WGCNA network identified we applied a representative set of four community detec-

tion algorithms most used in the literature; i.e., Fast Greedy, Louvain, Walktrap, and Info-

Map. These algorithms have been thoroughly described in a previous work [23]. In brief,

they differ on the basis of the qualitative definition of the community they adopt [24]. More

specifically, these algorithms differ on the process that allows the estimation of the commu-

nity structure and the measure used to quantify this clusterization as modularity, similarity

or mutual information. Modularity is based on the number of intra-community and inter-

community links [25–29]. It measures the quality of the partition, meaning that there are

many edges within the communities and only a few between different communities [30].

Fast Greedy and Louvain are two modularity optimization algorithms, that differ in the per-

formance of optimization. Fast Greedy [23] is based on greedy optimization, while Louvain

achieves a community aggregation step that improves the performance on large networks

[31]. The Walktrap algorithm exploits node similarity measures. The measure quantifies a

community as an array of elements that are similar to each other, but dissimilar from the

other nodes of the network. In particular Walktrap is a hierarchical agglomerative clustering

method that computes similarity based on random walks [32]. The InfoMap algorithm [33]

is based on Shannon’s source coding theorem [34] and it relies on the measure of mutual

information. This measure quantifies how much we learn about a node, i.e. A, if we know

another node B, and viceversa [35].

A complex network approach reveals a pivotal gene community relevant to schizophrenia

PLOS ONE | https://doi.org/10.1371/journal.pone.0190110 January 5, 2018 5 / 18

https://doi.org/10.1371/journal.pone.0190110


1.5 Novel network substructure metric: Pivotal Module Index

By implementing the set of four community detection algorithms mentioned above, we

obtained different community structures for varying threshold values. We used a novel com-

posite index to highlight the presence of a pivotal community. Betweenness, degree, diameter

and length of the detected community were adopted as the most relevant properties to con-

struct this topological index. The new PMI points out the presence of essential nodes. In par-

ticular, high degree and betweenness highlight the presence of intense and strategical link

connections, respectively. Fairly small diameter supports the cohesiveness community. At the

same time, by definition, the PMI supports the cohesive community. Consequently, it reveals

the presence of a pivotal community for strategical impact and more cohesiveness within

genes. The PMI was defined as following:

PMI ¼
ktc � btc
Dtc � Ntc

ð5Þ

where, ktc, btc, Dtc, Ntc are the degree, betweenness, diameter and number of nodes of the tar-

get gene community, respectively. To estimate the statistical error associated with the PMI

we implemented a bootstrap procedure [36]. According to this method, a set of data is ran-

domly resampled numerous times with replacement. Thereafter, the statistical indicators,

e.g. standard error or the confidence interval, are evaluated based on these new samples [37].

The data sample with 199 subjects was resampled 1000 times, and then the evaluation of the

PMI was repeated. For each threshold value, a statistical distribution of the PMI was thereby

obtained with 1000 estimations of PMIs. In the present analysis, we used the range between

the 25th and 75th percentiles of this distribution as the statistical error estimates of the index.

We then studied the community identified by means of the PMI using two independent

approaches: Information Theory in order to evaluate if the pivotal detected community was

also the most informative possible, and Dice Index to assess the stability of the detected co-

expression community.

1.6 Information entropy based on betweenness

Information entropy can measure the mean information contained in a data sample, as for

example in a time series or in an image [34]. Defined as, A = {a1, a2, a3, . . ., an} a discrete ran-

dom variable with probability mass function P(A), the information entropy is calculated using

the following formula:

HðAÞ ¼ �
Xn

i¼1

PðaiÞlog2PðaiÞ ð6Þ

Information entropy is an important index to describe the structure of a complex network [38]

and can be used to determine the number of clusters in a data set [39, 40]. In this investigation,

we used a method that evaluates the information entropy based on betweenness. There is a

plethora of literature (see for example [41–43]) on the importance of betweenness for graph

characterization. The novelty of this approach resides in the emphasis given to the information

based on strategic power, as expressed by betweenness values. There is an extremely strong

correlation between entropy per node and betweenness of the node. In particular, if we ran-

domly choose two nodes of the network that present high betweeneess, they will have a high

probability of occurring on the same shortest path. Hence, these nodes will contribute signifi-

cantly to entropy production [44]. For a complex network with N nodes the entropy based on
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betweenness is defined as follow:

Hbet ¼ �
XN

i¼1

bðiÞlog2½bðiÞ� ð7Þ

where b(i) is the betweenness of i-th node defined by Eq 4. To make information content inde-

pendent of module size, the information entropy of a network or a community was divided by

the number of nodes of the network or community, respectively:

Hbet ¼
Hbet

Ntc
ð8Þ

A system with maximum entropy is a system with maximum information content [45]. Accord-

ingly, an optimal community will be characterized by a high informational entropy value.

