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Abstract

We live in a macroscopic three-dimensional world, but our best description of the structure of 

matter is at the atomic and molecular scale. Understanding the relationship between the two scales 

requires that we bridge from the molecular world to the macroscopic world. Connecting these two 

domains with atomic precision is a central goal of the natural sciences, but it requires high spatial 

control of the 3D structure of matter.1 The simplest practical route to producing precisely 

designed 3D macroscopic objects is to form a crystalline arrangement by self-assembly, because 

such a periodic array has only conceptually simple requirements: [1] A motif whose 3D structure 

is robust, [2] dominant affinity interactions between parts of the motif when it self-associates, and 

[3] a predictable structures for these affinity interactions. Fulfilling all these criteria to produce a 

3D periodic system is not easy, but it should readily be achieved by well-structured branched 

DNA motifs tailed by sticky ends.2 Complementary sticky ends associate with each other 

preferentially and assume the well-known B-DNA structure when they do so;3 the helically 

repeating nature of DNA facilitates the construction of a periodic array. It is key that the directions 

of propagation associated with the sticky ends not share the same plane, but extend to form a 3D 

arrangement of matter. Here, we report the crystal structure at 4 Å resolution of a designed, self-

assembled, 3D crystal based on the DNA tensegrity triangle.4 The data demonstrate clearly that it 
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is possible to design and self-assemble a well-ordered macromolecular 3D crystalline lattice with 

precise control.

The tensegrity triangle is a rigid DNA motif with three-fold rotational symmetry, consisting 

of three helices that are directed along linearly independent vectors, i.e., their helix axis 

directions do not all share the same plane. The helices are connected pair-wise by three four-

arm branched junctions so as to produce the stiff alternating over-and-under motif shown 

schematically in Figure 1a. Thus, there are three helical domains, each containing two 

double helical turns (21 nucleotide pairs, including sticky ends). There are seven strands in 

the molecule, three that partake in a crossover near the corners (magenta in Figure 1a), three 

that extend for the length of each helix (green in Figure 1a), and a final nicked strand at the 

center (blue in Figure 1a), completing the crossovers and the double helices between the 

crossovers; the green and magenta strands indicate an over-and-under motif. By tailing the 

three helices in short single-stranded cohesive segments (‘sticky ends’) the helices can be 

directed to connect with helices belonging to six other molecules in six different directions, 

thereby yielding a 3D periodic lattice, i.e., a crystal; the complementary GA and TC 

sequences of the sticky ends used here are indicated in red letters in Figure 1a. In this case, 

we have worked with a three-fold symmetric system, because that design has produced the 

best crystals of this motif (~4 Å resolution). Thus, each of the magenta and green strands 

present three times contains the same sequence; the central 21-mer strand has a triply 

repeating sequence, and its nicked site is threefold rotationally averaged, occurring with 1/3 

occupancy in each edge; in this design, the six sticky ends form three identical 

complementary pairs. Triangles lacking this symmetry produced crystals that diffracted to 

somewhat lower resolution. Indexing the crystal in a rhombohedral lattice yields a unit cell 

edge of 69.22 Å and an angle between the edges of 101.44°. Pictures of the rhombohedral 

crystals are shown in Figure 1b. Unlike self-assembled 2D crystals, typically a few microns 

in extent,5 or 3D DNA-nanoparticle crystals,6,7 these self-assembled 3D crystals are 

macroscopic objects, exceeding 250 microns in dimension.

Although the crystallographic asymmetric unit of the unit cell is one third of the triangle, it 

is most useful for comprehending the structure to think about the whole triangular structure. 

The triangle is shown in a stereoscopic view in Figure 2a, where its over-and-under motif is 

readily visible: For example, the base pairs of the horizontal double helix are in front at the 

left, but are seen at the rear on the right. Figure 2b shows a view of two of the triangles in 

electron density, with emphasis on their connection by sticky ended cohesion. Molecular 

details are not very reliable at this resolution, but it is clear from the electron density that the 

DNA is largely in the B-form, with C2′-endo nucleosides. However, seven of the 

independent nucleotides have characteristics closer to A-form nucleotides rather than B-

form, estimated by comparisons with Ho et al.’s A-B series of crystal structures;8 these 

nucleotides are indicated by blue lettering in Figure 1a. The view of the structure 

perpendicular to a helix axis seen Figure 2b, shows unmistakable double helical features, 

such as the major and minor grooves. Holliday junctions, similar to the four-arm junctions 

that comprise the corners of the triangle, have been examined previously by 

crystallography9 and by AFM.10,11 The angle between the axes in those cases is about 40–
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60°, somewhat smaller than the 78° angle enforced by the structure of this tensegrity 

triangle. A Holliday crossover between two helices is visible at the bottom of Figure 2a.

