) NEUROSCIENCE
W of Consciousness

Michael M. Schartner

* and Christopher Timmermann

Neuroscience of Consciousness, 2020, 6(1): niaa024

Spotlight Commentaries

2,3

Département des Neurosciences Fondamentales, Université de Genéve Rue Michel Servet 1 CH-1211 Geneva
Switzerland; Department of Medicine, Centre for Psychedelic Research, Division of Brain Sciences, Imperial
College London, UK The Commonwealth Building, The Hammersmith Hospital, Du Cane Road, London W12
ONN; 3Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Medicine,
Imperial College London, UK Burlington Danes Building Hammersmith Hospital Du Cane Road London W12

ONN

*Correspondence address. Département des Neurosciences Fondamentales, Université de Genéve. E-mail: michael.schartner@unige.ch

The regulatory role of the serotonergic system on conscious perception can be investigated perturbatorily with psychedelic
drugs such as N,N-Dimethyltryptamine. There is increasing evidence that the serotonergic system gates prior (endogenous)
and sensory (exogenous) information in the construction of a conscious experience. Using two generative deep neural net-
works as examples, we discuss how such models have the potential to be, firstly, an important medium to illustrate phe-
nomenological visual effects of psychedelics—besides paintings, verbal reports and psychometric testing—and, secondly,
their utility to conceptualize biological mechanisms of gating the influence of exogenous and endogenous information on

visual perception.
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The framework of predictive coding states that the human
brain generates a model of the world by constantly combining
prior beliefs with sensory information (Friston 2018). The
resulting model is partially consciously perceived and subject
to report. Each experience depends on a balanced weighting
of prior and sensory information, a balance that can be dis-
turbed by classical psychedelics which act primarily via the
serotonergic system (Jacobs and Trulson 1979). Inspired by the
usage of deep convolutional neural networks to model psy-
chedelic hallucinations (Mordvintsev et al. 2015; Suzuki et al.
2017) and increasing evidence on the role of the serotonergic
system in gating sensory information (Azimi et al. 2020), we
suggest two recent generative deep convolutional neural net-
work architectures to illustrate the perturbation of the

balanced integration of sensory and prior information associ-
ated with visual perception.

We exemplify a psychedelic perturbation via N,N-
Dimethyltryptamine (DMT), a hallucinogen known for inducing
some of the most vivid and unique forms of visual imagery (i.e.
hallucinations) known to science, which can be reliably elicited
during eyes-closed conditions (Szara 1956; Strassman et al.
1994). Descriptions of DMT-induced changes in conscious per-
ception can be found in answers to systematic questionnaires
(Timmermann et al. 2018a), phenomenological research
(Shanon 2002a, b), anecdotal evidence (Erowid Center erowid’s
Experience Vaults) and paintings featured in ‘visionary art’
(Grey 1990; Luna and Amaringo 1999). The striking changes in
visual perception caused by DMT (commonly described as
‘immersive’ forms of visual imagery), the short duration of
effects (5-20 min) and the low health risk qualify this substance
as a well-controlled perturbational tool for the study of
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conscious perception (Timmermann et al. 2019). Although it is
known that DMT’s psychedelic effects result from the molecule
binding to various serotonin receptor types, as confirmed
behaviourally in both humans (Valle et al. 2016) and mice
(Keiser et al. 2009), it remains an open question how the mole-
cule perturbs the balanced integration of sensory and prior in-
formation in conscious perception.

Deep convolutional neural network architectures are being
used as generative models to produce increasingly realistic
images, showing e.g. faces, bedrooms or cars that do not actu-
ally exist but look deceivingly real (Karras et al. 2019). The un-
derlying convolutional network architecture can be seen as a
detailed model of the visual processing system in the mamma-
lian brain, as has been shown by matching specific network
layers with brain regions in monkeys (Rajalingham et al. 2018)
and humans (Grossman et al. 2019). We present the output of
two deep convolutional neural network architectures resulting
in visual features reminiscent of descriptions of psychedelic-
induced visual imagery. Firstly, using a generative model
designed to produce realistic images of human faces (Karras
et al. 2019), we show the impact of perturbing the noise input of
the model and discuss a potential biological interpretation for
the omission of noise. Noise is usually added to all levels of the
model to produce most realistic output and its omission results
in a painterly, smooth version of the generated images, in line
with descriptions of imagery reported by people under the influ-
ence of DMT. Importantly, this generative model illustrates fur-
ther how sparse latent information about visual scenes may
result in rich conscious experiences, using the ventral visual
system in the mammalian brain as a ‘canvas’ for perception or
imagination (Pearson 2019). Secondly, we discuss a convolu-
tional network for style transfer - i.e. changing a given ‘content’
image to resemble, in style only, a ‘style’ image (Gatys et al.
2016) — which results in images consistent with visual depic-
tions of beings (or ‘entities’) featured in DMT-induced forms of
‘visionary art’ (Grey 1990; Luna and Amaringo 1999). The influ-
ence of style onto a given content image can be regulated with a
parameter when training the model, which one might explore
as a DMT-dose-dependent visual distortion.

