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ABSTRACT  Sulfur assimilation and the biosynthesis of methionine, cysteine 
and S-adenosylmethionine (SAM) are critical to life. As a cofactor, SAM is re-
quired for the activity of most methyltransferases (MTases) and as such has 
broad impact on diverse cellular processes. Assigning function to MTases re-
mains a challenge however, as many MTases are partially redundant, they 
often have multiple cellular roles and these activities can be condition-
dependent. To address these challenges, we performed a systematic synthetic 
genetic analysis of all pairwise MTase double mutations in normal and stress 
conditions (16°C, 37°C, and LiCl) resulting in an unbiased comprehensive over-
view of the complexity and plasticity of the methyltransferome. Based on this 
network, we performed biochemical analysis of members of the histone H3K4 
COMPASS complex and the phospholipid methyltransferase OPI3 to reveal a 
new role for a phospholipid methyltransferase in mediating histone methyla-
tion (H3K4) which underscores a potential link between lipid homeostasis and 
histone methylation. Our findings provide a valuable resource to study me-
thyltransferase function, the dynamics of the methyltransferome, genetic 
crosstalk between biological processes and the dynamics of the methyltrans-
ferome in response to cellular stress. 
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INTRODUCTION 
S-adenosylmethionine (SAM) is a universal cofactor found 
in all branches of life (e.g. viruses, plants, bacteria, yeast 
and human) where it plays a critical role in the transfer of 
methyl groups to diverse biomolecules, including DNA, 
proteins and small-molecules. These substrates are in-
volved in numerous biological processes including signal 
transduction, chromatin remodeling, gene regulation, DNA 
repair, and ageing [1]. Methyltransferase (MTase) enzymes 
transfer a methyl group from SAM to their substrates, 
forming S-adenosylhomocysteine (SAH) which is further 
metabolized to homocysteine, a precursor for methionine, 
cysteine and glutathione. Not unexpectedly, SAM depend-
ent MTases are crucial for essential cellular functions and, 
when dysregulated, can cause disease. For example, recent 
work has shown that the DNA MTases, protein MTases and 
RNA MTases are directly involved in the epigenetic regula-
tion of gene expression during cancer development and 
progression [2]. 

Compared to other proteins that transfer high energy 
metabolites such as kinases, phosphatases, and acetylases, 
MTases are unique in the diversity of their substrates and 

also in their ability to target multiple atoms (e.g. O, C, N, S 
and halides). This substrate flexibility, combined with the 
poor sequence conservation in their active site domains [3] 
complicates assignment of function based on primary se-
quence. Functional data is often useful for such characteri-
zation, but the fact that the majority of MTs are not essen-
tial for viability in laboratory conditions and may share 
overlapping function complicates their characterization. To 
address this challenge, we systematically generated MTase 
double mutants and analyzed their fitness in the absence 
and presence of environmental stress.  

Although the majority of yeast MTases are at least par-
tially characterized (i.e. at the primary or secondary se-
quence level), between 15-20% have no known function [4, 
5]. While traditional, focused approaches are useful for 
understanding individual MTases, comprehensive pertur-
bation strategies will likely be required to understand 
those MTases that are non-essential and which lack overt 
phenotypes due to potentially shared and compensatory 
mechanisms. Indeed, a model of one MTase-one substrate 
is an oversimplification that is not supported by experi-
mental evidence, and which complicates efforts to uncover 
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function. For example, the human Euchromatic histone-
lysine N-MTase 2 (EHMT2) catalyzes a specific methylation 
of histone H3 at lysine residue 9, yet the same enzyme also 
methylates non-histone targets such as p53 [6, 7]. Similarly, 
in plants, the OMT2 MTase modifies structurally diverse 
small molecules [8]. Consistent with their multiple roles, 
MTases often contain distinct functional domains; with at 
least half of all yeast MTases possessing both RNA-binding 
domains and lipid-binding motifs [5, 9].  

Genome-scale screens of double deletions have proved 
powerful for tackling the inherent robustness of biological 
systems [10], in revealing phenotypes in partially redun-
dant systems, and providing valuable insight into gene 
function, and genetic network architecture [11-14]. Fur-
thermore, the addition of external perturbations [15] to 
such genetically challenged cells can provide additional 
insight into gene function. Synthetic Genetic Array (SGA) 
technology is a powerful tool for automating construction 
of double mutants [11, 12] to allow the fitness of each 
double mutant to be assessed by colony size measure-
ments. In SGA, a double mutant exhibiting fitness defects 
greater than or less than the expected multiplicative effect 
of the combined fitness of each single mutant define nega-
tive and positive genetic interactions, respectively. 
Here we quantify the genetic interactions in Saccharomy-
ces cerevisiae between SAM MTases by constructing a ref-
erence set comprised of all possible pairwise double MTase 
mutant strains. We quantify the dynamics of these interac-
tions in response to a variety of environmental stress con-
ditions (16°C, 37°C, and 0.25 mM LiCl) selected from a sur-
vey of a broader list of environmental stress responses [16]. 
The resulting genetic interaction network represents the 
first comprehensive view of the methyltransferome and 
the dynamics in response to stress. Based on this network, 
biochemical analysis of a genetic relationship observed 
between members of the histone COMPASS complex and 
the phospholipid MT Opi3 revealed a novel role of phos-
pholipid MTs in mediating histone methylation, indicating 

that these two distinct MTs cooperate to affect fundamen-
tal biological processes. We highlight our key findings and 
include examples of how the yeast methyltransferome 
network provides insight into MT function that can be lev-
eraged in more focused studies in other biological systems, 
including human. 
 

