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ABSTRACT

Gene expression profiling (GEP) of normal thyroid tissue from 43 patients 
with thyroid carcinoma, 6 with thyroid adenoma, 42 with multinodular goiter, 
and 6 with Graves-Basedow disease was carried out with the aim of achieving a 
better understanding of the genetic mechanisms underlying the role of normal cells 
surrounding the tumor in the thyroid cancer progression. Unsupervised and supervised 
analyses were performed to compare samples from neoplastic and non-neoplastic 
diseases. GEP and subsequent RT-PCR analysis identified 28 differentially expressed 
genes. Functional assessment revealed that they are involved in tumorigenesis and 
cancer progression. The distinct GEP is likely to reflect the onset and/or progression 
of thyroid cancer, its molecular classification, and the identification of new potential 
prognostic factors, thus allowing to pinpoint selective gene targets with the aim 
of realizing more precise preoperative diagnostic procedures and novel therapeutic 
approaches.

STATEMENT OF SIGNIFICANCE

This study is focused on the gene expression profiling analysis followed by RT-
PCR of normal thyroid tissues from patients with neoplastic and non-neoplastic thyroid 
diseases. Twenty-eight genes were found to be differentially expressed in normal cells 
surrounding the tumor in the thyroid cancer. The genes dysregulated in normal tissue 
samples from patients with thyroid tumors may represent new molecular markers, 
useful for their diagnostic, prognostic and possibly therapeutic implications.

INTRODUCTION

Thyroid carcinoma is the most common endocrine 
malignancy, accounting for about 1% of all types of human 
cancer, with a growing incidence rate reported worldwide 
[1]. Over 95% of thyroid carcinomas (TC) derive 
from follicular epithelial cells [2, 3]. They have been 
traditionally classified as well differentiated carcinoma, 

including papillary carcinoma (PTC, 80%) and follicular 
carcinoma (FTC, 10-15%), whereas poorly differentiated 
and anaplastic carcinomas account for 1-2% of thyroid 
malignancies [2]. In addition, medullary carcinoma (MTC, 
3-5%) is a malignancy of parafollicular C cells derived 
from the neural crest and occurs as sporadic (75%) and 
hereditary (25%) types [4]. This wide spectrum of thyroid 
cancer histotypes has been closely linked to the pattern 
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of cumulative genetic and epigenetic alterations, which 
are correlated with tumor differentiation, metastasis and 
invasion [5].

Several studies have addressed the biological and 
diagnostic aspects of gene expression profiling (GEP) 
of this tumor [6]. A high level of complexity is related 
to the fact that thyroid tumors consist of neoplastic cells 
irregularly intermingled with normal (connective tissue 
and vessels) and reactive (stromal and immune) cells. 
Quantitative relations between these components may vary 
among patients and even inside a single tumor [7, 8]. Most 
microarray studies include tumor fragments containing 
80-90% of tumor cells and some authors recommend 
that investigations be carried out on microdissected 
cells [8]. However, although this step is useful for a 
reliable assessment of the neoplastic transformation, it 
precludes the diagnostic use of microarray. Only when the 
expression signal is strong enough to be detected in biopsy 
specimens, for example in case of diffuse neoplastic 
infiltration, is the microarray-based technology applicable 
for diagnostic purposes.

In the past decades, the major efforts of cancer 
research have been focused on the malignant cell itself. 
This has led to the identification of oncogenes, tumor 
suppressor genes and their associated signaling pathways 
that modulate growth, survival and proliferation of 
tumor cells. Pathophysiological interactions of cancer 
cells with their microenvironment are highlighted by 
the disease progression and neovascularization, and are 
witnessed by autocrine/paracrine circuits that activate 
multiple signaling pathways and affect the most important 
aspects of malignant phenotype, i.e., apoptosis/survival, 
proliferation, invasion, and angiogenesis [9].

Here, we have examined the GEP of normal 
tissue samples from patients with neoplastic and non-
neoplastic thyroid diseases, intraoperatively taken on 
the basis of macroscopic judgement and confirmed by 
immunohistochemistry. We asked whether differences 
can be detected between the GEP of normal thyroid tissue 
from patients with thyroid carcinoma and the GEP of 
thyroid samples from normal subjects and patients with 
thyroiditis. Next, we defined the list of the differentially 
expressed genes on the basis of different gene selection 
methods. The overall results indicate that an optimal set 
of genes can be defined with the aim of differentiating 
neoplastic from non-neoplastic thyroids.