1.7 Pivotal community for the target gene and its stability

1.7.1 Dice index. A pivotal DRD2 community was later detected during our analysis, and

in step 7 of the pipeline we confirmed the stability of our results using the Dice index. This

index is a statistic measure used for comparing the similarity of two samples [46]. Considering

two sets A and B, Dice index quantifies the overlap between them. It is defined as:

Dice ¼
2 � j ðA \ BÞ j
j A j þ j B j

ð9Þ

where \ is the intersection. The Dice index changes in a restricted range of values [0, 1]. In

this work, we used Dice index to measure the overlap between different communities. A Dice

index equal to 1, computed on two communities, means that they are exactly the same. Con-

versely, a Dice Index equal to 0 indicates that they have no elements in common. We used the

index for two purposes:

1. to compare results obtained through four community detection methods described in sec-

tion 1.4;

2. to verify the stability of detected gene community.

For the point 1. Dice was computed using the DRD2 community, founded by the Fast

Greedy method, as the reference one, and the other three implemented community detection

techniques. For the second point, if we analyze a community over different condition, e.g.

varying threshold values, and verify high index values, we can assert that the selected commu-

nity is stable against the choice of threshold. Once the best threshold T is selected, we com-

puted:

Dicei ¼
2 � j ðCT \ CiÞ j

j CT j þ j Ci j
ð10Þ

where CT is the gene community of DRD2 found for the best threshold chosen, and Ci is the

gene community of DRD2which emerged for different threshold values belonging to the

neighborhood T.

1.7.2 Strength of the detected community. After validating the information content and

the stability of the detected community, we measured the embeddedness of the DRD2 gene in

its community. In other words, we set out to verify if DRD2 is more connected in selected com-

munities than in an entire network or in a random module. Strength, as a graph property, has

been defined in section 1.3. The strength of DRD2 is a natural property for investigating the
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relationship between neighboring DRD2 genes. We compared the strength of DRD2 for the

resulting WGCNA module with the strength of DRD2 for the detected community. We also

calculated the strength for 1000 random repetitions of the DRD2 community. The strength val-

ues were divided by the number of community nodes.

2 Results and discussion

2.1 Identifying a WGCNA module and target gene

Fig 2 shows a dendrogram of 67 modules found by means of the WGCNA algorithm. The

DRD2 gene is contained in the maroon module computed in a previous work on the Brain-

Cloud dataset [18].

2.2 Correlation measures for a network of co-expressed genes

Fig 3 illustrates the adjacency matrix of the maroon module after applying the correlation

metric.

Fig 2. Dendrogram of the network with defined module colors. This dendrogram was obtained by average linkage

hierarchical clustering. The color spectrum underneath the dendrogram indicates the module assignment determined by

the Dynamic Tree Cut. The DRD2 gene is contained in the maroon module. Almost 3000 genes are isolated (grey module).

https://doi.org/10.1371/journal.pone.0190110.g002
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2.3 Topological properties of the network

Fig 4 represents four varying network properties (see 1.3) at different threshold values. The

network reveals an interesting tendency in a limitated threshold ranges (between 0.4 and

0.55) in which three topological properties of the network are maximized. For lower thresh-

old values we observe only monotonic trends due to the reduction in the number of links

and it is reasonable to assume noisy relationships until the detected range. On the contrary

for higher correlations the loss of information is too much, in fact, all the properties tend

towards zero. This range was chosen to search for a smaller and stable community including

the DRD2 gene.

Fig 3. Adjacency matrix of the maroon module. This matrix illustrates the similarity between gene expressions using the correlation matrix.

Color gradient indicates the strength of the connections between genes.

https://doi.org/10.1371/journal.pone.0190110.g003
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2.4 PMI and community detection methods

By definition, high PMI values correspond to the presence of pivotal communities. We plotted

the PMI, Fig 5, for several threshold values to obtain a distribution that indicates the thresholds

at which the most strategic and cohesive communities could be found. The PMI was computed

on the DRD2 communities. Fig 5 displays the PMI used for the different community detection

methods as a function of threshold in the previously selected range. We only plotted modules

that contained at least three genes, thus preserving the concept of community, which was

adopted in other community detection studies as the international DREAM challenge (https://

www.synapse.org/#!Synapse:syn6156761/wiki/).

Fig 4. Trend of the main topological properties of the network. The vertical lines highlight an optimal range of

threshold values between 0.40 and 0.55 in which three of the four network properties are maximized. For visual clarity,

threshold values in which the topological properties are not significant have been omitted.

https://doi.org/10.1371/journal.pone.0190110.g004

Fig 5. Pivotal Module Index, as a function of threshold. Pivotal Module Index as a function of threshold in the

optimal range of the network topological properties obtained using four different community detection methods.