RESULTS 
Construction of MTase double mutants and evaluation of 
their genetic interactions  
To systematically assess genetic interactions between 
AdoMet-dependent MTases in S. cerevisiae, we selected 94 
MTase deletion mutants (known and putative) and four 
JmJ domain-containing demethylase mutants (GIS1, RPH1, 
JHD1, and JHD2). We also included eight essential RNA 
MTases as loss-of-function mutants (ABD1, DIM1, GCD10, 
GCD14, NOP2, SPB1, SWD2, TRM5) constructed as DAmP 
loss-of-function alleles [17, 18]. In total, our screen inter-
rogated MTases involved in diverse biological processes 
and substrate specificity including: nucleic acids (tRNA, 

rRNA, mRNA, snRNA), proteins (histones, ribosomal pro-
teins, transcription factors, etc.), small molecules (lipids, 
metabolites) and several with unknown substrates (Figure 
1A). To systematically assess genetic interactions between 
MTases in S. cerevisiae, we constructed all possible pair-
wise double mutants of the 94 MTases using SGA technol-
ogy [11, 12, 14, 19, 20] (Figure 1B). Genetic interactions 
were quantified by fitness of the MTase double mutant 
strains using colony size as a metric [21-23].  

Crossing 81 KanR-marked MTases with 94 NatR-marked 
MTases resulted in a matrix comprised of 81 x 94 = 7614 
reciprocal and (control) single genetic pairs (Figure S1A). 
Consistent with previous observations, single mutant fit-
ness defects have a large effect on each strain’s genetic 
interaction profiles, and such ‘slow growing’ stains exhibit-
ed a greater number of genetic interactions (e.g. RSM22 
and OPI3) compared to controls (e.g. HIS3) (Figure S1B) 
[12]. Because the mated strains in this matrix contain the 
selectable markers NatMX and KanMX in the exactly same 
chromosomal locations, one can use the resulting lethal 
phenotype of a double mutant (i.e. the strains on the diag-
onal in the matrix) in the presence of both selection drugs 
(G418 and nourseothricin) as a phenotype to check for 
mutant strain accuracy. To decrease the rate of false posi-
tive scores for any MTase genes located within 50 kb of 
each other, these gene pairs were also filtered out (Figure 
S1C) to avoid any possible genetic linkage (and failure to 
segregate during meiosis) that could confound our analysis. 
Because we found that the genetic profiles of the recipro-
cal strains (NatR-KanR vs KanR-NatR) tend to correlate 
strongly to each other (Figure S1D), we used the reciprocal 
fitness measures to identify and remove potentially incor-
rect strains prior to analysis.  

To evaluate the reproducibility of our genetic interac-
tion data, we compared the scores from two independent 
screens and found them highly similar (r =0.83) (Figure 
S2A). When we restricted the comparison to only those 
scores deemed significant (based on the score threshold 
(|score|>2.5), the between-experiment correlation in-
creased to r =0.92 (p-value <1x10-200). Because the majority 
of MTase double mutant strains (4032/5148) were con-
structed as independent (and reciprocal) double-deletion 
strains (NatR-KanR and KanR-NatR), the scores for these re-
ciprocal gene pairs were also compared. We found the 
correlation of r =0.68, p-value <1x10-11, |score| > 2.5 (Fig-
ure S2B).  

As a final benchmark, we estimated our false discovery 
rate by comparing the overlap of our genetic interactions 
with published large-scale SGA studies [11, 12] and found 
significant overlap (r =0.49, p-value <0.003) (Figure S2C). 
After the removal of genetic interactions with opposite 
signs, we compiled a high confidence dataset of 2056 aver-
aged scores (see Materials and Methods) (Figure 1C). To 
evaluate the accuracy these genetic interaction scores, we 
tested a subset of significant negative and positive scores 
(threshold |score| >2.5) [22] using serial dilution spot as-
says (Figure 1D, Figure S3) and high resolution liquid 
growth assays (Figure S4). In total, using visual inspection 
we estimated that the false positive rate for our screen 
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was ~40% for negative genetic interactions and ~50% for 
positive genetic interactions.   

Following the data processing and quality control steps 
described above (see also Materials and Methods) we ob-
tained a final experimental matrix of 66 KanR x 78 NatR-
resistant MTase double deletion strains, representing 5148 
double-mutants. Each row and column represents a genet-
ic interaction profile for a particular MTase. In this repre-
sentation, negative scores are seen to occur between 
genes in the same pathway or between those that share 
the same function, and conversely, positive scores are 
more likely to occur between physically interacting pro-
teins in protein complexes. Based on our use of strict 
thresholds for data quality and reproducibility, we suggest 

that this systematic assessment of genetic interactions of 
yeast MTases and their resulting fitness will provide insight 
into the central role of SAM homeostasis in the cell. 
 