RESULTS

Histological features and validation of samples

Table 1 summarizes the histological diagnoses 
made in the 97 patients with thyroid diseases included 
in this study. Histology showed 43 malignancies, 42 
benign diseases, 6 hyperfunctioning diseases, and 6 
thyroid adenomas. The absence of neoplastic infiltration 

of samples was established by hematoxylin/eosin standard 
protocol and subsequent immunohistochemistry on 
adjacent sections. Of the 97 samples, only four resulted 
positive for carcinoma micrometastases and were excluded 
from analysis (Figure 1).

Gene expression profiles

GEP was carried out on 76 samples. To determine 
whether normal thyroid tissues derived from neoplastic 
thyroids could be distinguished from those from non-
neoplastic thyroids according to the natural grouping 
of their GEP, we performed an unsupervised analysis 
using the hierarchical clustering algorithm on the 1.5 
average fold change probes in samples dataset. The probe 
sets found to be highly variable along the entire data 
set generated a dendrogram (Figure 2) with two major 
branches and five secondary branches. Neither normal 
tissues derived from neoplastic thyroids nor those from 
non-neoplastic thyroids could be identified as a distinct 
cluster of the dendrogram. The most significant modulated 
functions recognized for the probe sets were associated to 
oncogenesis, cell stress response, together with cell death 
and growth processes.

A supervised analysis was performed to find 
which genes specifically differentiated normal tissues 
from neoplastic and non-neoplastic thyroids. Forty-five 
differentiating genes were detected: 35 up-regulated 
(Supplementary Table S1), and 10 down-regulated 
(Supplementary Table S2). Interestingly, the differentially 
expressed genes were involved in tumorigenesis and 
cancer progression, angiogenesis and response to hypoxia, 
cell survival, proliferation, apoptosis, cell organization, 
protein degradation, cell differentiation and metabolism 
(Figure 3).

GeneMania gene network analysis

This revealed a dense co-expression network 
(Figure 4, panel A). Two of queried genes (EIF3CL and 
FAM47E) did not show any correlation with others. The 
network included 65 genes with 852 interactions among 
them. Several genes presented at least 10 connections. 
Figure 4, panel B reports functional gene networks 
separated from the general network, which involve 8 out 
of the 45 genes: HIF1A, TUFT1, BHLHB2 (also known 
as BHLHE40), IRF1, JUND, PTGS2, ATF1, and TFRC.

Real-time RT-PCR validation

The GEP data were validated on 60 samples of 
normal tissues from neoplastic (32 samples), and non 
neoplastic thyroids (28 samples) by testing mRNA of 
the differentially expressed genes. Real-time RT-PCR of 
the confirmed up- and down-regulated genes is shown in 
Figure 5. Twenty-three genes, involved in angiogenesis 
and response to hypoxia, were found to be up-regulated 
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Figure 1: Evaluation of neoplastic infiltration. Ematoxylin/eosin staining showing non neoplastic thyroid tissues in panel A. versus 
neoplastic infiltration in panel B. Immunohistochemical staining for Cytokeratin 19: in panel C. CK19 is not detected in normal tissue, 
while diffuse immunoreactivity for CK19 in a papillary thyroid cancer infiltration is visible in panel D.

Table 1: General characteristics, cytological and diagnostic features of the patients studied

Characteristics Total number (percentage)

Patients 97 (100)

Sex: M/F 30 (31) – 67 (69)

Age, median (range) years 53.5; range 24 – 85

Pre-operative cytology 50

  - TYR 1 6 (12.0)

  - TYR 2 6 (12.0)

  - TYR 3 24 (48.0)

  - TYR 4 2 (4.0)

  - TYR 5 12 (24.0)

Thyroid cancer 43 (44.3)

Multinodular goiter 39 (40.2)

Thyroiditis 3 (3.1)

Thyroid adenoma 6 (6.2)

Graves-Basedow disease 6 (6.2)
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(p<0.05 for all genes) in normal tissues from neoplastic 
thyroids, whereas 5 genes were down-regulated (p<0.05 
for all genes - namely, the tumor suppressor gene WDR48, 
the transcription factors TEF, PNPLA7 and ACCS 
involved in adipocyte differentiation and metabolism, and 
the kallikrein protease KLK4). However, a differential 
expression could not be shown for 18 genes by RT-PCR.