The proposed model interpretations are speculative exam-
ples intended to illustrate the potential of generative deep neu-
ral networks to create visual output in line with psychedelic
phenomenology. Such models not only have the potential util-
ity of being a most accurate medium to illustrate visual effects
of psychedelics but also to conceptualize potential biological
mechanisms of the balanced integration of exogenous and en-
dogenous information into conscious experience.

NVIDIA’s generative model (Karras et al. 2019) consists of an 18-
layer feed-forward convolutional neural network, fine-tuned
with adversarial network techniques to generate highly realistic
images of human faces. Adversarial training of a generative
model consists of two networks, a generator and a ‘critic’. The
generator network synthesizes an image from latent activity
and the ‘critic’ evaluates the distance of this image from the dis-
tribution of the training set. Both networks can be trained via
back-propagation to improve their performance, assessed via
metrics such as the Frechet Inception Distance, measuring the
distance between feature vectors (i.e. activity in late but not

final network layers) of real and generated images (Karras et al.
2017).

The output image of the trained generating network is deter-
mined by a ‘content’ vector of 512 numbers that influence the
input to each convolution, via an extra non-linear multi-layer
network and subsequent affine transformations. Different parts
of the content vector determine different classes of features of
the portrait image, from coarse ones such as face proportions
and expression to fine ones such as skin and hair colour.
Figure 1a shows a schematic of the architecture developed by
Karras et al. (2019).

Besides the content vector, the generated output image is
further influenced by noise that is added directly to each pixel
before each convolution. The omission of this noise results in
fewer fine-details in the generated image, such as freckles or in-
dividual hair, and an overall smoother look, as shown in Fig. 1c,
when comparing the top left image (weak noise added to all
layers, 1-18, designed to create the most realistic images) with
the bottom left image (complete omission of noise). The result-
ing absence of image details, being a ‘cleaned-up’ version of the
scene, can be widely found in verbal and artistic depictions of
the visual effects induced by DMT. Contents of DMT experiences
often either consist of low-level features (e.g. geometrical pat-
terns) alone, or complex scenes composed of simple visual
motifs (Grey 1990; Strassman 1996; Shanon 2002b). Noticeably,
DMT is known for inducing visual imagery, which is able to
compete with (and at high doses completely ‘overlay’ over) vi-
sual imagery triggered by the external environment, often
resulting in confusing experiences, in particular in eyes-open
conditions (Strassman 2001).

Unlike in the decoding step of an autoencoder where latent
activity in one layer entirely determines the output, the starting
activity of NVIDIA’s generative network is constant and the out-
put image is influenced by style and noise input at each layer.
The activity in early layers might be interpreted biologically as
activity in the inferotemporal cortex (IT) [a compact representa-
tion of a visual scene (Kornblith and Tsao 2017; Grossman et al.
2019) at the final stage of the ventral visual stream], while the
output layer may correspond to more primary visual areas early
in the ventral stream (Fig. 1b). That is, the ventral visual system
is used top-down for the generation of a consciously perceived
image, in line with literature on mental imagery, stating that
the visual system is a ‘canvas’ that can either be used by per-
ception or imagination (Pearson 2019). The details of the image
depend on the network weights (which we can interpret as en-
dogenous prior information), the input of style in each layer
(which can be interpreted either as endogenous, for imagina-
tion, or exogenous for perception) and, to a lesser extent, to
noise input. That noise input may be interpreted as spontane-
ous activity in visual areas such as V1, as it was shown that in
mice 5-HT?2a receptors are involved in ‘powerful scaling of on-
going and evoked components of population activity in V1’
(Azimi et al. 2020), which may thus regulate indirectly the exoge-
nous influence on perception.

