Brief Communication

Should Women with Polycystic Ovarian Syndrome be Prioritized to Receive the COVID Vaccine?

Duru Shah

Gynaecworld, The Center for Women's Health and Fertility, Mumbai, Maharashtra, India

COVID-19 first manifested as a severe respiratory syndrome caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, it is now understood that it can affect vascular, cardiac, gastrointestinal, renal, and central nervous systems apart from respiratory system.^[1] Current understanding of the pathophysiology of COVID-19 infection suggests that the expression of angiotensin-converting enzyme 2 (ACE2) receptors facilitates the entry of the virus into the cells.^[2] It causes endothelial vascular damage, alters the immune response, creates an inflammatory state, and contributes to the involvement of multiple organs.^[3]

Polycystic ovarian syndrome (PCOS) is a syndrome which presents with multiorgan symptoms. The polycystic morphology of ovaries is the result of hyperandrogenaemia, but not its cause. PCOS is today considered as a proinflammatory disorder.

Both men and women are equally affected by COVID-19, with a propensity for severe disease and a higher mortality in men compared to women.^[4] These gender disparities made researchers study the influence of male hormones on the immune response to COVID-19 infection.^[5,6] The findings can be summarized as:

- 1. Behavioral differences between men and women such as higher rates of smoking, noncompliance to using protective measures, a higher prevalence of noncommunicable diseases, and low Vitamin D levels could be contributory to the higher incidence of COVID-19 infection seen in men versus women^[7-10]
- 2. SARS-CoV-2 uses ACE2 and transmembrane protease serine 2 receptors to enter the cells. These entry points are positively influenced by the presence of androgens^[11]
- 3. There is a difference in the immune responses of men and women to COVID-19 infection. Women

Received: 02-06-2021 Accepted: 03-06-2021	Revised: 03-06-2021 Published: 28-06-2021
Access this article online	
Quick Response Code:	Website: www.jhrsonline.org
	DOI: 10.4103/jhrs.jhrs_78_21

demonstrate a stronger T-cell response while a milder T-cell response is seen in men.^[12]

More severe Covid-19 infection has been observed in bald men and in women with androgenic alopecia.^[13,14] Deprivation of androgens as seen in patients with prostate cancer is found to make these men partially protected, compared to those who are not androgen deprived.^[15,16] Reduction in viral load has also been observed in men and women who were on androgen receptor inhibitors.^[17,18] Thus, androgenic status could be one of the important contributory factors for the increased severity of COVID-19 in men.

Women with PCOS may have clinical or biochemical hyperandrogenemia. Eighty percent of PCOS women are obese and a large percentage of them are insulin resistant, with a higher risk of developing gestational diabetes mellitus during pregnancy and Type 2 diabetes mellitus (T2DM) at a relatively young age. There are considerable data indicating that diabetes and obesity are the predictors of severe morbidity and mortality in COVID-19 infection.^[4,19-22]

Obesity is often accompanied by comorbidities including T2DM, hypertension, cardiovascular disease, and renal disease, which affects the severity of any infection. Since adipose tissue has a higher expression of ACE2 receptors, there is a prolonged presence of the SARS-CoV-2, leading to a greater exposure and increased risk of severe disease.^[23,24] Obesity is also associated with chronic inflammation, abnormal cytokine activation, and dysfunction of inherent immunity, leading to a worse prognosis in those infected. Hence,

Address for correspondence: Dr. Duru Shah, Gynaecworld, The Center for Women's Health and Fertility, Kwality House, 1st Floor, Kemps Corner, Mumbai - 400 026, Maharashtra, India. E-mail: durushah@gmail.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Shah D. Should women with polycystic ovarian syndrome be prioritized to receive the COVID vaccine? J Hum Reprod Sci 2021;14:213-4.

obese women with a proinflammatory disorder of PCOS have an increased risk of severe COVID-19 infection.

There is a high prevalence of PCOS in women of Indian ethnicity. Recently, the European Society for Endocrinology has published guidelines for the endocrine phenotype of the COVID-19 pandemic. The guidelines suggest that patients with endocrine disorders should be considered as high priority for vaccinations, especially those individuals with diabetes and obesity.^[25]

Hence, I strongly recommend that PCOS women with their strong predisposition to both T2DM and obesity should be included as a high-risk group and prioritized for COVID vaccination in India.

The author is the President of PCOS Society of India.