Ingenuity analysis on confirmed genes

We algorithmically generated a gene interaction 
network based on the connectivity of focused genes. 
Regulator Effect network, which integrates the upstream 
regulator results with those of the downstream effects, 
was used to generate a cause-and-effect hypothesis. The 
analysis could explain how upstream regulators may 
cause particular phenotypic and functional outcomes 
downstream. This network analysis indicated two 
regulators, namely IFNG (Figure 6, panel A) and HIF1A 
(Figure 6, panel B), and a connection of gene pathways 
for modulation of cell viability and survival as well as cell 

death and apoptosis (Figure 6, panel C). These interactions 
could favor thyroid tumor initiation and progression.

DISCUSSION

Previous GEP studies of thyroid tissues from patients 
with neoplastic diseases, which were designed to identify 
genes probably involved in the initiation and progression 
of thyroid cancer, revealed that thyroid tumor cells express 
a genomic profile different from that of normal cells [10]. 
However, findings in solid and hematologic cancers also 
suggest that modulation of the microenvironment, rather 
than genetic alterations of the tumor cells per se, may 
partly account for the tumor initiation and progression. 
Signals from microenvironment are thought to play a 
critical role in inducing and maintaining tumor cell growth, 
migration and survival [11, 12]. They stem from reciprocal 
positive and negative interactions between tumor cells and 
stromal cells (endothelial cells, fibroblasts, macrophages, 
mast cells, lymphocytes), and are mediated by an array of 
cytokines, receptors, and adhesion molecules [13].

Figure 2: Unsupervised analysis of gene expression profiles in normal tissue of tumoral and non-tumoral thyroids. 
The dendrogram was generated with a hierarchical clustering algorithm based on the average-linkage method. In the matrix, each column 
represents a sample, and each row a gene.



Oncotarget29681www.impactjournals.com/oncotarget

Here, the comparative analysis of normal tissues 
from neoplastic and non-neoplastic thyroids identified 
28 differentially expressed genes, which may play an 
important role in tumor initiation and progression. 
Specific pathways analysis indicated their involvement 
in the control of apoptosis, metabolism, cell movement, 
cell response to hypoxia, and cell proliferation. All these 
genes are related among them (Figure 4, panel A) and can 

be suggested as markers of the neoplastic involvement of 
the thyroid tissue.

The interplay between dysregulated genes is 
likely to be a primum movens of the tumor initiation 
and progression. In fact, KLF6, JUND, HBEGF, GBP1, 
GADD45B, GADD45A, EIF4A3, CCNL1, CADM1, 
BMP2, AUXD1 and the down-regulated WDR48 (tumor 
suppressor gene) and TEF (transcription factor) are all 