Statistical errors were estimated by means of the bootstrap procedure.

https://doi.org/10.1371/journal.pone.0190110.g005
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The distributions displayed in Fig 5 present a local or absolute maximum value equal to

0.45 that appears to be a good choice for the threshold. According to the definition of the PMI,

this implies that the structures of DRD2 communities detected using the four different meth-

ods are approximately the same. Table 1 highlights the results obtained for DRD2 community

with a threshold value equal to 0.45 by means of the selected detection methods. The perfor-

mance of each algorithm was expressed in terms of Dice index. According to PMI distributions

and the Dice index values, always greater or equal to 0.88, we inferred that the methods applied

are consistent amongst each other. This led us to surmise that the DRD2 community detected

by these algorithms was a pivotal community of the network and it existed and emerged irre-

spectively of the algorithms implemented. Moreover, Fig 6 displays the average PMI distribu-

tion of the four community detection methods fitted with a linear model. For the linear

function estimated, the χ2 goodness-of-fit test implemented presents a p-value that rejects the

null hypothesis at 5% level. The blue area represents 95% confidence intervals for the fitted

function. The distribution index for a threshold value equal to 0.45 appears significantly higher

than the linear fit. This means that a threshold value equal to 0.45 clearly outperforms all the

possible thresholds in determining a preferred community. List of genes obtained through the

four different community detection algorithms at threshold value 0.45 is given in the S1 Table.

A strong overlap between all these methods emerges, as we reported in Table 1 with the Dice

analysis. Therefore, for the sake of simplicity, hereafter we will use the Fast Greedy method to

define the DRD2 community. The community includes gene-gene pairs for which indepen-

dent evidence of co-expression and gene interactions in literature has been reported, see

Table 1. Results of the DRD2 community obtained using four community detection algorithms. The number of

genes for the DRD2 community found applying four different community detection algorithms at the selected thresh-

old. The index values next to 1 suggest that the four algorithms are consistent amongst each other and the communities

found are similar. Statistical errors were estimated by means of the bootstrap procedure.

Methods number of genes Dice

Fast Greedy 28 ± 4 1

Louvain 22 ± 4 0:880þ0:010

� 0:020

InfoMap 30 ± 6 0:966þ0:034

� 0:026

Walktrap 27 ± 6 0:981þ0:01

� 0:04

https://doi.org/10.1371/journal.pone.0190110.t001

Fig 6. Average PMI distribution. Average Pivotal Module Index (PMI) distribution for the four community detection

methods fitted with a linear model. The blue area represents 95% confidence intervals for the fitted function. Statistical errors

were estimated by means of the bootstrap procedure. In the top right corner the reduced χ2 and fit parameters are been shown.

https://doi.org/10.1371/journal.pone.0190110.g006
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S2 Table. Moreover, we investigated the presence of hub genes in the new detected community

with respect to the original network. For the whole network, we considered as hub gene all the

genes that have a scaled strength greater than 0.70. The scaled strength is the strength of the

genes divided by the maximum value of strength in the network. Table 2 reports the hub genes

of the whole network and the overlap with the list of genes of the detected community: 70% of

the hub genes in the original module belong to the new DRD2 community.

The detected pivotal community for the threshold value equal to 0.45 will be analyzed with

an information theory procedure in the following section.

2.5 Information entropy based on betweenness

Entropy distribution, as a function of the threshold for the entire network (panel A) and for

the DRD2 community (panel B), is presented in Fig 7. DRD2 communities were computed

using Fast Greedy algorithm. The distributions for both the network and the DRD2 commu-

nity present a maximum threshold value equal to 0.45. Therefore, the more cohesive and stra-

tegic community of DRD2, identified in the previous section, is also the community with the

highest informative significance. Hence, the selection of the threshold value equal to 0.45 is

confirmed.

2.6 Pivotal community for the target gene and its stability

The DRD2 community found in section 2.4 composed by 28 genes represents a consistent

reduction of gene content in the WGCNA module (�70%) and in the original BrainCloud

dataset (>99%). Since we evaluated that the informativeness was maximized for this module,

as for the network, we deduced that this wide reduction enhanced the biological insight within

DRD2 community. In [18] the functional enrichment of the original WGCNA module of 85

genes has been computed. Here, for the new detected community we are aware that a number

of 28 genes probably represents a small set in which we are unlikely to identify more than a

handful hits for each ontology. In fact, none of the functional labels identified survives Bonfer-

roni correction. Nevertheless, the gene ontology “negative regulation of dopamine secretion”

approaches significance with corrected p-value = 0.06.

Next, we verified the stability of the DRD2 community of 28 genes.

Table 2. Hub genes list of the whole network. The hub genes of the original module [18]. The first column reports the probe name in BrainCloud. The second column

reports the corresponding gene name. The third column contains the strength of hub genes. The fourth column reports the strength of hub genes divided by the maximum

value of strength. Colored rows indicate the overlap with the list of genes of detected DRD2 community.