Genetic architecture of the yeast methyltransferome  
The complete methyltransferome network comprises 2056 
high-confidence interactions. Although the majority of 
genetic interactions were neutral (88.3%), the methyltrans-
ferome network was enriched for significant genetic inter-
actions; ~11.8% (241 out of 2056, |score| >2.5) compared 
to the ~1-2% observed for randomly selected double dele-
tion strains [11, 12]. This enrichment is consistent with 
other SGA studies that focus on a specific pathways or 
functionally related genes [17, 24, 25]. Interestingly, there 

FIGURE 1: Construction of double MT mutants and evaluation of their genetic interactions. (A) Classification of methyltransferases by 
function/predicted substrate. (B) SGA procedure for double mutant generation and data processing. A representative image of a ‘final’ 
plate used for the last step of selection of haploid double-deletion mutant colonies is shown. Each mutant is present in four replicates. 
Images are converted to pixels using Colony Imager software to obtain relative colony sizes. Each plate contains three query strains 
marked with NatR (mtase∆::NatMX) crossed to an array of KanR-marked mutants (mtase∆::KanMX). (C) Distribution of all MT genetic 
interactions; negative (blue), neutral (black) and positive (yellow); select double mutants outliers are labeled. Red outlines on each data 
point signify genetic interactions reported in previous studies [52]. (D) Validation of select negative genetic interactions by spot dilution 
growth assays, with strain genotypes indicated. 
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is a prevalence of positive (alleviating) over negative (ag-
gravating) genetic interactions in the dataset (~1.5x en-
richment for positive interactions in contrast to the ~2x 
enrichment observed for negative interactions across the 
entire genome [11, 12]). MTases with greatest number of 
genetic interactions (i.e. those representing “hubs” in the 
network) included two MTases involved in lipid homeosta-
sis (ERG6 and OPI3), DIM1, an essential rRNA MT and TGS1, 
a snoRNA nucleolar MTase. As expected, MTases of un-
known functions demonstrated the lowest number of ge-
netic interactions, consistent with their dearth of their 
annotated phenotypes in the SGD (www.yeastgenome.org) 
(Figure 2A).  

We next assessed the methyltransferome genetic in-
teraction network for correlation with their reported sub-
strate specificity. The architecture of the MTase genetic 
interaction network, when visualized by substrate-
accepting specificity (broadly classified as histone, protein, 
ribosomal, tRNA, rRNA, other nucleic acid, small molecules, 
and unknown) (Figure 2B) revealed genetic interactions 
(both positive and negative) both between and within the 
substrate-based clusters. In particular, we found the strong 
negative interactions connecting different substrate-acting 
MTases, suggesting that the functions for these MTases are 
not as categorical as their annotations might suggest. Ra-
ther, these unexpected between-cluster interactions likely 
reflect their capacities to buffer each other (Figure 2B). For 
example, the nucleolar snRNA/snoRNA MTases TGS1 ex-
hibited strong negative interactions with the essential pro-
tein MTase SWD2. Consistent with this observation, Swd2 
is known to be a subunit of the cleavage and polyadenyla-

tion factor complex and to play a role in snoRNA 3’ end 
formation [26]. In another example, the arginine MTase 
HSL7 showed strong negative genetic interactions with 
several members of the evolutionarily conserved histone 
H3K3 MTase COMPASS complex, including SDC1, SWD3, 
SWD1, and BRE2. This observation suggests a biological 
interaction between these crucial regulators of transcrip-
tional regulation and the HSL7 arginine MTase in cells de-
leted for these genes (Figure 2B). Notably, the comple-
menting human homolog of HSL7, PRMT5 also supports a 
link to transcription [27, 28]. These observations suggest 
that the high interconnectedness of the yeast methyltrans-
ferome genetic network is not restricted by MTase-
substrate relationships and that the MTase network dis-
plays unanticipated, between-cluster relationships.  

It is well-established that genes encoding proteins that 
act in the same biological process tend to share the same 
genetic interactions [11, 12]. This functional relatedness is 
apparent in the methyltransferome following hierarchical 
clustering of MTase genetic interaction scores (Figure S5A). 
For example, we found striking patterns of genetic interac-
tions between MTase members of the COMPASS complex 
[29], with many exhibiting strong positive interactions. An 
additional robust predictor of shared function is the corre-
lation between genetic profiles. Correlation of MTase dou-
ble-mutant fitness profiles genetic profiles revealed that 
the yeast methyltransferome has a modular structure (Fig-
ure 3A). For example, similar to that observed for score-
based clustering, correlation-based clustering demonstrat-
ed that COMPASS complex members (SWD1, SWD3, SET1, 
SDC1, and BRE2) clustered together as their patterns of 

FIGURE 2: Genetic architecture of the yeast methyltransferome. (A) Frequency of high-confidence positive and negative genetic interac-
tions (|score| >2.5) across the methyltransferome network. Essential genes are labeled in red; * indicates slow growers. (B) Genetic inter-
action network of the yeast methyltransferome under the standard growth condition (30°C). Each MT gene is represented as a node in the 
network and significant genetic interactions by edges. Nodes are colored according to the substrate type. Edge width represents the 
strength of the genetic, interaction score and edge color the interaction type (red negative, green positive). 

http://www.yeastgenome.org/
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genetic interactions are much more similar to each other 
versus other MTases. For example, the correlation of the 
genetic profile of swd1∆ mutant and swd3∆ is quite high (r 
=0.83) (Figure 3B).  