Figure 3: Global role of up- and down-regulated genes in thyroid cancer development and progression. Correlation of 
up- (red-labeled) and down-regulated (green-labeled) studied genes and their corresponding biological functions with tumor progression.
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Figure 4: Gene network analysis in normal tissue of tumoral thyroids. A. General analysis was based on protein-protein 
interaction and pathway databases with the nucleocytoplasmic transport-related genes (1.29-fold; P,0.05). GeneMANIA retrieved known 
and predicted interactions between these genes and added extra genes (grey circles) that are strongly connected to query genes (dark 
circles). B. Functional gene network in normal tissue of patients with thyroid cancer. Correlation of the three genes, namely HIF1A, TUFT1, 
BHLHB2, involved in angiogenesis and response to hypoxya with other disregulated genes, particularly JUND.
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Figure 5: Measurement of gene expression by real-time RT-PCR. A. Significant increase in normal tissues from neoplastic vs 
non-neoplastic thyroids of ZFP36L1, TUFT1, SLCA2A3, SKP1, RIPK5, RAB7B, PTGS2, KLF6, JUND, IRF1, IER3, HIF1A, HBEGF, 
GBP1, GADD45A, GADD45B, EIF4A3, DUSP5, CCNL1, CADM1, BMP2, BHLHB2, AUXD1. B. In contrast, only 5 genes were down-
regulated in these tissues: WDR48, TEF, PNPLA7, ACCS, and KLK-4. Values are expressed as mean ± 1SD for 32 normal tissues from 
neoplastic thyroids and 28 non-neoplastic thyroids. Significance of changes was calculated by the Wilcoxon-Wilcox test.
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Figure 6: Gene interaction network based on information from the Ingenuity Pathways Knowledge Base under the 
IFNG control. A. Correlation with cancer cell invasion. B. Gene interaction network based on information from the Ingenuity Pathways 
Knowledge Base under the HIF1A control. Genes that are up- or down-regulated are labelled in red and green, respectively. C. Gene 
interaction network based on information from the Ingenuity Pathways Knowledge Base related to cell survival. Correlation of genes 
dysregulated in tumoral thyroids with cell viability, survival, death and apoptosis. Genes that are up- or down-regulated are labelled in red 
and green, respectively.
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genes involved in tumorigenesis and tumor progression. 
They are also linked to the genes governing angiogenesis 
and response to hypoxia (HIF1A, TUFT1, BHLHB2), 
cell survival (RIPK5), proliferation (PTGS2, DUSP5), 
apoptosis (ZFP36L1, IER3), metabolism (SLCA2A3), 
cell organization (RAB7B), protein degradation (SKP1, 
KLK-4), and adipocyte differentiation and metabolism 
(PNPLA7, ACCS) (Figure 3, panel A).

Worth of note is the correlation with the three genes: 
HIF1A, TUFT1, and BHLHB2 that were up-regulated in 
normal tissues from neoplastic thyroids. These genes 
are involved in angiogenesis and response to hypoxia 
and control other dysregulated genes, particularly JUND 
(Figure 4, panel B).

Hypoxia is a major angiogenic stimulus, and 
hypoxia-inducible factor-1 (HIF-1) is the master regulator 
of the cellular response to hypoxia [14]. In several human 
tumors [15] HIF-1α overexpression is positively related 
to growth, angiogenesis [16], chemoresistance [17], and 
poor prognosis [18]. Under normoxia, reactive oxygen 
species (ROS) can activate HIF-1α, thus stimulating 
its transcriptional activity [17, 19, 20]. Finally, some 
oncogenes are able to induce HIF-1α overexpression 
[14]. Here, in normal tissues of neoplastic thyroids 
the oncogene JUND was overexpressed and directly 
correlated with the HIF-1α overexpression (Figure 5, 
panel A). The HIF-1α overexpression can be responsible 
for the activation of PTGS2 and KLF6, HBEGF, BMP2, 
SLC2A3 and GADD45A/ B (Figure 5, panel A). These 
activated pathways are related to response of cells to 
hypoxia as well as other stresses, and induce cell survival 
and proliferation. As evidenced in Figure 6, panel A, all 
these genes are also under the control of cytokines such as 
IFN-gamma, that mediates cancer progression and drug 
resistance [20].

RIPK5 is a dual Ser/Thr and Tyr kinase [21] which 
integrates both extracellular stress signals transmitted by 
various cell-surface receptors and signals derived from 
intracellular stress. It represents a crucial regulator of cell 
survival and death. IER3, a member of the “immediate early 
response gene” family, is another stress-inducible gene 
with anti-apoptotic activity that plays a pivotal role in cell 
survival under stress conditions such as hypoxia [22, 23].

Among up-regulated genes that could play a role 
in cell viability and survival, we found ZFP36L1, a zinc 
finger protein that regulates various cellular processes 
by binding to adenine uridine rich elements in the 3′ 
untranslated regions of sets of target mRNAs to promote 
their degradation. In lymphoid malignancies, ZFP36L1 
interacts with and mediates degradation of, BCL2 mRNA 
through which it regulates its pro-apoptotic effects 
(Figure 6, panel C) [24].

Two genes SLCA2A3, that are important for glucose 
transport, and RAB7B, a small GTPase that regulates 
transport between the different compartments of the 
endomembrane system in eukaryotic cells, have been 

found to be up-regulated in normal tissues from neoplastic 
thyroid patients. These genes increase access to glucose 
to support the high rate of glycolysis and satisfy the great 
need of energy in tumor cells [25]. RAB7B also controls 
the transport between late endosomes and the trans Golgi 
network, interacts directly with myosin II, regulates actin 
remodeling and, consequently, influences cell adhesion, 
polarization and migration [25].