OligoID Gene Strength scaled strength

hHA034464 IGSF1 3.240 1

hHA034560 TTN 2.907 0.897

hHC022740 CLDN4 2.853 0.881

hHA039264 GATAD2A 2.819 0.870

hHA033312 CHIA 2.590 0.799

hHC025044 SDK2 2.494 0.770

hHR025236 OR2S2 2.467 0.761

hHA039456 NEURL4 2.436 0.752

hHR028896 DEFB108B 2.415 0.745

hHA034272 MAP4 2.290 0.707

https://doi.org/10.1371/journal.pone.0190110.t002
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2.7 Stability of the chosen community using the Dice index

We computed the Dice index (Eq 10), where T = 0.45 and i is a threshold value between 0.3

and 0.6 to evaluate the stability of the DRD2 community. Fig 8 displays the Dice index com-

puted in relation to the DRD2 community obtained with a threshold value equal to 0.45.

Moreover, the statistical errors were estimated using the bootstrap procedure with 1000

resamplings.

The stability of the community Dice distribution in the evaluated range highlights the exis-

tence of a robust core component of genes within the target community.

Fig 7. Betweenness entropy as a function of threshold. Information entropy based on betweenness as a function of

threshold for the network (panel A) and for the DRD2 community (panel B). Both distributions present a maximum

threshold value equal to 0.45.

https://doi.org/10.1371/journal.pone.0190110.g007

Fig 8. Dice index for the DRD2 community. The Dice index as a function of threshold calculated in relation to the

DRD2 community obtained with a threshold value equal to 0.45. The statistical errors were estimated by means of the

bootstrap procedure.

https://doi.org/10.1371/journal.pone.0190110.g008
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The DRD2 community was seemingly composed of about the same genes and its composi-

tion remained stable at different threshold values. The detected community remained

unchanged and performed a stability of more than 80% in the neighborhood, despite the dif-

ferent community lengths for different threshold points.

2.8 Strength of the detected community

In this section we applied the procedure described in section 1.7.2. Every random module

was composed by DRD2with 27 randomly chosen genes. Table 3 reports the results of the

strength of DRD2 per node for the whole network for the DRD2 community selected and

for the 1000 randomly selected DRD2 communities. DRD2was significantly more connected

in the detected community by comparison with the random communities or the resulting

WGCNA module.

2.9 Discussion

In the present work, we aimed to delineate a novel community detection method that

improved the performance of WGCNA to demonstrate that the community found with the

proposed approach was stable with a moderate number of genes. In fact, we supported the

notion that the DRD2-detected community using four different community detection algo-

rithms. Our approach detected a stable DRD2 community that represented a consistent reduc-

tion of genes when compared with the WGCNA module (�70%) and the original BrainCloud

dataset (>99%). To assess the robustness of the methodology from two distinct perspectives,

we adopted: (i) a new topological index—the PMI—that highlights the presence of a pivotal

community; and (ii) the information entropy based on betweenness to ensure the detected

community was informative. The identified DRD2 community exhibited the same structure

for all the set of community detection algorithms applied. Once we made certain the commu-

nity was meaningful, we assessed the stability of the results with Dice index to confirm that the

pivotal community remained stable for all the neighborhood points. We verified that the

detected community still remained unchanged and gained a stability performance of more

than 80% in a neighborhood of tested thresholds. Finally, we aimed to compare the detected

community with other possible partitions. Consequently, we determined that DRD2was more

strongly related to his neighborhood in the pivotal community compared with the WGCNA

module and lastly with a distribution of randomly selected communities by evaluating the rela-

tive community strength. Furthermore, the DRD2 gene appeared to be more connected in the

detected pivotal community with respect to the other communities analyzed. According to the

Information Theory this stable community was also the most informative. The new detected

community includes 70% of the hub genes participating in the original module. We inter-

preted this finding as evidence that we filtered out poorly informative genes. One limitation of

the WGCNA approach is that it is not always accurate in detailing the module of genes effec-

tively; small gene communities may in some cases be included into larger modules, leading to

a loss of granularity in the information content of the modules [47]. Since our method mainly

Table 3. Results of the strength of DRD2. Strength of DRD2 per node for the entire network, the DRD2 community

selected and for the 1000 randomly selected DRD2 communities.

Module Strength

Whole network 0.34

Detected DRD2 community 0.41

Random sample 0.33 ± 0.01

https://doi.org/10.1371/journal.pone.0190110.t003
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focused on informative genes, it overcomes the previous mentioned limitation. The module

size reduction is crucial in biological systems because it supports the gain of physiological

insight. Enrichment analysis in the detected pivotal community does not reveal further insight

into the biological significance of this community, likely because the number of genes, and

thus the number of hits we could obtain, is very limited. The detected community could help

to understand the mechanisms of several psychiatric disorders, such as Schizophrenia. For

example, it is notable that the community we investigated here further supports the strong

relationship between DRD2 and the CNR1 gene coding for the cannabinoid receptor CB1. Pre-

vious evidence of interaction between these two receptors and the genes coding for them has

been related with cannabis use and with intermediate phenotypes of schizophrenia [48, 49].