This crystal structure demonstrates the viability of designing periodic nucleic acid structures 

in three dimensions. The three directions that define the lattice are evident from the red, 

green and yellow color coding in Figure 3a, which shows the surroundings of a given 

tensegrity triangle. The open nature of this stick-like lattice is shown in Figure 3b, which 

illustrates the rhombohedron that is flanked by eight of the triangles. The red triangle is at 

the rear, bonded by sticky ends to the three yellow triangles that flank it lying in a plane 

closer to the viewer. The yellow triangles are bonded to the green triangles lying in a plane 

yet closer to the viewer. An eighth triangle lying even closer to the viewer and directly 

above the red triangle has been excluded for clarity. The volume of this rhombohedral cavity 

is ~103 nm3, and its open cross section has an area of ~23 nm2.

The arrangement of the molecules in this crystal is not fortuitous: It is clearly the result of 

sticky-ended cohesion as a consequence of our design; indeed, these are the only direct 

intermolecular contacts in the crystal. As a further demonstration of the ability to program 

crystalline DNA arrangements in 3D using sticky-ended cohesion, we have constructed 

eight other rhombohedral lattices from related tensegrity triangles. The crystals are 

summarized in Table 1, and their structures will be described elsewhere; Table 1 also 

indicates that these crystals contain cavities that can exceed 1000 nm3 (one zeptoliter). The 

unit cells, lengths and angles are approximately what would be predicted12 from the design. 

The resolution of the crystals decreases with increasing edge length; this is possibly a 

consequence of constructing stick-like lattices that lack the contacts that stabilize the more 

common ball-like lattices found in most biomacromolecular crystals. The presence of three-

fold rotational symmetry also seems to improve resolution; this is possibly because only 

three unique strands, rather than seven, need to be purified and mixed with appropriate 

stoichiometry. Thus, the system described here is a robust basis for crystalline design. A 

previous system that diffracts well has been reported;13,14 however, it does not contain 

rationally designed Watson-Crick pairing in all directions of cohesion. Designed 

inorganic15 3D periodic systems and coordination networks16 have been reported, but 

unlike DNA with sticky ends,5,17,18 those systems cannot be used conveniently to design 

an arbitrary number of components in the asymmetric unit.

The applications that have been suggested previously for designed 3D nucleic acid 

crystalline systems include the scaffolding of biological systems for crystallographic 

structure determination,19 as well as the organization of nanoelectronics.20 Both of these 

applications will likely be most usefully realized with scaffolding that is not 3-fold 

rotationally averaged. Guests that can be accommodated three at a time in the unit cell 

would be acceptable for structure determination, but they would need to be small enough to 

fit; threefold rotational averaging of a single guest would not be optimal for determining 

structures. Thus, the crystallographic application will likely require somewhat higher 

resolution and perhaps the larger unit cells noted above, so as to accommodate larger guest 

molecules. The nanoelectronics application probably requires only the larger unit cells, so as 

to accommodate large components. Nevertheless, following this beginning, the other steps 

apparently needed for these applications are likely to prove incremental and feasible. It 
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seems reasonable that many of the applications of DNA arrays that have been prototyped in 

two dimensions can be extended to three dimensions. For example, it should be possible to 

incorporate nanomechanical devices17 into a 3D lattice, perhaps capable of being 

programmed to capture specific molecules at specific times.14,21 The ~250 micron-sized 

crystals used in this study contain an estimated 4.5 × 1013 unit cells; metallic nanoparticles 

have already been used to form patterns on 2D DNA arrays,18 so extending that capability 

to 3D could provide a very dense ordered arrangement of nanoparticles. In addition to 

periodic assembly, aperiodic algorithmic assembly22 in three dimensions is also 

conceivable, but crystallography will not be used readily to establish that the assembly has 

occurred flawlessly.

Methods Summary

Synthesis, purification and crystallization

DNA sequences were designed using program SEQUIN.23 DNA strands, including 

iodinated derivatives were synthesized by standard phosphoramidite techniques on an 

Applied Biosystems 394 DNA synthesizer. Strands were doubly purified by reverse-phase 

HPLC using a C-18 column (Waters). Crystals were grown from 80 μL sitting drops in a 

thermally-controlled incubator containing 0.25 μg/μL DNA, 30 mM sodium cacodylate, 50 

mM magnesium acetate, 50 mM ammonium sulfate, 5 mM magnesium chloride, 25 mM 

Tris (pH 8.5), equilibrated against a 1.5 mL reservoir of 1.7 M ammonium sulfate. 

