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Abstract: Wound healing is a biological process that is mainly crucial for the rehabilitation of injured
tissue. The incorporation of curcumin (Cur) into a hydrogel system is used to treat skin wounds
in different diseases due to its hydrophobic character. In this study, sodium alginate and collagen,
which possess hydrophilic, low toxic, and biocompatible properties, were utilized. Collagen/alginate
scaffolds were synthesized, and nanocurcumin was incorporated inside them; their interaction was
evaluated by FTIR spectroscopy. Morphological studies investigated structures of the samples studied
by FE-SEM. The release profile of curcumin was detected, and the cytotoxic test was determined
on the L929 cell line using an MTT assay. Analysis of tissue wound healing was performed by
H&E staining. Nanocurcumin was spherical, its average particle size was 45 nm, and the structure
of COL/ALG scaffold was visible. The cell viability of samples was recorded in cells after 24 h
incubation. Results of in vivo wound healing remarkably showed CUR-COL/ALG scaffold at about
90% (p < 0.001), which is better than that of COL/ALG, 80% (p < 0.001), and the control 73.4%
(p < 0.01) groups at 14 days/ The results of the samples’ FTIR indicated that nanocurcumin was
well-entrapped into the scaffold, which led to improving the wound-healing process. Our results
revealed the potential of nanocurcumin incorporated in COL/ALG scaffolds for the wound healing
of skin tissue in trauma patients.

Keywords: wound healing; nanocurcumin; cell viability; collagen; alginate; scaffold

1. Introduction

Curcumin is a hydrophobic agent that is mainly extracted from turmeric rhizome,
and exhibits wound-healing, antibacterial, anti-inflammation, antioxidant, and anticancer
activities [1–5]. Regarding curcumi characteristics n, recent reports showed that it can be
effective against many types of cancer, such as breast and prostate cancer [6]. Curcumin is
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a hydrophobic polyphenol that has many limitations such as its low solubility in water and
rapid metabolism. To overcome these obstacles, the synthesis of curcumin nanoparticles
was considered since they can prolong circulation and permeability [7,8]. Polyethylene gly-
col (PEG) is hydrophilic and attractive candidate for therapeutic applications, so it generally
improves solubility in hydrophilic solvents and the stability of nanoparticles [9,10]. During
the past two decades, collagen has received increased attention for fabricating biomateri-
als for tissue regeneration with unique properties, such as outstanding biocompatibility,
hydrophilicity, and biodegradability [11,12].

Additionally, hydrogels are utilized for cell scaffolds for promoting tissue formation
and enhancing cell proliferation [13], such as for skin damage caused by different events
and diseases, such as burns, metabolic diseases, infections, trauma, and tumors. Evidence
shows that wounds associated with trauma or surgery are extended in about 300 million
people globally [14]. CUR has drawn attention towards skin wound healing treatment due
to some of its properties, including low toxicity and pharmacological properties, and its
distinguishing features make it a good factor for wound healing [15,16]. Alginate–gelatin
microfibers constructed with curcumin have great potential for wound healing [17]. The ma-
jority of papers provided evidence that curcumin with natural polymers such as alginate,
chitosan, collagen, and gelatin improved wound healing in a variety of diseases [17–19].
Sodium alginate (SA) is an anionic polysaccharide [20], which is one of the most popular
anionic polymers utilized in biomedical applications due to its unique features such as
hydrophilicity, biodegradability, and nontoxicity, and it plays a crucial role in the drug
delivery process [9,21,22]. This paper utilizes nanocurcumin for improving problems of cur-
cumin such as its poor bioavailability and low stability. Nanocurcumin was incorporated
into a COL/ALG scaffold for evaluating wound healing in in vitro and in vivo studies in
diseases related to trauma. We used PEG in this work to PEGylate nanocurcumin, which
can be effective for reducing immune response. We evaluate the characterization, release,
and cell viability of curcumin nanoparticles and scaffolds.