This link is relevant also because cannabis use is a relevant environmental risk factor for

schizophrenia [50], and DRD2 genetic variation represents a genetic risk factor for the same

disorder [51]. Therefore, our study extends the current literature by suggesting that these two

genes are part of a co-expressed, and thus possibly co-regulated, biological pathway relevant to

substance abuse and to schizophrenia. Clearly, a clinical validation is fundamental to under-

stand whether the detected DRD2 community carries a biological meaning. In this sense, a

possibility could be the study of intermediate phenotypes.

3 Conclusions

In this paper we designed a data-driven method based on complex network analyses and suc-

cessfully detected a pivotal community for DRD2, a relevant gene linked to Schizophrenia.

Beginning with a common network analysis output, based on the well-known Weighted Gene

Co-expression Network Analysis, we adopted the proposed strategy and found a cluster of

genes that appears cohesive, informative and stable, tested by several different approaches:

topological measures, Shannon entropy based on betweeneess, and bootstrap procedure.

These results suggested the possibility of exploiting the topological properties and the informa-

tion theory of a graph to reduce the complexity of the gene co-expression networks and focus

on gene communities. These communities should be more strategic, high connected and

informative, with a reduced number of expressed genes to handle and a stronger noise-free sig-

nal. Our research could be further developed according to this line of reasoning, most notably

by continuing the biological validation of gene communities and investigating their relevance

at the level of neuronal function, brain networks and behavior linked with brain disorders

[52].

Supporting information

S1 Table. List of genes obtained through four different community detection algorithms.

(PDF)

S2 Table. Indipendent evidence for gene-gene pairs of co-expression and genetic interac-

tions in literature.

(PDF)

Acknowledgments

This research has been partly funded by the “Capitale Umano ad Alta Qualificazione” grant

awarded by Fondazione Con Il Sud (2011-PDR-06) to Alessandro Bertolino, and by a Hoff-

mann-La Roche collaboration grant titled “Gene co-expression networks as roadmap for geno-

type to phenotype mapping in schizophrenia” awarded to Giulio Pergola. This project has

received funding from the European Union Seventh Framework Programme for research,

A complex network approach reveals a pivotal gene community relevant to schizophrenia

PLOS ONE | https://doi.org/10.1371/journal.pone.0190110 January 5, 2018 15 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190110.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190110.s002
https://doi.org/10.1371/journal.pone.0190110


technological development and demonstration under grant agreement no. 602450. This paper

reflects only the author’s views and the European Union is not liable for any use that may be

made of the information contained therein.

Author Contributions

Conceptualization: Alfonso Monaco, Anna Monda, Nicola Amoroso, Alessandro Bertolino,

Giuseppe Blasi, Pasquale Di Carlo, Marco Papalino, Giulio Pergola, Sabina Tangaro,

Roberto Bellotti.

Formal analysis: Alfonso Monaco, Anna Monda.

Methodology: Alfonso Monaco, Anna Monda.

Project administration: Alessandro Bertolino, Roberto Bellotti.

Software: Alfonso Monaco, Anna Monda.

Supervision: Alessandro Bertolino, Roberto Bellotti.

Validation: Alfonso Monaco, Anna Monda.

Writing – original draft: Alfonso Monaco, Anna Monda.

Writing – review & editing: Alfonso Monaco, Anna Monda, Nicola Amoroso, Alessandro

Bertolino, Giuseppe Blasi, Pasquale Di Carlo, Marco Papalino, Giulio Pergola, Sabina Tan-

garo, Roberto Bellotti.

References
1. Mitra K, Carvunis AR, Ramesh SK, Ideker T. Integrative approaches for finding modular structure in bio-

logical networks. Nature Reviews Genetics. 2013; 14(10): 719–732. https://doi.org/10.1038/nrg3552

PMID: 24045689

2. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. Gene expression

elucidates functional impact of polygenic risk for schizophrenia. Nature Neuroscience. 2016; 19(11):

1442–1453. https://doi.org/10.1038/nn.4399 PMID: 27668389

3. Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the mat-

ter of their convergence. Molecular Psychiatry. 2005; 10: 40–68. https://doi.org/10.1038/sj.mp.4001630

PMID: 15263907

4. Insel TR. The NIMH Research Domain Criteria (RDoC) Project: precision medicine for psychiatry. The

American Journal Psychiatry. 2014; 171: 395–397. https://doi.org/10.1176/appi.ajp.2014.14020138

5. Sieberts SK, Schadt EE. Moving toward a system genetics view of disease. Mammalian Genome.

2007; 18(6–7): 389–401. https://doi.org/10.1007/s00335-007-9040-6 PMID: 17653589

6. Gaiteri C, Ding Y, French B, Tseng GC, Sibille E. Beyond modules and hubs: the potential of gene co-

expression networks for investigating molecular mechanisms of complex brain disorders. Genes Brain