This is, however, only one interpretation to illustrate the
potential of this generative model in producing visual effects
reminiscent of those brought about by DMT by manipulating
the noise input, while, at the same time, conceptualizing bio-
logical mechanisms. In order to illustrate the range of possible
noise manipulations of the model, we further show in Fig. 1c,
the visual effects of additional noise perturbations, which
seem, however, less suitable to model visual effects of DMT.
When increasing the noise input amplitude by a factor of 10
(called medium noise in Fig. 1c) and adding this noise to all



(@) LConstant?

D <«——F Npise 1

Style 1 =t

Convolution

& —-N)sé

Style 2 —p {7

]

|
Convolution
' (18 blocks)

) «——Nois<€ 18

Neural network models for DMT-induced visual hallucinations | 3

mediun;noise 1-14

L

Style 18 = |7

L

Convolution

Consciously

Output image Retina

DMT ? . :
T perceived image

no'noise'1-18 noise 1-5

Figure 1. NVIDIA’s generative model with noise perturbation and analogous hypothesized brain mechanism. (a) NVIDIA’s styleGAN architecture
(Karras et al. 2019) consists of 18 blocks, each processing information by adding style input — 512 numbers which were transformed via a trained
extra network (not shown), a learned affine transformation and then influence the information stream via adaptive instance normalisation
(AdalN) at each block. Furthermore, scaled noise is independently added before each convolution. (b) Sketch of the recurrent information flow,
from the retina to a consciously perceived image in the human brain with some of the information flow being blocked by DMT, hypothetically
corresponding to the omission of noise in NVIDIA’s generative model. (c) The top left face was generated using NVIDIA’s StyleGAN (Karras et al.
2019) with default parameters, including weak noise being added to all layers, resulting in realistic output. When removing the noise input
completely, the face appears smoother, in line with frequent reports of DMT experiences about ‘cleaned-up’ scenes, shown in the bottom left
image. Two additional images illustrate other noise perturbations of the model. The upper-right one with noise input increased by a factor of
10 in amplitude and applied to all but the last four layers. The lower right one shows severe image distortions as a result of strong noise (factor

40) applied to the first five layers.

but the last four layers, the output image becomes less realis-
tic and markedly changed in style. Increasing the noise input
amplitude by a factor of 40 and adding it only to the first five
layers distorts the image dramatically, with the network
hardly being able to stabilize on a face at all (strong noise in
Fig. 1c). There are further weak noise manipulations of this
network reported in Karras et al. (2019) with comparably subtle
effects on style.

Style-Transfer Network with Style Image as
Prior

Creating visual effects that resemble those reported by people
under the influence of DMT can further be achieved using style-
transfer networks. These architectures take a style image and a
content image as input and create a stylized version of the con-
tent image. This was originally achieved by Gatys et al. (2016) us-
ing a deep convolutional neural network—trained for image
classification on a large training set of natural images—and
identifying the activation in deeper layers as encoding content
while it was found that the inner product of feature maps com-
bined across several intermediate layers (a Gram matrix) produ-
ces a scale-invariant representation of the style of an image.
Given two images, a content-loss function can be defined for a
given layer as the root-mean-square difference in the activation
in that layer caused by the two different images, and a style-
loss function as a normalized root-mean-square difference in
their style-representing Gram matrices. Using back-
propagation, this weighted sum of the content-loss function
and the style-loss function allows to change pixels in a random

image such that it reflects the style of one image and the con-
tent of the other.

We used a fast approximation (Johnson et al. 2016; Fast-
Neural-Style Pytorch Implementation for Artistic Style Transfer)
of the method by Gatys et al. with visually similar results.
Figure 2 shows a portrait image (generated with NVIDIA’s face
generator) as a content image on the left, stylized using a paint-
ing by the artist Udnie, in the middle. The stylized image dis-
plays the potential to resemble certain DMT-induced
hallucinations, as described in Grey (1990) and Luna and
Amaringo (1999).