2. Materials and Methods
2.1. Materials

Fetal bovine serum (FBS), Dulbecco’s phosphate buffered saline (PBS), Dulbecco’s
modified Eagle’s medium (DMEM), penicillin/streptomycin, and trypsin were obtained
from Gibco (Carlsbad, CA, USA), Fetal bovine serum (FBS) and curcumin (CUR) were
obtained from Sigma-Aldrich, Australia. Thiazolyl Blue Tetrazolium Bromide (MTT),
dimethylsulfoxide (DMSO), PEG, alginate (ALG), and collagen (COL) were purchased
from Sigma (Sigma–Aldrich, St. Louis, MO, USA). All other materials utilized in this study
were from domestic providers at analytical grade.

2.2. Preparation of Collagen/Alginate Scaffolds Impregnated with Curcumin-PEG Nanoparticles
(CUR-PEG nps/ALG/CL)

Collagen solution (1% wt) was prepared by dissolving collagen in 0.5 M acetic acid
and alginate powder solved in distilled water to achieve an alginate solution (2% wt).
Collagen–alginate mixtures were prepared. The pH of acidic collagen was adjusted to 7
by adding 2 M NaOH at 4 ◦C. The alginate solution was added dropwise to the collagen
solution. The mixture was stirred for 2 h to obtain a clear homogeneous blend, which was
then centrifuged at 4000 rpm for 15 min for the removal of entrapped air bubbles. The
hydrogels were then washed with deionized water collagen–alginate composite scaffolds
with a collagen/alginate ratio of 50/50 (w/w), prepared, and frozen at −40 ◦C for 24 h,
followed by lyophilization to obtain a ALG/COL scaffold. In order to synthesize nano-
CUR, 10 mg of curcumin was dissolved into 10 mL acetone that had been magnetically
stirred at 500 rpm for 1 h. Then, the mixture was homogenized in an ultrasonic bath (DT510,
Bandelin, 35 kHz, Germany) for 20 min. Additionally, nanoparticles were collected by
centrifugation at 16,000× g for 30 min. The CUR (PEG6000, 50%) solution was sonicated for
5 min and then vigorously mixed overnight using a magnetic stirrer. Afterwards, mixtures



Polymers 2021, 13, 4291 3 of 11

were filtered through a 0.45 µm filter. Then, 1 mL of CUR-PEGNPs 8 mg/mL was added to
10 mL ALG/COL composite for 4 h, followed by dialysis and stirred overnight; scaffolds
were freeze-dried and stored in a desiccator [18].

2.3. Characterization Methods

Fourier transform infrared spectroscopy (FTIR) was performed using an FTIR spec-
trometer (Bruker, Bremen, Germany) to understand the interaction between the constituents
of the particles. CUR-PEG/ALG/COL, CUR, COL: Samples determined as KBr discs. Mor-
phological structures of the samples were studied by field emission scanning electron
microscopy (FE-SEM) (SigmaVP, Carl Zeiss, Oberkochen, Germany) at 20 kV voltage after
coating each sample with a thin layer of gold for 5 min. The related size of samples was also
estimated using this instrument. Parameters such as the size of the CUR/PEG nanoparticles
were established with a Scattering Particle Size Analyzer (Malvern Co., Malvern, UK).

2.4. Cell Cultures

L929 cells were cultured with 8 × 104 cell/well at 37 ◦C at 5% CO2 in RPMI-1640
medium supplemented with 1% penicillin/streptomycin solution and 10% fetal bovine
serum (FBS).

2.5. MTT Cell Viability Assay

A 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide MTT assay for cell
culture was obtained according to the method by Mossman [23]. The assay for the cell
cultures was carried out with a standard protocol. They were plated into 96-well culture
plates. After 24 days of treatment (concentrations of 15, 25, 35, 45, 55, and 65 of CUR,
ALG/COL, CUR/ALG/COL were utilized with 3 replicates), 10 µL of MTT (5 mg mL−1)
in PBS solution was added into each 96-well plate, and incubated for 4 h at 37 ◦C, Then,
the media were removed from each well and 190 µL of DMSO was added. Absorbance
was detected at 570 nm by immuneabsorbent assay (ELISA) (multimode reader, synergy
HTX, BioTek, Winooski, VT, USA [24].