Behavior. 2014; 13: 13–24. https://doi.org/10.1111/gbb.12106

7. Hauberg ME, Roussos P, Grove J, Borglum AD, Mattheisen M. Analyzing the role of microRNAs in

schizophrenia in the context of common genetic risk variants. JAMA Psychiatry. 2016; 73: 369–377.

https://doi.org/10.1001/jamapsychiatry.2015.3018 PMID: 26963595

8. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expres-

sion patterns. Proceeding of National Academy Sciences USA. 1998; 95: 14863–14868. https://doi.org/

10.1073/pnas.95.25.14863

9. Ramani AK, Li Z, Hart GT, Carlson MW, Boutz DR, Marcotte EM. A map of human protein interactions

derived from co-expression of human mRNAs and their orthologs. Molecular System Biology.2008; 4:

180. https://doi.org/10.1038/msb.2008.19

10. Abi-Dargham A. Schizophrenia: overview and dopamine dysfunction. Journal of Clinical Psychiatry.

2014; 75, e31. https://doi.org/10.4088/JCP.13078tx2c PMID: 25470107

11. Horvath S, Dong J. Geometric interpretation of gene co-expression network analysis. PLoS Computa-

tional Biolology. 2008; 4(8):e1000117. https://doi.org/10.1371/journal.pcbi.1000117

12. Wilson RJ. Introduction to Graph theory. 4th ed. Addison Wesley, Longman; 1996.

A complex network approach reveals a pivotal gene community relevant to schizophrenia

PLOS ONE | https://doi.org/10.1371/journal.pone.0190110 January 5, 2018 16 / 18

https://doi.org/10.1038/nrg3552
http://www.ncbi.nlm.nih.gov/pubmed/24045689
https://doi.org/10.1038/nn.4399
http://www.ncbi.nlm.nih.gov/pubmed/27668389
https://doi.org/10.1038/sj.mp.4001630
http://www.ncbi.nlm.nih.gov/pubmed/15263907
https://doi.org/10.1176/appi.ajp.2014.14020138
https://doi.org/10.1007/s00335-007-9040-6
http://www.ncbi.nlm.nih.gov/pubmed/17653589
https://doi.org/10.1111/gbb.12106
https://doi.org/10.1001/jamapsychiatry.2015.3018
http://www.ncbi.nlm.nih.gov/pubmed/26963595
https://doi.org/10.1073/pnas.95.25.14863
https://doi.org/10.1073/pnas.95.25.14863
https://doi.org/10.1038/msb.2008.19
https://doi.org/10.4088/JCP.13078tx2c
http://www.ncbi.nlm.nih.gov/pubmed/25470107
https://doi.org/10.1371/journal.pcbi.1000117
https://doi.org/10.1371/journal.pone.0190110


13. Aittokallio T, Kurki M, Nevalainen O, Nikula T, West A, Lahesmaa R. Computational strategies for ana-

lyzing data in gene expression microarray experiments. Journal of Bioinformatics and Computational

Biology. 2003; 1(03): 541–586. https://doi.org/10.1142/S0219720003000319 PMID: 15290769

14. Langfelder P, Horvath S. Wgcna: an R package for weighted correlation network analysis. BMC bioin-

formatics. 2008; 9(1):1. https://doi.org/10.1186/1471-2105-9-559

15. Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Statistical

Applications in Genetics and Molecular Biology. 2005; 4:Article17. https://doi.org/10.2202/1544-6115.

1128 PMID: 16646834

16. Freytag S, Gagnon-Bartsch J, Speed TP, Bahlo M. Systematic noise degrades gene co-expression sig-

nals but can be corrected. BMC Bioinformatics. 2015; 16:309. https://doi.org/10.1186/s12859-015-

0745-3 PMID: 26403471

17. Carter SL, Brechbühler CM, Griffin M, Bond AT. Gene co-expression network topology provides a

framework for molecular characterization of cellular state. Bioinformatics. 2004; 20(14): 2242–2250.

https://doi.org/10.1093/bioinformatics/bth234 PMID: 15130938

18. Pergola G, Di Carlo P, D’Ambrosio E, Gelao B, Fazio L, Papalino M, et al. DRD2 co-expression

network and a related polygenic index predict imaging, behavioral and clinical phenotypes linked to

schizophrenia. Translational Psychiatry. 2017; 7(1):e1006. https://doi.org/10.1038/tp.2016.253 PMID:

28094815

19. Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT, et al. Temporal dynamics and genetic control

of transcription in the human prefrontal cortex. Nature. 2011; 478(7370): 519–523. https://doi.org/10.