Although we found extensive evidence for between-
cluster genetic interactions, the known (or putative) sub-
strates for each MTase were also reflected in the architec-
ture of the methyltransferome. Specifically, we found en-
richment for gene pairs that tend to act on similar sub-
strate types among the MTases with similar genetic pro-
files (r >0.5) (32% of highly similar gene pairs (235) vs. 28% 
for all gene pairs (3160), p-value <0.016, hypergeometric 

test). Correlation-based clustering revealed that lipid MTa-
ses (OPI3, CHO2), cofactor MTases (MET1 and MHT1; DPH5 
and NNT1) and protein MTases (RKM3 and DOT1; COM-
PASS) all clustered together (Figure 3C). These gene pairs 
were also significantly enriched for positive genetic inter-
actions (score >2.5, p-value <1x10-13, hypergeometric test). 
In general, we noted a slight positive correlation between 
the correlation coefficient and the genetic interaction 
scores between most MTase gene pairs (r = 0.27, p-value 
<1x10-34) (Figure S5B). However, there are notable excep-
tions to this trend. For example, the phospholipid MTases 
OPI3 and CHO2 share similar genetic profiles (r =0.64) yet 

FIGURE 3: Genetic architecture of the yeast methyltransferome. (A) Correlation-based hierarchical cluster analysis. Each row/column 
represents a genetic interaction profile for a specific MT. A subset of positive score interactions among the components of COMPASS com-
plex is shown. Strong positive and negative correlations among MTs are indicated by red and blue colors, respectively. (B) Scatter plot of 
the correlation coefficients of swd1Δ and swd3Δ with their genetic profiles. The most similar profiles for components of COMPASS complex 
are labeled. (C) Correlation-based clusters of similar MT profiles (r > 0.5). Nodes are individual MTs, and edges are correlation coefficient-
based interactions between two nodes. Nodes are colored according to a substrate type (red, tRNA; blue, protein; purple, histone, green, 
small molecule; black, unknown). Edge width and color (red > 0.5, grey < 0.5) represent the magnitude of similarity. 
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they manifest a strong negative genetic interaction (score < 
-30). This finding is consistent with negative genetic inter-
actions occurring between genes in the same pathway and 
with the observation that OPI3 acts directly downstream of 
CHO2 in the yeast phospholipid biosynthetic pathway. 
 
Relating methyltransferome genetic interactions with 
physical interactions  
In addition to acting in the same biological pathway, genes 
with similar genetic interaction profiles enriched for strong 
positive interactions often physically interact [17, 35]. In-
deed, in our dataset genes of the COMPASS complex (BRE2, 
SDC1, SET1, SWD1, SWD3), the tRNA MTase complex 
(GCD14 and GCD10), and two members of the 90S pre-
ribosome complex (NOP2, DIM1) follow this pattern. Over-
all, in our screen we found that the MTase pairs encoding 
physically interacting proteins have similar genetic profiles 
(r>0.5) more frequently than all interrogated gene pairs 
(Figure 4A). We also found that these physically interacting 
gene pairs manifest significant positive and negative scores 
more often than all tested gene pairs (Figure 4B). In total, 
19 out of 54 gene pairs (35%) encoding MTases known to 
physically interact exhibit significant genetic interactions in 
our dataset. Furthermore, 7.8% of all MTase gene pairs 
with significant genetic interaction scores encode for the 
proteins that associate physically (versus 0.9% for a ran-
dom set of non-essential genes), suggesting that the me-
thyltransferome is enriched for members that physically 
interact. It is important to note that despite this enrich-
ment for physical interactors, the majority of genetic inter-
actions (both positive and negative) among MTases do not 
occur among physically interacting proteins, suggesting 
that the majority of these genetic interactions represent 
between-pathway functional relationships versus within-
complex interactions. Indeed, consistent with other studies 
on gene/protein families, we found that gene pairs com-

prising an essential gene and encoding for physically inter-
acting proteins show a lack of correlation and demonstrate 
negative genetic interactions relative to the gene pairs 
composed of only nonessential genes (Figure 4C) [21, 30]. 
For example, in the methyltransferome two of four gene 
pairs with significant negative genetic interaction had  
one essential gene (SWD2 or NOP2) versus 0 of 14 gene 
pairs with positive genetic interactions. One interpretation 
for these observations is that complexes containing essen-
tial components are more vulnerable to additional genetic 
perturbation. The fact that we can detect such patterns 
that were previously detected in larger, non-targeted ge-
nome-wide studies validates the predictive nature of our 
dataset. 
 
Plasticity of the methyltransferome in environmental 
stress  
Cells exposed to stress maintain their homeostasis, in part, 
by altering their transcription, translation and signaling 
pathways [16]. Given that certain genetic interactions are 
condition-dependent, we and others have shown that ge-
netic interaction networks can be stress specific and that 
the patterns of strain sensitivity in the face of such stress-
ors can reveal details of each response pathway [25, 31, 
32]. To evaluate the environmental-dependence of the 
yeast methyltransferome network we quantified the fit-
ness of all digenic MTase mutants in three environmental 
stress conditions: 1) 16°C, 2) 37°C and 3) 0.25 mM LiCl. 
While the proportion of the significant positive and nega-
tive genetic interactions (|score| >2.5) observed in the 
methyltransferome stress networks were similar to the 
~25% observed in the 30oC reference condition (Figure 5A), 
we found stress-specific genetic interactions (Figure S6). 
For example, 106 significant positive interactions identified 
at 16°C (~75%) were not detected in the reference sample 
(Figure 5B). The stress-specific gene interactions were rep-

 
FIGURE 4: Relationship between genetic and physical interactions. (A) Distribution of correlation coefficients for all gene pairs (black 
line) and physically interacting (PI) pairs (red line). (B) Distribution of genetic interaction scores for all gene pairs (black line) and physi-
cally interacting (PI) pairs (red line). 
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resented by particular substrate-type MTases (Figure 5C). 
For example, the 16°C- and LiCl-specific genetic interaction 
datasets were enriched for unknown MTases (p-value 
<0.003 and p-value <0.05, respectively) and for small mole-
cule MTases (p-value <0.05). In contrast, the 37°C-specific 
interacting gene pairs were enriched for tRNA and riboso-
mal protein MTases (p-value <0.02 and p-value <0.011), 
with histone MTases being substantially underrepresented 
(p-value <4.8x10-5). Furthermore, rRNA MTases were un-
derrepresented in both LiCl- and 37°C-specific datasets. 