2.6. Determination of Release Profile

Release of curcumin from nanoparticles (10 mg curcumin dissolved in 10 mL PBS)
was measured in phosphate-buffered saline (PBS) at different time intervals. The sample
was dialyzed by dialysis membrane (MWCO 12,000 Da) against PBS, and free curcumin
in the supernatant was quantified with an Optizen 3220 (UV, South Korea) instrument at
430 nm absorbance [5,16].

2.7. Wound Healing, and Hematoxylin and Eosin Staining

All female rats were 6–7 weeks old, weighed 145–170 g, and were anesthetized by
injection of 10% chloral hydrate (3 mL/kg body weight). Skin sections with a diameter
of 15 mm were established. A total of 21 rats with induced skin sections were divided
into 3 groups with 7 rats in each group: (1) blank control group (n = 7), (2) COL/ALG
(n = 7), (3) CUR/COL/ALG (n = 7). Samples were intradermally administered with
0.9% w/v NaCl, 1 mg COL/ALG, and 1 mg CUR/COL/ALG by sterile insulin syringe
(BD medical, France); 100 µL of samples were then applied to the wound surface. Wound
changes were investigated in all rats, and the wounds were photographed at 0, 7 and
14 days after surgery. Skin sections were cut and immersed in normal 10% buffered formalin
for hematoxylin and eosin (HE) staining to assess the predominant stages of healing.

2.8. Statistical Analysis

Data are shown as mean ± SD. Statistical analysis was performed by one-way
ANOVA. Values of p < 0.01 *, p < 0.001 ** and p < 0.0001 *** were indicative of statistically
significant differences.
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3. Results
3.1. Physical Characterization of CUR-nps/ALG/COL
FTIR-Spectrometer of CL, CUR-nps/ALG/CL, CUR, ALG

As you can see in Figure 1, the broad absorption band at 2902–3334 cm−1 corresponds
to stretch O-H bond existing in the pure ALG and also the pure alginate spectrum as-
signed at the peaks at 1028 cm−1 is illustrated in Figure 1A; the intensity absorption band
at 1089 cm−1 was dependent on the C-O-C bond in PEG, indicated in Figure 1D. The spec-
tral peak of free curcumin was demonstrated close to 3509 cm−1 (Figure 1C); this peak was
assigned to the free hydroxyl group. COL peaks around 2927 cm−1 and 2854 cm−1 provide
evidence for the –CH groups shown in Figure 1B.
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The average size of samples was recorded by dynamic light scattering; empty CUR
nanoparticles at room temperature at 68 nm (Figure 2A.) and COL/ALG (Figure 2B.)
were investigated by field-emission scanning electron microscopy (FE-SEM), and were
uniformly spherical.
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3.2. Antiproliferative and Cytotoxic Effects of Nano-Spheres In Vitro

Cell were treated for 24 h with empty free curcumin and CUR/COL/ALG, and incu-
bated for another 24 h in fresh culture medium. Cell viability was investigated by MTT
assay (Figure 3), which showed CUR/COL/ALG to be better than the free CUR.
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3.3. Release Profile of Curcumin

The release pattern of curcumin is shown in Figure 4. Data showed that 0, 14.25,
21.2, 26.88, 31.37, 85.22 and 94.87% of the curcumin was released in 0, 1, 2, 3, 4, 16 and
24 h, respectively.
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3.4. Hematoxylin and Eosin (H&E)

Skin sections of skin layers were stained with hematoxylin and eosin (H&E) during
the wound-healing process. Results of the wound tissue with the control, CUR, COL/ALG
and CUR/COL/ALG on 7 and 14 days of postwounding are illustrated in Figure 5. The
CUR/COL/ALG group presented a remarkably good healing effect on the tissue on the 7th
and 14th days. On days 7 and 14, wounds showed scab formation only in the case of the
control, the COL/ALG and CUR/COL/ALG treated groups did not show it. Additionally,
the epidermal tissue was observed in all groups except the control on the 7th day. Tissue
analysis on day 7 demonstrated granulation tissue formation in the control and COL/ALG
groups. The CUR/COL/ALG scaffold accelerated wound recovery rate and showed
wound re-epithelialization, and growing hair follicles and blood vessels on days 7 and 14.
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and ALG-COL-CUR scaffolds, at 0, 7, and 14 days. HE staining at 100×.