1038/nature10524 PMID: 22031444

20. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, et al. The RIN: an RNA integ-

rity number for assigning integrity values to RNA measurements. BMC Molecular Biology. 2006; 7:3.

https://doi.org/10.1186/1471-2199-7-3 PMID: 16448564

21. Monda A, Amoroso N, Altomare Basile TM, Bellotti R, Bertolino A, Blasi G, et al. Topological complex

networks properties for gene community detection strategy: DRD2 case study. Emergent Complexity

from Nonlinearity, in Physics, Engineering and the Life Sciences, Proceedings of the XXIII International

Conference on Nonlinear Dynamics of Electronic Systems, Como, Italy, 7–11 September 2015;

Springer Proceedings in Physics Vol.191, Springer International Publishing. 2017;

22. Spitz A, Gimmler A, Stoeck T, Zweig KA, Horvat EA. Assessing Low-Intensity Relationships in Complex

Networks. PLoS ONE. 2016; 11(4):e0152536. https://doi.org/10.1371/journal.pone.0152536 PMID:

27096435

23. Fortunato S. Community Detection in Graphs. Physics Report. 2010; 486: 75–174. https://doi.org/10.

1016/j.physrep.2009.11.002

24. Newman MEJ. Detecting Community Structure in Networks. The European Physical Journal B. 2004;

38: 321–330. https://doi.org/10.1140/epjb/e2004-00124-y

25. Ravasz E. Detecting hierarchical modularity in biological networks. Computational Systems Biology.

2009; 541: 145–160. https://doi.org/10.1007/978-1-59745-243-4_7

26. Newman MEJ. Fast algorithm for detecting community structure in networks. Physical Review E. 2004;

69(6):066133. https://doi.org/10.1103/PhysRevE.69.066133

27. Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Physical Review E.

2004; 69(2):026113. https://doi.org/10.1103/PhysRevE.69.026113

28. Arenas A, Diaz-Guilera A. Synchronization and modularity in complex networks. European Physical

Journal ST. 2007; 143: 19–25. https://doi.org/10.1140/epjst/e2007-00066-2

29. Lozano S, Duch J, Arenas A. Analysis of large social datasets by community detection. European Phys-

ical Journal ST. 2007; 143: 257–259. https://doi.org/10.1140/epjst/e2007-00098-6

30. Clauset A, Newman MEJ, Moore C. Finding community structure in very large networks. Physical

Review E. 2004; 70(6):066111. https://doi.org/10.1103/PhysRevE.70.066111

31. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast Unfolding of Communities in Large Networks.

Journal of Statistical Mechanics: theory and experiment. 2008; 10:P10008. https://doi.org/10.1088/

1742-5468/2008/10/P10008

32. Pons P, Latapy M. Computing Communities in Large Networks Using Random Walks. Lecture Notes in

Computer Science. 2005; 3733: 284–293. https://doi.org/10.1007/11569596_31

33. Rosvall M, Bergstrom CT. Maps of Random Walks on Complex Networks Reveal Community Structure.

Proceedings of the National Academy Sciences. 2008; 105: 1118–1123. https://doi.org/10.1073/pnas.

0706851105

34. Shannon CE. A Mathematical Theory of Communication. The Bell System Technical Journal. 1958; 27:

379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

A complex network approach reveals a pivotal gene community relevant to schizophrenia

PLOS ONE | https://doi.org/10.1371/journal.pone.0190110 January 5, 2018 17 / 18

https://doi.org/10.1142/S0219720003000319
http://www.ncbi.nlm.nih.gov/pubmed/15290769
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.2202/1544-6115.1128
http://www.ncbi.nlm.nih.gov/pubmed/16646834
https://doi.org/10.1186/s12859-015-0745-3
https://doi.org/10.1186/s12859-015-0745-3
http://www.ncbi.nlm.nih.gov/pubmed/26403471
https://doi.org/10.1093/bioinformatics/bth234
http://www.ncbi.nlm.nih.gov/pubmed/15130938
https://doi.org/10.1038/tp.2016.253
http://www.ncbi.nlm.nih.gov/pubmed/28094815
https://doi.org/10.1038/nature10524
https://doi.org/10.1038/nature10524
http://www.ncbi.nlm.nih.gov/pubmed/22031444
https://doi.org/10.1186/1471-2199-7-3
http://www.ncbi.nlm.nih.gov/pubmed/16448564
https://doi.org/10.1371/journal.pone.0152536
http://www.ncbi.nlm.nih.gov/pubmed/27096435
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1140/epjb/e2004-00124-y
https://doi.org/10.1007/978-1-59745-243-4_7
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1140/epjst/e2007-00066-2
https://doi.org/10.1140/epjst/e2007-00098-6
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1007/11569596_31
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1371/journal.pone.0190110


35. Lancichinetti A., Fortunato S. Community detection algorithms: a comparative analysis. Physical review

E, 2009; 80(5):056117. https://doi.org/10.1103/PhysRevE.80.056117

36. Mooney CZ, Duval RD. Bootstrapping: a nonparametric approach to statistical inference. 1st ed. New-

bury Park, CA: Sage University Paper; 1993.