Lastly, S-phase kinase associated protein 1 (SKP1) 
serves as an adaptor to bind the F-box protein in the 
SCF (Skp1/Cul1/F-box protein) complex. SCF mediates 
degradation processes in G1 phase and the response to 
mitogen stimulation in tumor cells [26].

Taken together, our results show that the 
dysregulated (up- or down-regulated) genes and their 
pathways detected in the normal tissue distant from 
the neoplastic tissue are fundamental for cell response 
to various stresses as well as for cancer development, 
survival and progression (Figure 3). Whether these 
changes are influenced by the tumor microenvironment 
and/or tumor cells or are associated with genomic 
alterations in normal cells is now being investigated in 
our laboratory. It is conceivable that microenvironmental 
factors (such as hypoxia, inflammation, expression of 
multiple cytokines and growth factors, etc.) regulating 
tumor-associated stromal elements may display unstable, 
heterogeneous and progressive characteristics to an 
extent comparable with (and causally linked to) the 
instability of the cancer cell genome. In addition, those 
factors may have genetic causes and consequences 
(i.e., increased expression of oncogenes, loss of tumor 
suppressor genes) [27]. This reciprocal interrelationship 
and heterogeneity may translate into site- and stage-
specific changes in the regulation of normal cells from 
neoplastic thyroids, eventually leading to changes in the 
proliferation and anti-apoptotic potential of tumor cells, 
even in the same patient.

Finally, the 28 genes confirmed as differentially 
expressed in normal tissues from neoplastic vs non-
neoplastic thyroids may represent new molecular markers 
for prognostic stratification of patients and predictors of 
the possibility to develop cancer [28]. Furthermore, the 
GEP of thyroid normal tissues, an example of which is 
shown in this study, may lead to the identification of new 
therapeutic targets [29], including dysregulated genes, for 
the management of thyroid cancer patients. In fact, several 
studies [9, 30, 31] have been focused on novel drugs 
targeting both cancer cells and the microenvironmental 
cells. Promising results have been obtained so far, but most 
cancers still remain incurable malignancies, indicating 
that the role of microenvironment is important in cancer 
progression, although its role is still incompletely defined.

Overall, our findings imply that normal cells from 
neoplastic thyroids: i) are functionally different from those 
from inflammatory or normal thyroids, ii) are characterized 
by an active phenotype, iii) resemble transformed cells 
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because they down- or up-regulate some genes like tumor 
cells, iv) may represent a predictive indicator of neoplastic 
disease even when imaging and/or FNAB are negative or 
doubtful.

PATIENTS AND METHODS

Patients

A triple-blind prospective study was performed 
between March 2013 and October 2014 on 97 consecutive 
patients undergoing thyroid surgery, whose demographic, 
diagnostic and cytological features are summarized in 
Table 1. The study was approved by the local Ethical 
Committee of the University of Bari Medical School, and 
all patients gave their informed consent in accordance with 
the Declaration of Helsinki.

All patients were submitted to preoperative 
workup, including measurement of thyroid function 
and autoantibodies, serum calcium, phosphorus, and 
magnesium. Ultrasound color doppler imaging for thyroid 
volume determination, and chest and neck radiography 
were also performed. Thyroid scintigraphy and fine-
needle aspiration cytology were limited to patients with 
hyperthyroidism (11.0%) and ultrasound-detected nodules 
(52.0%), respectively.

Tissue sampling, storage and validation

After patient’s consent, a macroscopically normal 
sample of the gland was taken during operation on the 
side of the gland opposite to that containing the tumor, 
or in a macroscopically healthy area when a preoperative 
diagnosis of malignancy was not known. Samples were 
stored at –80°C until use.

The absence of neoplastic infiltration of samples 
was evaluated on adjacent 6 μm 4% paraformaldehyde-
fixed paraffin-embedded sections after hematoxylin/eosin 
standard staining, followed by immunohistochemistry 
with a specific primary antibody [32, 33].