Rhombohedral-shaped crystals with dimensions as large as 250×250×250 μm were obtained 

by slow annealing, in which the temperature was decreased from 60 °C to room temperature 

(~20 °C) with a cooling rate of 0.2 °C per hour over a period of 7 days, during which the 

volume of the drop diminished by about 90%. Crystals were obtained at the end of the 

cooling step, and appeared full-sized within a day. Both native and iodinated derivative 

crystals were produced under the same conditions.

Data Collection

Crystals were transferred to a cryosolvent of 30% glycerol, 100 mM ammonium sulfate, 10 

mM MgCl2, and 50 mM Tris and were frozen by immersion into liquid nitrogen. X-ray data 

diffraction data were collected from crystals of iodinated derivatives (12 iodine atoms per 

triangle -- on the fourth and thirteenth nucleotide of each green strand and on the sixth and 

eleventh nucleotide of each red strand) at 1.7 Å on beamlines X6A and X25 at the National 

Synchrotron Light Source (Brookhaven National Laboratory, Upton, New York, USA). A 

complete sphere of native x-ray data were collected at the APS beamline 19ID.24

Structure Determination

Complete crystallographic details and associated references are available in the 

supplementary information in the online version of the paper at www.nature.com/nature.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Zheng et al. Page 4

Nature. Author manuscript; available in PMC 2010 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

This research has been supported by grants to NCS: from the National Institute of General Medical Sciences, the 
National Science Foundation, the Army Research Office, the Office of Naval Research and a grant from the W.M. 
Keck Foundation. It has also been supported by NSF grant CCF-0622093 and NIH grant 1R21EB007472 to CM. 
We thank Dr. William Sherman for assistance in establishing the likely structural features of tensegrity triangles. 
We would like to thank Drs. R. Sweet, M. Allaire, H. Robinson, A. Saxena and A. Heroux at the BNL-NSLS at 
beamlines X6A and X25 of the National Synchrotron Light Source, respectively. BNL-NSLS is supported 
principally from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US 
Department of Energy, and from the National Center for Research Resources of the National Institutes of Health. 
The use of the 19ID beamline at the Structural Biology Center/ Advanced Photon Source supported by the U.S. 
Department of Energy, Office of Biological and Environmental Research under contract DE-AC02-06CH11357.

References

1. Whitesides GM, Mathias JP, Seto CT. Molecular self-assembly and nanochemistry: A chemical 
strategy for the synthesis of nanostructures. Science. 1991; 254:1312–1319. [PubMed: 1962191] 

2. Seeman NC. Nucleic Acid Junctions and Crystal Formation. J Biomol Struct & Dyns. 1985; 3:11–
34.

3. Qiu H, Dewan JC, Seeman NC. A DNA Decamer with a Sticky End: The Crystal Structure of d-
CGACGATCGT. J Mol Biol. 1997; 267:881–898. [PubMed: 9135119] 

4. Liu D, Wang W, Deng Z, Walulu R, Mao C. Tensegrity: Construction of rigid DNA triangles with 
flexible four-arm junctions. J Am Chem Soc. 2004; 126:2324–2325. [PubMed: 14982434] 

5. Winfree E, Liu F, Wenzler LA, Seeman NC. Design and self-assembly of two-dimensional DNA 
crystals. Nature. 1998; 394:539–544. [PubMed: 9707114] 

6. Nykypanchuk DMM, Maye MM, van der Lelie D, Gang O. DNA-guided crystallization of colloidal 
nanoparticles. Nature. 2008; 451:549–552. [PubMed: 18235496] 

7. Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA. DNA-programmable 
nanoparticle crystallization. Nature. 2008; 451:553–556. [PubMed: 18235497] 

8. Vargason JM, Henderson K, Ho PS. A crystallographic map of the transition from B-DNA to A-
DNA. Proc Nat Acad Sci (USA). 2001; 98:7265–7270. [PubMed: 11390969] 

9. Eichmann BF, Vargason JM, Mooers BHM, Ho PS. The Holliday junction in an inverted repeat 
DNA sequence: Sequence effects on the structure of four-way junctions. Proc Nat Acad Sci (USA). 
2000; 97:3971–3976. [PubMed: 10760268] 

10. Mao C, Sun W, Seeman NC. Designed two-dimensional DNA Holliday junction arrays visualized 
by atomic force microscopy . J Am Chem Soc. 1999; 121:5437–5443.