37. Nankervis JC. Computational algorithms for double bootstrap confidence intervals. Computational Sta-

tistics & Data Analysis. 2005; 49(2): 461–474. https://doi.org/10.1016/j.csda.2004.05.023

38. Wang B, Tang H, Guo C, Xiu Z. Entropy optimization of scale-free networks robustness to random fail-

ures. Physica A: Statistical Mechanics and its Applications. 2006; 363(2): 591–596. https://doi.org/10.

1016/j.physa.2005.08.025

39. Nikolaev AG, Razib R, Kucheriya A. On efficient use of entropy centrality for social network analysis

and community detection. Social Networks. 2015; 40: 154–162. https://doi.org/10.1016/j.socnet.2014.

10.002

40. Liang J, Zhao X, Li D, Cao F, Dang C. Determining the number of clusters using information entropy for

mixed data. Pattern Recognition. 2012; 45: 2251–2265. https://doi.org/10.1016/j.patcog.2011.12.017

41. Pinney JW, Westhead DR. Betweenness-based decomposition methods for social and biological net-

works. Interdisciplinary Statistics and Bioinformatics. 2006; 25: 87–90.

42. Dunn R, Dudbridge F, Sanderson CM. The use of edge-betweenness clustering to investigate biological

function in protein interaction networks. BMC bioinformatics. 2005; 1: 6–39.

43. Brandes U. On variants of shortest-path betweenness centrality and their generic computation. Social

Networks. 2008; 30(2): 136–145. https://doi.org/10.1016/j.socnet.2007.11.001

44. Hinrichsen H, Hoβfeld T, Hirth M, Tran-Gia P. Entropy production in stationary social networks. In Com-

plex networks IV. Springer Berlin Heidelberg. 2013; 476: 47–58.

45. West J, Bianconi G, Severini S, Teschendorff AE. Differential network entropy reveals cancer system

hallmarks. Scientific Reports. 2012; 2:802. https://doi.org/10.1038/srep00802 PMID: 23150773

46. Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945; 26: 297–

302. https://doi.org/10.2307/1932409

47. Langfelder P. Topological Overlap and the case of disappearing small modules. Technical report. 2012.

48. Colizzi M, Iyegbe C, Powell J, Blasi G, Bertolino A, Murray RM, et al. Interaction between DRD2 and

AKT1 genetic variations on risk of psychosis in cannabis users: a case-control study. NPJ Schizophre-

nia. 2015; 1:15049. https://doi.org/10.1038/npjschz.2015.49 PMID: 27336809

49. Taurisano P, Antonucci LA, Fazio L, Rampino A, Romano R, Porcelli A, et al. Prefrontal activity during

working memory is modulated by the interaction of variation in CB1 and COX2 coding genes and corre-

lates with frequency of cannabis use. Cortex. 2016; 81: 231–238. https://doi.org/10.1016/j.cortex.2016.

05.010 PMID: 27261878

50. van Os J, Kenis G, Rutten BP. The environment and schizophrenia. Nature. 2010; 468(7321): 203–12.

https://doi.org/10.1038/nature09563 PMID: 21068828

51. Ripke S, Neale BM, Corvin A, Walters JT, Farh KH, Holmans PA, et al. Biological insights from 108

schizophrenia-associated genetic loci. Nature. 2014; 511(7510): 421–7. https://doi.org/10.1038/

nature13595

52. Bellotti R, Pascazio S. Editorial: Advanced physical methods in brain research. The European Physical

Journal Plus.2012; 127:145. https://doi.org/10.1140/epjp/i2012-12145-4

A complex network approach reveals a pivotal gene community relevant to schizophrenia

PLOS ONE | https://doi.org/10.1371/journal.pone.0190110 January 5, 2018 18 / 18

https://doi.org/10.1103/PhysRevE.80.056117
https://doi.org/10.1016/j.csda.2004.05.023
https://doi.org/10.1016/j.physa.2005.08.025
https://doi.org/10.1016/j.physa.2005.08.025
https://doi.org/10.1016/j.socnet.2014.10.002
https://doi.org/10.1016/j.socnet.2014.10.002
https://doi.org/10.1016/j.patcog.2011.12.017
https://doi.org/10.1016/j.socnet.2007.11.001
https://doi.org/10.1038/srep00802
http://www.ncbi.nlm.nih.gov/pubmed/23150773
https://doi.org/10.2307/1932409
https://doi.org/10.1038/npjschz.2015.49
http://www.ncbi.nlm.nih.gov/pubmed/27336809
https://doi.org/10.1016/j.cortex.2016.05.010
https://doi.org/10.1016/j.cortex.2016.05.010
http://www.ncbi.nlm.nih.gov/pubmed/27261878
https://doi.org/10.1038/nature09563
http://www.ncbi.nlm.nih.gov/pubmed/21068828
https://doi.org/10.1038/nature13595
https://doi.org/10.1038/nature13595
https://doi.org/10.1140/epjp/i2012-12145-4
https://doi.org/10.1371/journal.pone.0190110