3.5. Wound Healing

The effects of 0.5 mg CUR, 1 mg COL/ALG and 1 mg CUR/COL/ALG on wound heal-
ing were investigated in trauma model rates. Wound area was considered during periods of
7 and 14 days (Figure 6). CUR/COL/ALG demonstrated better wound healing. COL/ALG
showed clear healing compared to the control. The wound area of CUR/COL/ALG,
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COL/ALG and control had recovered by about 90% (p < 0.001), 80% (p < 0.001), and 73.4%
(p < 0.01) at 14 days, respectively (Figure 6).
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4. Discussion

Curcumin is poorly absorbed due to its low solubility in water. Studies indicated that
chitosan nanoparticle (CN)-incorporated collagen-chitosan scaffolds are vitally important,
particularly for promoting wound healing. The water absorption capacity of scaffolds can
transport nutrients and metabolic products into the construct [19,25]. Reports proposed
the use of CUR-CSNP-loaded ALG/COL scaffolds to improve dermal wound healing
by reducing inflammation in diabetic rats. Natural polymers for curcumin impregnated
in scaffolds were used here. In previous reports of toxic polymers, they were applied,
and problems arose, such as not being able to easily remove the reaction [21]. Recorded
results show that CUR alone have problems in clinical applications such as side effects, limit
absorption, and fast metabolism [26]. Similar results demonstrated that PEG nanoparticles
may inhibit the phagocytosis process. Moreover, PEG into PNPs mainly improved drug
circulation in blood and permeability in cancer cells, and these nanoparticles enhanced
drug pharmacokinetics in blood [10,27,28]. Studies showed that CUR-PNPs exhibited
stronger cytotoxicity than that of the CUR solution in rat glioma cells (Table 1) [10].

Other reports showed that curcumin-loaded PLGA NPs coated with chitosan and
PEG can significantly enhance apoptosis and cytotoxicity compared to free curcumin [29].
Recent findings indicated that curcumin-loaded CG/Alg nanoparticles are suitable for the
delivery of curcumin to carcinoma cells MCF-7 [10,20,29]. Investigated studies revealed
that the GC/L/C bilayer nanofibrous scaffolds play a significant role in chronic wound
treatment [16]. Results showed that encapsulating cc inside PLGA polymer increases the
stability and solubility of CC and accelerates wound-healing processes [30]. It was also
found that wounds were treated by the Cur/HA were particularly effective in rehabilitating
tissue to normal after 14 days and demonstrated 96% wound healing. Moreover, Hema-
toxylin and eosin (HE) staining presented that hair follicles in the Cur/HA group were
illustrated [15]. Findings indicate that nanoparticles can circulate in the blood for a long
period, and are extensively utilized to improve the therapeutic applications of curcumin,
which is a promising strategy for more effective disease treatment [31]. Encapsulating
curcumin into nanoformulations (nanocurcumin) was mainly appropriate and fruitful
for the biological activity of curcumin, which enhances its bioavailability and solubility,
and thereby retention in the body [32,33]. So far, many researchers showed that integrat-
ing curcumin into nanocarriers with varied approaches improves curcumin application
in both in vitro and in vivo studies that involved the use of polymers and nanoparti-
cles. Researchers developed some curcumin nanoformulations in clinical studies [34–36].
In another study, wounds treated by GC/L/C bilayer nanofibrous scaffold on the 7th day
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achieved a recovery rate about 80% compared to that the control [30]. Recent reports by [37]
showed that FTIR spectra of CUR presented a characteristic broad peaks at 3496, 2923,
and 1513 cm−1, assigned to phenolic O-H stretching vibrations, aromatic C-H stretching
vibrations, and stretching vibration of benzene ring skeleton, respectively. Our result
showed that the O-H stretching vibration of sodium alginate at 3371 cm−1 was significantly
shifted to lower side. More specifically, various studies showed an observed peak of the IR
spectrum of alginate at 3313 cm−1 (OH stretching). The FTIR of curcumin showed a peak
at 3510 cm−1 attributed to phenolic OH vibrations [17]. In another similar study, peaks of
collagen FTIR were shown as amide I (1680–1620 cm−1) and amide III (1300–1200 cm−1).
Additionally, the hydroxyl band was obviously detected at 3200–3600 cm−1 [38].