The general anatomical interpretation of this style-transfer ar-
chitecture is also the ventral visual stream, Fig. 1b, with the higher
layers corresponding to the IT, proposing that the feedback pro-
cess is part of creating the perceived image in the brain, in line
with the notion that vision is an active process, where both, top-
down and bottom-up signals are integrated into a consciously per-
ceived image (Gilbert and Li 2013). The activation in later network
layers that encode content may be seen as activity in IT, compactly
encoding the content of a scene, while activity in earlier layers
encodes details (the style) of the image. The weights of the model
are fixed by training on a large set of natural images and the influ-
ence of the style has to be set by one scalar before training. That is,
a content image is changed according to the style, whose intensity
can be set before training. A possible biological interpretation is to
see the style as endogenous prior information - encoded in the
weights of the network — while the external sensory information —
the input image - is kept constant.

Interpreting the content to reflect veridical, exogenous infor-
mation while the style is endogenous, can be motivated by sub-
jective accounts of DMT experiences. At small or medium
doses, reports of DMT-induced perceptual changes with eyes
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Figure 2. Example output of a style-transfer network. The portrait image of a non-existing child [generated using NVIDIA’s face generator
(Karras et al. 2019)] was stylized via a style-transfer deep neural network (Fast-Neural-Style Pytorch Implementation for Artistic Style Transfer),
shown in the middle. The used style was an image of an abstract painting by Udnie. The stylized image may resemble a stylized world view
that people report under the influence of DMT in eyes-open conditions at moderate doses. The right-most image shows the output of the
style-transfer network when training the weights with a large bias on style, resulting in a near-complete overwriting of the content image and
possibly modelling DMT-effects at high doses. These two examples illustrate a modelling of dose-dependent visual effects via changes in style.

open are often reported as being simple geometric approxima-
tions of veridical scenes, more reflecting changes in style rather
than content (the actual scene). That is, the ‘broad strokes’ of
the perceived scene remain unchanged while the style (amount
of detail) is changed. However, phenomenological reports about
high doses of eyes-open DMT experiences contain descriptions
of perceiving detailed scenes, overlaying on top of the external
veridical scene (often called ‘breakthrough’ experience). This
would speak in favour of shifts in both endogenous content and
endogenous style, similar to dream imagery and eyes-closed
imagery associated with DMT administration.

To further illustrate the potential of mimicking DMT-dose-
dependent visual distortions, the right-most image in Fig. 2
shows the results of a network trained with a very high weight-
ing for style [content-weight set to 1e5 and style-weight to 1e12
using (Fast-Neural-Style Pytorch Implementation for Artistic
Style Transfer), resulting in nearly completely overwriting the
content of the input image.

Discussion

Using two deep convolutional network architectures, we
pointed out the potential to generate changes in natural images
that are in line with subjective reports of DMT-induced halluci-
nations. Unlike human paintings of psychedelic hallucina-
tions—the traditional way to illustrate psychedelic imagery—
using well-defined deep network architectures allows to draw
parallels to brain mechanisms, in particular with respect to a
perturbed balance between sensory information and prior infor-
mation, mediated by the serotonergic system.

In our first model, NVIDIA’s generative model StyleGAN
(Karras et al. 2019), we show how perturbation of the noise input
can lead to image distortions reminiscent of verbal reports from
controlled experiments in which DMT has been administered
(Timmermann et al. 2019). In particular, the omission of noise
leads to a smoother, painterly look of the images, illustrating a
potential hypothesis that can be conceptualized with such mod-
els: as a 5-HT2A receptor agonist, DMT induces a state in which
environmental (i.e. exogenous) sensory information is partially
blocked—gated by the inserted noise—and system-internal (en-
dogenous) signals are influencing conscious imagery more
strongly. Contents of immersive imagery experienced in eyes-
closed conditions during DMT administration would thereby

correspond to the system’s prior information for the construc-
tion of a consciously perceived scene.

Our second model, the style-transfer network architecture,
allows us to depict nearly any report of a visual hallucination -
assuming one can find a matching content and style image. A
possible neural interpretation here is a re-weighing of exoge-
nous and endogenous information caused by DMT, e.g. weaken-
ing the sensory information (content image) while increasing
the style prior, leading to a simplified depiction of a scene. We
hereby add to Google’s ‘deepdream’ results, where a network
trained to classify images can be used to backpropagate activa-
tion in a certain layer to pixels of a content image (Mordvintsev
et al. 2015; Suzuki et al. 2017), showing patterns resembling those
drawn by people that experienced psychedelic states, in partic-
ular when recurrently back-propagating pixel changes in accor-
dance with a certain activation pattern in deeper layers.