11. Sha R, Liu F, Seeman NC. Atomic force measurement of the inter-domain angle in symmetric 
Holliday junctions. Biochem. 2002; 41:5950–5955. [PubMed: 11993988] 

12. Birac JJ, Sherman WB, Kopatsch J, Constantinou PE, Seeman NC. GIDEON, a program for design 
in structural DNA nanotechnology. J Mol Graphics & Modeling. 2006; 25:470–480.

13. Paukstelis PJ, Nowakowski J, Birktoft JJ, Seeman NC. The crystal structure of a continuous three-
dimensional DNA lattice. Chem & Biol. 2004; 11:1119–1126. [PubMed: 15324813] 

14. Paukstelis PJ. Three dimensional DNA crystals as molecular sieves. J Am Chem Soc. 2006; 
128:6794–6795. [PubMed: 16719452] 

15. Furukawa H, Kim HJ, Ockwig NW, O’Keeffe M, Yaghi OM. Control of vertex geometry, structure 
dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-
organic frameworks and polyhedra. J Am Chem Soc. 2008; 130:11650–11651. [PubMed: 
18693690] 

16. Kawano M, Kawamichi T, Haneda T, Kajima T, Fujita M. The modular synthesis of functional 
porous coordination networks. J Am Chem Soc. 2007; 129:15418–15419. [PubMed: 18031041] 

17. Ding B, Seeman NC. Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. 
Science. 2006; 314:1583–1585. [PubMed: 17158323] 

18. Zheng J, Constantinou PE, Micheel C, Alivisatos AP, Kiehl RA, Seeman NC. 2D nanoparticle 
arrays show the organizational power of robust DNA motifs. NanoLett. 2006; 6:1502–1504.

Zheng et al. Page 5

Nature. Author manuscript; available in PMC 2010 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



19. Seeman NC. Nucleic acid junctions and lattices. J Theor Biol. 1982; 99:237–247. [PubMed: 
6188926] 

20. Robinson BH, Seeman NC. The design of a biochip: A self-assembling molecular-scale memory 
device. Protein Eng. 1987; 1:295–300. [PubMed: 3508280] 

21. Gu H, Chao J, Xiao SJ, Seeman NC. Dynamic patterns programmed by DNA tiles captured on a 
DNA origami substrate. Nature Nanotech. 2009; 4:245–249.

22. Rothemund PWK, Papadakis N, Winfree E. Algorithmic self-assembly of DNA Sierpinski 
triangles. PLOS Biol. 2004; 2:2041–2053.

23. Seeman NC. De Novo Design of sequences for nucleic acid structure engineering. J Biomol Str & 
Dyns. 1990; 8:573–581.

24. Rosenbaum G, et al. The Structural Biology Center 19ID undulator beamline: facility 
specifications and protein crystallographic results. J Synchrotron Rad. 2006; 13:30–45.

Zheng et al. Page 6

Nature. Author manuscript; available in PMC 2010 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Schematic Design, Sequence, and Crystal Pictures
(a) Schematic of the Tensegrity Triangle. The three unique strands are shown in magenta 

(strands restricted to a single junction), green (strands that extend over each edge of the 

tensegrity triangle) and dark blue (one unique nicked strand at the center passing through all 

three junctions). Arrowheads indicate the 3′ ends of strands. Nucleotides with A-form-like 

characteristics are written in bright blue. Cohesive ends are shown in red letters. (b) An 

Optical Image of Crystals of the Tensegrity Triangle. The rhombohedral shape of the 

crystals and the scale are visible.
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Figure 2. Views of the Tensegrity Triangle
(a) Stereoscopic View of the Triangle Down its 3-Fold Axis. It is in the same orientation as 

the schematic in Figure 1a. The helix on the top edge starts above the mean plane of the 

molecule at the left and proceeds to the rear as it moves to the right. (b) Stereoscopic View of 

Two Triangles in Electron Density. This image is perpendicular to an edge of the 

rhombohedron, showing the connection of two triangles by sticky ends. Sticky ends are 

magenta for emphasis. Some density features belong to neighboring molecules not depicted.
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Figure 3. Lattice Formed by Tensegrity Triangles
(a) Surroundings of a Triangle. This stereoscopic image distinguishes three independent 

directions by base pair color. The central triangle is flanked by six other triangles. (b) 

Rhombohedral Cavity Formed by Tensegrity Triangles. This stereoscopic image shows 

seven of the eight triangles that comprise the rhombohedron’s corners. The cavity outline is 

drawn white. The rear red triangle connects through one edge each to the three yellow 

triangles in a plane closer to the viewer. The yellow triangles are connected through two 

edges each to two different green triangles that are even nearer the viewer.
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