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Simple Summary: Bovine mammary epithelial cells (bMECs) are often used as cell models for
mammary gland research. They are the most important cells for mammary gland function and the first
line of defense for pathogen identification. MicroRNAs (miRNAs) are important regulatory factors
involved in many physiological and pathological processes. Here, we examined a transcriptome
profile of bovine mammary epithelial cell lines transfected with miR-375 inhibitor or negative control
(NC) inhibitor, and further reveal the potential role of miR-375 in bMECs by differentially expressed
mRNA analysis. We found that miR-375 potentially promotes inflammation in the mammary gland
through the MAPK signaling pathway.

Abstract: MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate post-transcriptional
gene expression and several biological processes. Bovine mammary epithelial cells (bMECs) mediate
critical immune responses in the mammary gland and the occurrence of mastitis. Current research
focuses on miRNA regulation of bMECs, but the miR-375 regulatory mechanism in bMECs is unclear.
This study explored the role of miR-375 by profiling the transcriptome of miR-375-silenced bMECs using
RNA-seq and identifying differentially expressed mRNAs (DIE-mRNAs). There were 63 DIE-mRNAs,
including 48 down-regulated and 15 up-regulated mRNAs between miR-375-silenced bMECs and the
controls. The Kyoto encyclopedia of genes and genomes (KEGG) and Gene Ontology (GO) functional
analysis showed that the DIE-mRNAs enriched nuclear receptor subfamily 4 group A member 1 (NR4A1)
and protein tyrosine phosphatase non-receptor type 5 (PTPN5) anti-inflammatory genes of the mitogen-
activated protein kinase (MAPK) signaling pathway. However, they showed an opposite trend to the
expression of miR-375 silencing, suggesting that miR-375 promotes bMEC inflammation through the
MAPK signaling pathway. The findings of this study provide a new reference for understanding the
regulation of bMEC inflammation and cow mastitis.

Keywords: miR-375; dairy cow; mastitis; RNA-seq; bMEC; MAPK signaling pathway

1. Introduction

Mastitis causes significant economic losses to the agricultural sector by reducing milk
production and quality [1]. Many factors affect mastitis, including the genetics of the
animal, which influences the susceptibility or resistance of the animal to the disease [2]. The
cow mammary gland primarily comprises the bovine mammary epithelial cells (bMECs)
involved in the synthesis and secretion of milk [3]. Furthermore, it is the first barrier
preventing pathogens from invading cow mammary glands by secreting several immune
regulatory factors [4]. Therefore, bMECs are important in the milk production and mam-
mary gland immunity of dairy cows. However, many genes regulate the growth activity
and function of bMECs [5–7].
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MicroRNAs (miRNAs) are a class of single-stranded endogenous non-coding small
RNA molecules with 20–25 nucleotides [8]. They negatively regulate mRNA transcription
and translation by targeting the 3’UTR of messenger RNAs (mRNAs), thereby regulating
various cellular activities, including proliferation, differentiation, development, apoptosis,
inflammation, and other biological processes [8,9]. Recently, numerous studies examined
the differential expression of miRNAs in bovine mammary epithelial cells [10,11]. For
example, miRNA-145 regulates the expression of immune cytokines in bovine with mastitis
by targeting the expression of the fascin actin-bundling protein 1 (FSCN1) gene [12]. MiR-
125b [13] and miR-146a [14] aggravate and alleviate mastitis in dairy cows by targeting the
NF-κB inhibitor-interacting Ras-like 2 (NKIRAS2) and Toll-like receptor 4 (TLR4)/tumor
necrosis factor receptor-associated factor 6 (TRAF6)/NF-κB pathways, respectively. In
addition, in lipoteichoic acid (LTA)-induced inflammation of bMECs, miR-23a inhibits
the inflammatory response by directly targeting PI3K [15]. MiR-204-5p promotes lipid
synthesis in mammary epithelial cells by targeting sirtuin 1 (SIRT1) [16]. Despite these
reports, the regulatory patterns and mechanisms of numerous miRNAs remain unclear.

MiR-375, a member of the miRNA family, was first described in MIN6 and TC1 cells
of the mouse pancreas. MiR-375 is involved in islet formation and insulin secretion [17]. In
recent years, studies have revealed that human miR-375 regulates various physiological and
pathological functions of cells. For instance, miR-375 regulates the occurrence and develop-
ment of colorectal cancer, knee osteoarthritis, acinar cells inflammation, and nasopharyn-
geal carcinoma by targeting the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic
subunit alpha (PIK3CA), autophagy-related 2B (ATG2B), autophagy-related 7 (ATG7), and
pyruvate dehydrogenase kinase 1 (PDK1) genes, respectively [18–21]. Additionally, hu-
man miR-375 participates in breast cancer progression [22]. MiR-375 is one of the most
down-regulated miRNAs in breast tissues following Staphylococcus aureus and Escherichia
coli infection, suggesting that it regulates the immune response and inflammation in the
mammary gland [23]. However, whether and how miR-375 regulates inflammation in
the mammary gland are not well understood. The mammary alveolar cells (MAC-T) cell
line is the conventional model for studying the molecular regulation of mammary gland
function in dairy cows [24,25]. The transcriptome profiles of miR-375-silenced MAC-T
were analyzed using the RNA-seq technique to understand how miR-375 regulates the
expression of genes in bMECs and, by extension, the mammary gland.