The amount of possible visual scenes that can be generated
with this deep style-transfer network is only bound by the num-
ber of style and content images one can find. This generality
may be seen as an advantage when conceiving deep neural net-
work models as an important medium to illustrate phenomeno-
logical effects of psychedelics, besides illustrations and
subjective reports. However, more refined psychometric ques-
tionnaires and phenomenological methods (Petitmengin 2006)
would be needed to tweak model outputs towards most accu-
rate depictions of common visual effects of DMT. This might be
initially achieved by asking participants of DMT experiments to
select the most appropriate style-transfer output images from
galleries such as deepart (Leon Gatys and Bethge). The model’s
merit in terms of biological plausibility lies in the adjustable in-
fluence of the two components—style and content—that may
be mapped to endogenous and exogenous information, respec-
tively, with the adjustment of the perturbation to reflect the
DMT-dose.

With both models, we suggest in particular the suppression
of exogenous sensory signals following DMT administration, in
line with a study showing that activity very early in the visual
stream, in retinal neurons, is suppressed by DMT (Heiss et al.
1973). This would appear inconsistent with evidence indicating
that psychedelic effects are associated with reductions of top-
down and increases in bottom-up signals (Alonso et al. 2015;
Timmermann et al. 2018b; Carhart-Harris and Friston 2019;
Alamia et al. 2020). This contradiction can be resolved when en-
dogenous activity (i.e. not related to external input) stemming



from visual areas is conceptualized as endogenously originating
bottom-up activity, as opposed to that of endogenous top-down
priors. The importance of primary visual areas for mental imag-
ery without exogenous information has been shown in studies
using non-pharmacologically enhanced imagination only
(Pearson 2019). This conceptualization is consistent with perva-
sive reports of perceiving geometrical patterns during psyche-
delic experiences, which may reflect the anatomical structure
of the visual cortex as mathematical modelling suggests [see
early phenomenological work on geometrical ‘form constants’
encountered in psychedelic experiences (Kliver 1942) and math-
ematical modelling of these form constants (Bressloff et al. 2001)].
The reported appreciation of novelty regarding these experiences
and apparent absence of connection with participants’ previous
forms of semantic knowledge or biographical memories [espe-
cially prevalent during DMT experiences (Strassman 2001)] is
consistent with the idea that these forms of visual experiences
represent an increased influence of endogenous prediction errors
(usually considered as bottom-up input), incoming from within
the visual system, resulting in the updating of top-down priors.
These updated priors possibly account for some of the long-term
effects associated with psychedelic experiences on personality,
brain function and brain anatomy (MacLean et al. 2011; Bouso
et al. 2015; Erritzoe et al. 2018; Barrett et al. 2020).

Research on image encoding in IT suggests that ‘the compu-
tational mission of IT face patches is to generate a robust, effi-
cient, and invariant code for faces, which can then be read-out
for any behavioural/cognitive purpose downstream’ (Kornblith
and Tsao 2017). The latent information entering the NVIDIA
generative model may thus be interpreted as activity in IT and
the output image as the consciously perceived scene, con-
structed during the read-out by other cortical areas. How this
read-out creates an experience is at the heart of the mind-body
problem and we suggest that modelling the effects of DMT on
the balance between exogenous and endogenous information
may provide experimentally testable hypotheses about this
central question of consciousness science. For the example of
compact representations of visual scenes in IT, this is especially
relevant, since in this brain region the density of 5-HT2A recep-
tors [primarily associated with psychedelic effects, however,
not solely (Barker 2018)] is particularly high (Beliveau et al. 2017).

The serotonergic system plays a key role in the balancing
between endogenous and exogenous information involved in
the construction of conscious experience, as the perturbation
by psychedelic molecules such as DMT shows. This balancing
is heavily mediated by the interplay between 5-HT1A and 5-
HT2A receptors (Nichols 2016; Azimi et al. 2020). Although se-
rotonin receptors can be found across the cortex (Beliveau
et al. 2017), specific mechanisms (at different spatial scales)
underlie the effects of psychedelics in perception (Nichols
2004). Here we added a cognitive perspective on these systems
neuroscience approaches to identify mechanisms of combin-
ing endogenous and exogenous information into conscious
experience.
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