 
A core MTase network   
Despite the observed changes in the genetic interactions 
between stress conditions and the reference condition, 
certain genetic interactions were consistent across all con-
ditions. On average, ~25% of significant negative genetic 
interactions (either positive or negative) were shared be-
tween any single stress network and the reference, with 

the smallest overlap observed for LiCl positive interactions 
(19%) (Figure 6A). We used these data to define a core, 
“conserved” genetic network of 45 MTase gene pairs (sig-
nificant in at least three of the four conditions 
(|score|>2.5). This set included small molecule, lipid, RNA, 
protein, histone and uncharacterized MTases. The core 
MTase network was significantly enriched for lipid and 
histone MTases (p-value <0.002, hypergeometric test) 
compared to all significant gene pairs (Figure 6B). 

This core MTase network highlights genetic links be-
tween diverse MTase coordinated biological processes and 
basal functional architecture of the methyltransferome. In 
this network, nodes are represented by genes and edges 
connect gene pairs with genetic interactions. Highly inter-
connected nodes form distinct clusters or hubs- several of 
which were enriched for biological processes. For example, 
in our network, hubs included specific pairwise interactions 
between: 1) lipid MTases CHO2, ERG6, OPI3 2) tRNA MTa-

FIGURE 5: Plasticity of the methyltransferome in response to stress. (A) Genetic interactions for MT gene pairs under stress conditions 
(16°C, 37°C or LiCl) plotted against the those at 30°C. Insets: percentage of each interaction type. (B) Overlap of significant genetic inter-
actions (|score| >2.5) between 30°C and the indicated stress conditions (C) Enrichment for genetic interactions between gene pairs by 
substrate type for stress conditions. 
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ses TRM1, TRM11, NCL1, ABP140 3) small molecule MTases 
MHT1, COQ5, TMT1 and 4) histone MTases BRE2, SDC1, 
SET1, SET2, SHG1, SWD1, SWD3, RPH1. Edges in the net-
work with high “betweenness” (a measure of how im-
portant a node is in a network) serve as bridges that con-
nect these hubs and include OPI3, COQ5, TRM1, SET2 and 
SWD3. These edges suggest links between the biological 
processes represented by the clusters suggesting that they 
may act to buffer each other.   

One notable feature of the core MTase network is that 
lipid-histone and lipid-small molecule MTases are biologi-
cally linked and that alterations in one can impact the oth-
er. This feature of our dataset is consistent with published 
observations that genes involved in sulfur and phospholip-
id metabolism are coordinately regulated. By way of illus-
tration, the MTases Cho2 and Opi3 comprise key elements 
of phospholipid biosynthetic pathway. These two MTases 
are also major consumers of cellular SAM pools and it is 
known that sufficient flux through this pathway is required 
to generate the required levels of SAH for proper regula-
tion of sulfur amino acid biosynthetic pathways [33, 34]. 
The genetic interactions we observe between Cho2 and 
Opi3 reflect the interplay between these pathways. In ad-
dition, the transcriptional regulators of sulfur (Met4) and 
phospholipid (Opi1) metabolic pathways act in concert to 
maintain cellular levels of SAM [33].  

The genetic interactions between the histone and lipid 
clusters in our network in agreement with several high 
throughput studies [12, 24, 35]. Interestingly, a recent 
study demonstrated cho2Δ deletion strains accumulate 
SAM, and in conditions requiring methionine, lead to the 
hypermethylation of histones, suggesting that histone 
MTases may act to reduce SAM levels. Our results suggest 
a similar crosstalk and, taken together, these studies un-
derscore the importance of continued work on the regula-
tion of intracellular SAM:SAH ratios and the importance of 
coordination of sulfur metabolism and SAM MTase path-
ways. 
 
The COMPASS complex remodels in stress conditions  
Although the biological modules of functionally related 
genes are typically conserved among distantly related spe-
cies and across conditions, it has also been shown that the 
genetic wiring is reprogrammed in response to stress [31, 
36]. In our screen, the core COMPASS complex members 
(SET1, SDC1, SWD1, SWD2, and SWD3) [37] exhibited 
strong positive genetic interactions and highly correlated 
genetic profiles in the reference condition (30°C) (Figure 
3A) and to a lesser extent in the 16°C and 37°C stress con-
ditions. In LiCl however, only a subset of subunits of the 
COMPASS were present, and with the exception of SWD1 
and SWD3, their genetic interactions were not conserved 