2. Materials and Methods
2.1. Cell Culture

MAC-T cell lines identified and frozen in our laboratory were used in this research [24,26].
The cells were thawed and cultured in DMEM/F12 (Hyclone, Logan, UT, USA) medium
supplemented with 10% fetal bovine serum (System Biosciences, Mountain View, CA, USA)
at 37 ◦C under 5% CO2 and 100% humidity.

2.2. Transient Transfection of MiR-375 Inhibitor

MAC-T cells were seeded and cultured in 6-well plates. When the cells reached 60–70%
confluence, they were transiently transfected with miR-375 inhibitor or negative control (NC) (fi-
nal concentration 100 nM) using the X-Tremegene HP DNA Transfection Reagent (Roche, Basel,
Switzerland), according to the manufacturer’s instructions. The experiment was performed in
triplicate (3 samples in the inhibitor NC group and 3 samples in the miR-375 inhibitor group).
The transfection efficiency was detected by observing the red fluorescence of Cy3-labeled in-
hibitor NC under an inverted fluorescence microscope (Olympus Corporation, Tokyo, Japan),
and the expression detection inhibition efficiency of miR-375 was analyzed by real-time quanti-
tative PCR (qPCR). The miR-375 inhibitor (5′-UCACGCGAGCCGAACGAACAAAA-3′) and
NC (5′-CAGUACUUUUGUGUAGUACAAA-3′) were designed and synthesized by RiboBio
Co., Ltd. (Guangzhou, China).
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2.3. Sample Collection and RNA Extraction

The MAC-T cells were collected 48 h after transfection. Total RNA was extracted
from the transfected MAC-T using the TriZol kit (Takara Biomedical Technology Co., Ltd.,
Beijing, China) following the manufacturer’s protocol. The concentration and quality of
RNA were determined using agarose gel electrophoresis and a Multi-Mode Reader (BioTek,
Winooski, VT, USA) (Table S1). High-quality RNA samples were used to construct cDNA
libraries as described below.

2.4. Constructing cDNA Libraries and High-Throughput Sequencing

The sequencing library was constructed using the ABclonal mRNA-seq Lib Prep
Kit (ABclonal, Wuhan, China), following the manufacturer’s protocol. The mRNA was
enriched by magnetic beads with Oligo (dT). The mRNA was randomly interrupted by the
fragmentation and converted to double-stranded cDNA. Then, the double-stranded cDNA
was purified using AMPure XP beads (Beckman Coulter, Pasadena, CA, USA). Further,
the purified double-stranded cDNA was end repaired, A-tail enriched, and connected to
sequencing joints. Then, AMPure XP Beads were used for fragment size selection. The
selected fragments were PCR enriched and used to obtain the final cDNA library. Agilent
Bioanalyzer 4150 (Agilent Technologies, Palo Alto, CA, USA) evaluated the library before
qPCR validation. Then, the high-throughput sequencing was performed using the Illumina
Novaseq 6000 (Illumina, San Diego, CA, USA) platform in Shanghai Applied Protein
Technology (Shanghai, China).

2.5. Data Processing and Quality Control

After high-throughput sequencing, the raw data were stored in the FASTQ file format.
We conducted an overall assessment of the quality of the raw reads by Perl, including the
sequencing error rate, ATGC content, raw data composition, and comparative analysis
with the reference genome to ensure the reliability of the sequencing results. Clean reads
were obtained by removing the connector sequences and filtering out low-quality reads
(the number of bases with a base mass value ≤25 accounted for over 60% of the total
reads). The proportion of N (undetermined bases) was <5%. The obtained clean data
were mapped to the bovine reference genome UMD 3.1 (http://oct2018.archive.ensembl.
org/Bos_taurus/Info/Index (accessed on 25 March 2021)) using HiSAT2 software (http:
//daehwankimlab.github.io/hisat2/ (accessed on 25 March 2021)). Finally, clean reads
were used for subsequent analysis.

2.6. Analysis of Differentially Expressed mRNAs

The expression levels of each gene in each sample, expressed as Fragments Per Kilobase
of transcript sequence per Million base pairs sequenced (FPKM), were calculated using
FeatureCounts (http://subread.sourceforge.net/ (accessed on 26 March 2021)). Pearson’s
correlation analysis was performed between each sample. DESeq2 (http://bioconductor.
org/packages/release/bioc/html/DESeq2.html (accessed on 26 March 2021)) software
was used to analyze the differentially expressed mRNA in the miR-375 inhibitor group and
the inhibitor NC group. The significant differentially expressed mRNAs were identified
following the p-value < 0.05 and |log2

FoldChange| > 1 threshold.