Additionally, it is crucial to extend nanocurcumin formulations that demonstrate
outstanding activities compared to microscale curcumin in wound-healing applications
due to nanoparticles having a relatively larger surface area; this paramount feature of
nanoparticles leads to the enrichment of the bioavailability of drugs [14,19,31]. Nanocur-
cumin may have higher systemic bioavailability in plasma and tissue compared to that
of free curcumin [39]. Obtained results clearly showed that diabetic wounds treated by
curcumin-loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds have
more pronounced effects on wound healing than that of a placebo scaffold [19,40]. Topical
application of nanocurcumin significantly enhances the wound-healing process [40]. In re-
cent years, magnetic nanoparticles decorated with PEGylated curcumin (MNP@ PEG-Cur)
were considered due to having significantly biocompatible antitumor features [41]. Table 1
demonstrates materials that were used in wound-healing applications.

Table 1. Materials utilized in wound-healing applications.

Time Material Wound Healing % or p Reference

9 days Oligochitosan/curcumin/liposome 33.71 [42]
14 days Curcumin/electrospun nanofibers 83.33 [43]

7 days
Curcumin/Lithospermi Radix

Extract/Gelatin/Chitosan Bilayer
Nanofibrous Scaffolds

58 ± 7 [16]

14 days Curcumin/alginate–gelatin
composite fibers 98.75 ± 4.05 [17]

15 days Curcumin nanoparticles/collagen-
chitosan scaffold p < 0.01 [19]

15 days
Curcumin/chitosan

nanoparticles-collagen-
alginate scaffolds

98.1 ± 3.4% [18]

10 days curcumin/poly (lactic-co-glycolic acid)
nanoparticles 75% [30]

36 h curcumin/gelatin-blended
nanofibrous mats 40.44 [14]

12 days Curcumin/oxidized cellulose
nanofiberpolyvinyl alcohol hydrogel 80.3 ± 1.4 [24]

14 days Curumin/hyaluronic acid 96% ± 3% [15]

5. Limitations and Future Research Directions

Curcumin possess some clinical limitations that must be improved. So, researchers
are concentrating on problems caused by curcumin, including poor bioavailability and
solubility. Using natural polymers such as liposome, chitosan, alginate, collagen, and
cellulose can reduce clinical; CUR problems. These polymers are considered due to a
variety of their features, such as low cost, biocompatibility, and bioavailability.

6. Conclusions

We investigated the effect of nanocurcumin incorporation into an ALG/COL scaffold
on wound healing in trauma diseases (Figure 7). Moreover, curcumin nanoparticles
detected with an average size near 64 nm that were formed, as spherical nanocurcumin
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is a promising therapeutic candidate with anti-inflammatory, anticancer, and antioxidant
properties. Regarding our output, the novel nano-CUR-PEGylated/COL/ALG composite
could significantly accelerate wound healing by about 90% over 14 days. Curcumin
nanoparticles may be more effective in improving wound healing due to unique features
such as better permeability, bioavailability, and water solubility. Additionally, PEGylated
nano-CUR inhibited CUR from destruction by the immune system and led to increasing
its solubility.
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