FIGURE 6: A core methyltransferase network. (A) Venn diagram of the shared significant interactions between all four conditions (30°C, 
16°C, 37°C or LiCl). (B) The core methyltransferase genetic network shared by at least three of the four conditions tested. Red and green 
edges denote negative and positive genetic interactions, respectively. Line width represents average genetic interaction strength. Node 
color represents biological substrate; purple (histone), green (RNA), yellow (small molecule), red (lipid), orange (unknown) and navy (small 
molecule). Distinct groups were identified by clustering edge betweenness. 
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(Figure 7A). This observation suggests that COMPASS MTa-
ses rearrange their genetic interactions in response to this 
stress. In addition, in the reference condition (30°C) COM-
PASS components BRE2, SDC1 and SWD1, exhibited nega-
tive genetic interactions with the phospholipid MTase OPI3 
(Figure 7A), while at 16°C they did not, suggesting that 
some MTase genetic interactions in COMPASS are stress-
responsive (Figure 7A and Figure 7B). Additionally, their 
genetic profiles were not similar (i.e. they showed low cor-
relation), suggesting these MTases function independently. 
In particular, in LiCl stress conditions there was a substan-
tial loss of positive interactions within the complex in the 
stress conditions accompanied by loss of the COMPASS 
cluster in the heatmap (Figure S7). At 37°C and in LiCl the 
genetic interaction profiles of the majority of COMPASS 
components clustered with SET2 (histone lysine K36 MTa-
se) and the phospholipid MTase CHO2, suggesting a condi-
tion-dependent functional link between these enzymes 
under these conditions. These observations indicate that 
COMPASS is a dynamic complex that remodels in response 
to environmental stress. 

Exploring the connection between COMPASS and phos-
pholipid MTase  
To further explore the link between phospholipid and his-
tone MTases observed in our dataset, we used a opi3Δ 
specific chemical probe uncovered in our large-scale ge-
nome-wide screening effort [38] (SGTC_2241) (Figure S8). 
This compound ((5E)-5-[(4-hydroxyphenyl)methylidene]-3-
prop-2-ynyl-1,3-thiazolidine-2,4-dione; PubChem 
CID:2285411) induced drug-sensitivity in the opi3Δ dele-
tion strain, suggesting that Opi3 is required to resist the 
effects of this compound. Specifically, i) the opi3Δ deletion 
strain exhibited a drug-induced fitness defect and ii) dose-
dependent overexpression of Opi3 increased resistance to 
this compound (Figure 7C) encouraging our efforts to use 
compound 2241 as a chemical probe of the OPI3 pathway 
function.  

We found that treatment of wildtype cells as well as 
cells with altered Opi3 gene dose with compound 2241 
resulted in a dose-dependent reduction of histone methyl-
ation (H3K4di and H3K36) (Figure 7D) as assessed by im-
munoblot with methylation-specific histone H3 antibodies. 

FIGURE 7: Exploring COMPASS and phospholipid MT connection. (A) Genetic interactions among COMPASS MTs and OPI3. Yellow; positi-
ve genetic interaction, cyan; negative genetic interaction. (B) Genetic interactions among COMPASS MTs and other genes in the four stress 
conditions. Yellow; positive genetic interaction, cyan; negative genetic interaction. (C) Overexpression of OPI3 rescues the drug-induced 
fitness defect opi3Δ in the presence and absence of the opi3Δ chemical probe. Growth of wild-type, opi3Δ and opi3Δ overexpressing OPI3, 
without drug (left panel) and with drug (right panel). Growth is measured by as O.D.600 (y-axis) as a function of time (hrs)(x-axis). (D) OPI3 
is important for histone methylation. Levels of di-methylated H3K4 and H3K36 in the indicated strains and drug conditions. (E) Levels of di-
methylated H3K4 and H3K79in in A549 cell in response to 30μM opi3Δ chemical probe. 

http://chemogenomics.pharmacy.ubc.ca/hiphop/index.php?q=SGTC_2241&f=fixed&fr=0&restr=
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This effect was OPI3 specific because overexpression of 
Opi3 protein in both mutant and wildtype cells rescued the 
phenotype suggesting that chemical inhibition of Opi3 af-
fects the methylation status of histones (Figure 7D and 
Figure S9). Therefore, both chemical and genetic perturba-
tion of reduction of Opi3 levels reduces histone methyla-
tion.   

To ask if the effects of compound 2241 were conserved 
in mammalian cells, human lung carcinoma (A549) cells 
were exposed to this compound and assayed for growth 
inhibition and histone H3 methylation status. We observed 
an analogous dose dependent inhibition of histone meth-
ylation (H3K4di) (Figure 7E and Figure S9). The observation 
that perturbation of a phospholipid MTase (Opi3) leads to 
changes in the methylation state of histones is intriguing, 
in light of the fact that methylation of phosphatidylethano-
lamine (PE) serves as a major consumer of SAM in the cell. 
 
DISCUSSION 
The analysis of genetic interactions in the yeast methyl-
transferome network demonstrates our dataset is of high 
quality and is comparable to other established high-
throughput datasets [12, 24, 35]. Several properties of 
genome-scale genetic networks were recognizable in the 
methyltransferome, including the higher frequency of in-
teractions observed for slow-growing MTase deletion 
strains and the bias towards positive interactions between 
genes encoding physically interacting proteins.  

The enrichment for genetic interactions among MTases 
is consistent with other functionally focused genetic inter-
action studies [17, 24, 25] and the inclusion of additional 
environmental stressors highlights the plasticity of the me-
thyltransferome network. Though the frequency of interac-
tions remained relatively constant in response to stress, a 
substantial number were stress-specific. For example, dif-
ferent stresses exhibited slight enrichments for interac-
tions by substrate. Notably, interactions that were con-
served in sign between the reference and stress conditions 
were significantly dampened, suggesting that the magni-
tude and not just the differences between condition-
dependent interactions should be considered. Our obser-
vations also suggest that additional functional information 
will be gleaned by using more specific stresses in order to 
realize the full extent of functional redundancy among 
MTases. For example, in a DNA repair focused SGA study, 
the number of interactions doubled in the presence of 
DNA-damaging agents [17, 24, 25]. Choosing such precise 
perturbations a priori for genesets linked only by enzymat-
ic activity is not as straightforward as those linked by func-
tion. However, the methyltransferome revealed vulnerabil-
ities that can be exploited in future studies. For example, 
because lipid MTases are highly connected hubs in our 
network, drugs or stressors targeting their metabolic 
pathways or function are likely to be functionally informa-
tive. 