Financial support and sponsorship Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

- Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, *et al.* Extrapulmonary manifestations of COVID-19. Nat Med 2020;26:1017-32.
- Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, *et al.* Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020;581:215-20.
- 3. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, *et al.* Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med 2020;383:120-8.
- Brandi ML, Giustina A. Sexual dimorphism of coronavirus 19 morbidity and lethality. Trends Endocrinol Metab 2020;31:918-27.
- Peckham H, de Gruijter NM, Raine C, Radziszewska A, Ciurtin C, Wedderburn LR, *et al.* Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat Commun 2020;11:6317.
- Bergman J, Ballin M, Nordström A, Nordström P. Risk factors for COVID-19 diagnosis, hospitalization, and subsequent all-cause mortality in Sweden: A nationwide study. Eur J Epidemiol 2021;36:287-98.
- Agrawal H, Das N, Nathani S, Saha S, Saini S, Kakar SS, *et al.* An assessment on impact of COVID-19 infection in a gender specific manner. Stem Cell Rev Rep 2021;17:94-112.
- Haischer MH, Beilfuss R, Hart MR, Opielinski L, Wrucke D, Zirgaitis G, *et al.* Who is wearing a mask? Gender-, age, and location-related differences during the COVID-19 pandemic. PLoS One 2020;15:e0240785.
- 9. Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, Brinton RD, Carrero JJ, DeMeo DL, *et al.* Sex and gender: Modifiers of health, disease, and medicine. Lancet 2020;396:565-82.
- 10. Bouillon R, Marcocci C, Carmeliet G, Bikle D, White JH, Dawson-Hughes B, et al. Skeletal and extraskeletal actions of

vitamin D: Current evidence and outstanding questions. Endocr Rev 2019;40:1109-51.

- Qiao Y, Wang XM, Mannan R, Pitchiaya S, Zhang Y, Wotring JW, *et al.* Targeting transcriptional regulation of SARS-CoV-2 entry factors ACE2 and TMPRSS2. Proc Natl Acad Sci U S A. 2020 Dec 11;118(1):e2021450118.
- Takahashi T, Ellingson MK, Wong P, Israelow B, Lucas C, Klein J, *et al.* Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020;588:315-20.
- Lee J, Yousaf A, Fang W, Kolodney MS. Male balding is a major risk factor for severe COVID-19. J Am Acad Dermatol 2020;83:e353-4.
- 14. Wambier CG, Vaño-Galván S, McCoy J, Gomez-Zubiaur A, Herrera S, Hermosa-Gelbard Á, *et al.* Androgenetic alopecia present in the majority of patients hospitalized with COVID-19: The "Gabrin sign". J Am Acad Dermatol 2020;83:680-2.
- Formenti AM, Dalla Volta A, di Filippo L, Berruti A, Giustina A. Effects of medical treatment of prostate cancer on bone health. Trends Endocrinol Metab 2021;32:135-58.
- Montopoli M, Zumerle S, Vettor R, Rugge M, Zorzi M, Catapano CV, *et al.* Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: A population-based study (N =4532). Ann Oncol 2020;31:1040-5.
- 17. Cadegiani FA, McCoy J, Gustavo Wambier C, Goren A. Early antiandrogen therapy with dutasteride reduces viral shedding, inflammatory responses, and time-to-remission in males with COVID-19: A randomized, double-blind, placebo-controlled interventional trial (EAT-DUTA AndroCoV Trial-Biochemical). Cureus 2021;13:e13047.
- Cadegiani FA, McCoy J, Gustavo Wambier C, Vaño-Galván S, Shapiro J, Tosti A, *et al.* Proxalutamide significantly accelerates viral clearance and reduces time to clinical remission in patients with mild to moderate COVID-19: Results from a randomized, double-blinded, placebo-controlled trial. Cureus 2021;13:e13492.
- Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020;75:1730-41.
- 20. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, *et al.* Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061-9.
- 21. Hill MA, Mantzoros C, Sowers JR. Commentary: COVID-19 in patients with diabetes. Metabolism 2020;107:154217.
- Corona G, Pizzocaro A, Vena W, Rastrelli G, Semeraro F, Isidori AM, *et al.* Diabetes is most important cause for mortality in COVID-19 hospitalized patients: Systematic review and meta-analysis. Rev Endocr Metab Disord 2021;22:275-96.
- 23. Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, *et al.* Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol 2020;251:228-48.
- 24. Moriconi D, Masi S, Rebelos E, Virdis A, Manca ML, De Marco S, *et al.* Obesity prolongs the hospital stay in patients affected by COVID-19, and may impact on SARS-COV-2 shedding. Obes Res Clin Pract 2020;14:205-9.
- Puig-Domingo M, Marazuela M, Yildiz BO, Giustina A. COVID-19 and endocrine and metabolic diseases. An updated statement from the European Society of Endocrinology. Endocrine 2021;72:301-16.