Isolation of RNA and microarray analysis

With the exception of 17 samples which were 
excluded because of poor RNA quality, total RNA was 
extracted from frozen thyroid tissues with TRIzol reagent 
(Invitrogen, Carlsbad, CA), the concentration determined on 
a Nanodrop spectrophotometer (Nano-Drop, Wilmington, 
DE), and quality assessed with the Agilent RNA 6000 
Nano Kit on an Agilent 2100 Bioanalyzer (Agilent 
Technologies, Milan, Italy). For each sample, 300 ng of 
total RNA was reverse transcribed to synthesize cDNA 
and biotinylated cRNA according to the Illumina TotalPrep 
RNA amplification protocol (Ambion; category n. IL1791). 
Hybridization of 750 ng of cRNA on Illumina HumanHT12 
v4.0 Expression BeadChip array (Illumina Inc.), staining 
and scanning were performed according to the standard 

protocol (Illumina Inc.). BeadChip was dried and scanned 
with an Illumina HiScanSQ system (Illumina Inc.).

The intensity files were loaded into the Illumina 
Genome Studio software for quality control and gene 
expression analysis. Quantile normalization algorithm 
was applied on the data set to correct systematic errors: 
values below a detection score of 0.05 were filtered out 
and missing values were imputed. Microarray data (raw 
and normalized) were submitted to Array Express under 
accession number E-MTAB-3796.

Gene ontology analysis

Unsupervised analyses were applied to a subset of 
genes whose average expression varied at least 1.5 fold 
from the mean across the whole panel. For hierarchical 
agglomerative clustering, Pearson’s correlation coefficient 
and average linkage [34] were respectively used as 
distance and linkage methods in DNA-Chip Analyzer 
(dChip) software [35].

Differently expressed genes (DEGs) were selected 
with differential score (DiffScore) cutoff set at ±13 
(p<0.05). The DEGs list included 45 genes, and was used 
to evaluate the functional behavior in terms of Biological 
Processes performing an enrichment analysis with 
Ingenuity Pathway Analysis (IPA) - (Ingenuity Systems, 
Redwood City, CA; http://www.ingenuity.com).

GeneMANIA analysis

GeneMANIA (version 3.2.1, http://www.genemania.
org/) analysis of the DEGs was performed on normal tissues 
from neoplastic and non-neoplastic thyroids. It finds genes 
related to a set of input genes, using a very large set of 
functional interaction data. We analysed the gene network 
to identify gene–gene interactions, the topology of this 
gene correlation, and putative additional genes that may 
be involved in normal tissues from neoplastic and non-
neoplastic thyroids if they are shown to interact with a large 
number of genes in the query set. The association data of 
GeneMANIA algorithm was selected from the pathway and 
the protein-protein interaction databases.

Real-time RT-PCR validation of microarray data

This was performed as described [36]. One μg of 
total RNA was reverse transcribed into total cDNA with 
the “iScript cDNA Synthesis Kit” (Bio-Rad). Primers 
(Supplementary Table S3), together with a fluorochrome 
FAM- or VIC-labeled TaqMan probe, were premixed at 
the optimal concentration for amplification. Reaction 
mixture and amplification conditions were done according 
to the manufacturer’s instructions (Applied Biosystems). 
Each RNA was tested in triplicate and the threshold cycles 
values averaged ± 1 SD. The relative gene expression (fold 
change) in normal thyroid tissue from neoplastic and non-
neoplastic thyroids was measured with the comparative 
threshold cycle (Ct) method using glyceraldehyde-3-
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phosphate dehydrogenase as endogenous control and the 
2–ΔΔCt formula [37].

Interaction network analysis by IPA for RT-PCR 
validated genes

The differently validated genes were further 
analyzed using the IPA software. This all-in-one web-
based software, which makes use of the Ingenuity 
Pathways Knowledge Base (IPKB), generates interaction 
networks of focus genes based on manually curated 
information from the literature. The underlying algorithm 
maximizes connectivity, leading to networks that are likely 
to represent significant biological function. Briefly, a file 
containing gene identifiers (ID), their corresponding fold 
change and p-values were uploaded. Homo sapiens as 
the species and thyroid as the tissue were also specified. 
Enrichment of the focus genes in the networks (which 
always consist of 28 genes) were assessed via Fisher’s 
exact test and used to rank the networks. Furthermore, the 
software identifies top functions and diseases associated 
with each network via enrichment scores, highlighting the 
biological significance of the results.
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