The plasticity of the yeast methyltransferome is exem-
plified by interactions with the COMPASS complex. COM-
PASS (Complex Proteins Associated with Set1) is an evolu-
tionary conserved histone 3 lysine 4 (H3K4) methyltrans-

ferase complex comprised of seven polypeptides and a 
highly conserved ∼140 amino acid SET domain [29]. At 
30°C, core members of COMPASS, including the catalytic 
subunit SET1 and the regulatory and structural compo-
nents BRE2, SDC1, SWD1 and SWD3, shared strong positive 
interactions and tightly clustered genetic profiles in 
agreement with the subunits known to be required for 
histone H3K4 methylation [39]. In contrast, the remaining 
subunits including SWD2, an essential gene, SPP1, and 
SHG1, exhibited genetic interactions distinct from each 
other and the core complex, consistent with their roles in 
diverse processes [37, 40]. In response to stress, genetic 
interactions between the core COMPASS subunits were 
significantly dampened at 16°C and 37°C, and the correla-
tion between profiles completely lost in LiCl. It is possible 
that the complex disassociates or is simply not required in 
LiCl. It would be interesting to test whether the functional 
dissolution is reflected at the level of these components’ 
physical interactions. 

Genetic interactions between the COMPASS complex 
members (BRE2, SDC1, SWD1 and SWD3) exhibited strong 
negative interactions with the protein MTase Hsl7 at 30°C. 
These interactions were partly lost at 16°C and 37°C, and 
completely lost in LiCl, suggesting network rewiring is re-
quired to resist stress. Hsl7 is an arginine protein MTase 
involved in cell cycle regulation. Although recombinant 
Hsl7 demonstrates enzymatic activity towards histones 
H2A and H4 in vitro [41], in vivo histone methylation has 
not been not detected, suggesting that Hsl7 may be active 
against histone proteins only under certain conditions [42]. 
Consistent with these observations, HSL7 is synthetically 
lethal with SET1 and other chromatin-remodeling enzymes, 
and can act as a transcriptional regulator [43]. The Hsl7 
human homolog, Prmt5, is linked to cancer through its 
activity as a transcriptional repressor. These results suggest 
that Hsl7 may buffer COMPASS activity by methylating 
additional, as yet to be identified, targets. 

Our genomic analysis of the yeast methyltransferome, 
combined with chemical-genetic analysis of the relation-
ship between histone and phospholipid MTases, allowed us 
to characterize a new role for Opi3 in mediating histone 
methylation. We found histone methylation of both H3K4 
and H3K36 were dramatically reduced in opi3Δ and 
wildtype cells, a phenotype further exacerbated by treat-
ment with the opi3Δ-specific chemical probe. Overexpres-
sion of Opi3 restored histone methylation to wildtype lev-
els and all cases, demonstrating its specificity. These re-
sults suggest that Opi3 and histone methylation may be 
coordinately regulated. In further support for this 
crossstalk, we found significant correlation between chem-
ical-genetic fitness profiles measured across > 3000 small 
molecules (p-value < 1e-03) between OPI3 and COMPASS 
complex members BRE2, SDC1, SWD1 and SWD3) [44]. 

A recent report supports a metabolic link between 
phospholipid metabolism and histone methylation [45]. 
Under conditions of methionine starvation, deletion of the 
phospholipid CHO2 MTase accumulated high levels of SAM. 
The disruption of the SAM/SAH ratio promoted histone 
methylation, leading the authors to conclude that histone 
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MTases act as methyl sinks to meet the cellular demand for 
SAH required for methionine biosynthesis. Although the 
hypermethylation in the cho2Δ seemingly contradicts the 
hypomethylation we observed in opi3Δ, a number of fac-
tors may account for tipping the balance of the cellular 
response in the opposite direction. These include the ex-
perimental differences in genomic, environment and epi-
genetic context and cellular state. Whatever the mecha-
nism, we suggest that the differences in particular methyl-
ation marks are less important than the crosstalk between 
lipid and histone methylation. Deciphering the histone 
code is notoriously difficult as methylation marks are com-
plex and dynamic; hypomethylation at one site can pro-
mote hypermethylation at another to compensate [45]. 
Previous work has established metabolic coordination be-
tween sulfur and phospholipid metabolism [33, 34]. Our 
work extends these findings by adding histone methylation 
to the interplay between lipid and SAM biology. Future 
work on the mechanism by which Opi3 (and its human 
homolog PEMT) act to modify histones and impact SAM 
will likely illuminate the mechanism of this interplay in 
both normal and pathological states, and how the histone 
code context affects these pathways.    

Our systematic analysis of the yeast methyltransferome 
provides a valuable resource for increasing our under-
standing of methyltransferase function by: 1) serving as a 
benchmark in the form of the first global methyltrans-
ferome genetic interaction compendium 2) identifying 
condition-specific interactions 3) revealing network vulner-
abilities that may have potential as therapeutic targets and 
4) identifying conserved features that can be leveraged in 
focused human genetic interactions studies. 
 
MATERIALS AND METHODS 
Strains and growth conditions 
Single-deletion query strains (MTase∆::NatR ) were kindly pro-
vided by the Boone lab [12]. Essential alleles used as queries in 
this study were previously made in our lab using a DAmP (de-
creased abundance by mRNA perturbation) strategy [46]. To 
construct all pairwise double-deletion MTases query strains 
were mated with the yeast deletion collection (MTase∆::KanR) 
[47] using the Synthetic Genetic Array (SGA) protocol as de-
scribed [14, 20]. The generated double mutants were main-
tained in YPD containing geneticin (G418) and nourseothricin 
(NAT) and stored at -80°C. For growth tests, cells were grown 
in YPD containing G418 and NAT or SD to mid-exponential 
phase and diluted to OD600 0.2. Liquid growth assays were 
performed using TECAN GENios microplate reader 30°C [48]. 
 
Construction of double-deletion mutants  
In brief, we designed an ordered (by systematic name) array 
containing 82 MTase deletion mutants (MATa haploids), 
where each MT gene is replaced with the kanamycin re-
sistance marker (KanR). The array was consolidated into a 
1536 colony format by pinning three sets of MTase arrays 
onto one plate where each mutant is represented four times. 
To minimize the well-known technical variation of colony sizes 
due to plate location effects, two outermost rows and col-
umns, as well as four columns between the array sets were 
filled with control his3Δ strain. Next, using SGA technology [11, 

12, 49] we crossed the arrayed MT mutants with deletion 
query mutants (MATα haploids) where the MTase gene is 
replaced with the nourseothricin resistance marker gene 
(NatR). A series of robotic pinnings (BM10, S&P Robotics, Inc.) 
of the arrays on selective media was used to induce meiosis 
and select for haploid mutants carrying both deletions. In total, 
the set of 33 plates contained 7614 double-deletion mutants, 
where each mutant was represented by at least four replicates. 
The reciprocal mutants (over 80% in a set) were represented 
by 8 replicates (KanR-NatR and NatR-KanR pairs). Haploid 
double-mutant colonies were photographed after a defined 
interval (2-3 days), and colony sizes were quantified using 
ColonyImager software [49]. 

 
Histone methylation assays 
To assay histone methylation status, cells were treated with 
the opi3Δ chemical probe for 2 hours (hrs) in SC media, lysed 
and analyzed by western blotting using H3K4 and an H3K36 di-
methyl specific antibodies. Phospho-glycerol kinase (PGK) was 
used as a loading control. In the mammalian assays, following 
treatment with 30 µM of opi3Δ chemical probe for 2hrs, cell 
lysates from A549 cells were separated by SDS-PAGE, im-
munoblotted and probed with H3K4 and H3K79 di-methyl 
specific antibodies. Actin was used as a loading control. 
 
Data analysis and genetic interaction score 
The procedure for scoring genetic interactions was adopted 
from [22]. Colony sizes were first normalized to correct for 
systematic artifacts. Briefly, normalization steps included scal-
ing each colony size to 1) the median of all double mutants 
carrying this NAT-marked mutation 2) the median of all double 
mutants in a particular set and 3) the median of all double 
mutants carrying this KAN-marked mutation within the same 
position on the plate. This normalization procedure corrects 
for both growth differences between plates as well as growth 
defects associated with a given query strain.  

To calculate a robust genetic interaction score, several sys-
tematic technical and quality control steps must be corrected 
for. The final interaction accounts for the difference in the 
medians of the normalized sizes of the double mutants and 
their expected sizes, divided by the sum of their standard de-
viations. The score was obtained using the following equation: 

 

 
 
where: μdouble is the mean of normalized colony sizes for the 
double mutant of interest; μcontrol is the median of normalized 
colony sizes for all double mutant of containing the Kan-
marked mutant of interest (array); ηdouble and ηcontrol is 4 (num-
ber of experimental replicates); Scontrol is the median of the 
variances in normalized colony sizes observed for all double 
mutants containing the Kan-marked mutant of interest (array); 
Svar is the variance of the normalized colony sizes for the dou-
ble mutant of interest defined as: 
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where σ2
double is the maximum of the variance of normalized 

colony sizes for the double mutant of interest; σ2
countrol is the 

median control of the variances in normalized colony sizes 
observed for all double mutants containing the KAN-marked 
mutant of interest. Because the double mutant strains in 
which the markers (NatMX and KanMX) are present in the 
same chromosomal locations the double mutant is lethal (i.e. 
the strains on the diagonal in the matrix) due to inability to 
grow in the presence of both selectable markers (G418 and 
NAT), we used this phenotype to check for the accuracy of the 
strains. Additionally, to decrease the rate of false positive 
scores for the genes located within 50kb of each other, these 
gene pairs were also filtered out (Figure S1C) due to a possible 
linkage of these genes that may result in failure to segregate 
during meiosis. We also found that the genetic profiles of the 
reciprocal strains (NatR-KanR vs KanR-NatR) tend to correlate 
strongly to each other (Figure S1D). Based on these measures 
we were able to identify incorrect strains. For the final calcula-
tions of the scores, we removed reciprocal gene pairs with 
opposite signs and averaged the scores with the same sign. 
The scores for the gene pairs present only in “one direction” in 
the screen were halved, so they would be comparable to the 
averaged scores for the reciprocal strains. 
 
Data analysis 
Data manipulation and statistical analysis was performed with 
MATLAB and R [50]. Hierarchical clustering analysis was per-
formed using Cluster 3.0 using average linkage as the cluster-
ing method. Euclidean and Pearson correlation were used as 
the distance metric for genetic interaction and correlation-

based networks, respectively. Heatmap figures were created 
using Java Treeview [51] or R [50]. 
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