2.7. qPCR

We inquired the sequence information of miR-375, designed a neck ring structure primer
specific for reverse transcription of miR-375 (5′-GTCGTATCCAGTGCAGGGTCCGAGGT
ATTCGCACTGGATACGACTCACGCGA-3′) and conducted reverse transcription reaction of
miR-375. In addition, eight differentially expressed mRNAs (DIE-mRNAs) (3 up-regulated and
5 down-regulated mRNAs) were randomly selected for validating the RNA-seq results. Briefly,
the 1 µg total RNA in bMECs was reverse transcribed into cDNA using the PrimeScriptTM
RT Reagent Kit with gDNA Eraser (Takara Biomedical Technology Co., Ltd., Beijing, China)
following the manufacturer’s instructions. The 2×M5 HiPer SYBR Premix EsTaq (withTli

http://oct2018.archive.ensembl.org/Bos_taurus/Info/Index
http://oct2018.archive.ensembl.org/Bos_taurus/Info/Index
http://daehwankimlab.github.io/hisat2/
http://daehwankimlab.github.io/hisat2/
http://subread.sourceforge.net/
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
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RNaseH) fluorescence quantitative detection kit (Mei5 Biotechnology Co., Ltd., Beijing, China)
detected the expression of DIE-mRNAs in transfected MAC-T cells using a CFX-96 Touch Real-
Time PCR instrument (BioRad, Hercules, CA, USA). The qPCR reaction mix included 10.0 µL
of 2×M5 HiPer SYBR Premix EsTaq (with Tli RNaseH), 0.8 µL of 10 nmol/µL forward and
reverse primers, 100 ng of cDNA template, and adding sterilized deionized water to 20.0 µL.
The reaction conditions included initial denaturation at 95 ◦C for 30 s, subsequent 40 cycles
of denaturation at 95 ◦C for 5 s, and annealing at 60 ◦C for 30 s. All the experiments were
repeated three times. The qPCR primers are listed in Table 1. All qPCR experimentation and
analysis were performed following the minimum information for publication of quantitative
real-time PCR experiments (MIQE) guidelines [27]. The amplification efficiency of the primers
are 95–105%.

Table 1. qRT-PCR primers.

Gene Name Primer Sequence (5′-3′) Product Length/bp

miR-375
F: CTCTGCTTTTGTTCGTTCGG

64R: AGTGCAGGGTCCGAGGTATT

NR4A1
F: CGGCTTTGCTGAACTGTCTC

80R: CCAGACGGAGGATAAAGAGC

PTPN5
F: AGGGCTTCGGCTATCTCAT

228R: TGTGAGGGTTGGGAAGGAT

PADI1
F: ACCTGTCCTACGCAGTGGC

139R: TCAGGCAGGGTCTTGGTG

IL-6
F: CACTCCATTCGCTGTCT

227R: GTGTCTCCTTGCTGCTT

RAB39B
F: TTACCAACCGCAGGTCTTTCC

164R: ATACGCAGCAGCCAGTTTCTC

SERPINF1
F: CGCCAATGTGCTGCTGTCT

135R: CCGTGGATGTCTGGGTTACTG

DHRS3
F: AATGCCTGAAGGAGACGACG

224R: GGTGTTGATGTGCTGGGACTT

C19H17orf78 F: TGGTTCTGGGAGCAAAGTGA
271R: AGGAGTTACGGAGGTAGTAGTGG

GADPH
F: GGCATCGTGGAGGGACTTATG

186R: GCCAGTGAGCTTCCCGTTGAG

RPS18
F: GTGGTGTTGAGGAAAGCAGACA

79R: TGATCACACGTTCCACCTCATC

The data were analyzed using SPSS software version 25.0 using GAPDH and RPS18 [28]
as internal controls. The relative expression levels of the genes were calculated using the
2−∆∆Ct method [29] and expressed as the mean ± standard deviation (X ± SD). The SPSS
25.0 software was used to test the significance of differential expression between groups
through independent-samples t-tests, and p < 0.05 was considered statistically significant.

2.8. Functional Annotation of DIE-mRNAs

Gene cluster analysis was performed to display the gene expression pattern in different
samples visually. Gene Ontology (GO) analysis for the molecular function (MF), biological
process (BP), and cellular component (CC) of the DIE-mRNAs was performed using the
clusterProfiler package in the R software (version: 4.0.3). Kyoto encyclopedia of genes and
genomes (KEGG) analysis was also performed to identify pathways and the biological
function of genes regulated by miR-375.

3. Results
3.1. The Silencing Efficiency of MiR-375 in MAC-T

Inverted fluorescence microscope revealed that miR-375 in MAC-T cells was efficiently
silenced after transfection with the corresponding inhibitor (Figure 1a), consistent with
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qPCR findings (p < 0.01) (Figure 1b). The results showed that the silencing effect of miR-375
in MAC-T cells was good, and subsequent experiments could be carried out.
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Figure 1. The miR-375 silencing efficiency in MAC-T. (a) Cy3-labeled inhibitor NC transfected into
the cells detected using an inverted fluorescence microscope. (b) Analysis of miR-375 silencing
efficiency in MAC-T using qPCR, ** p < 0.01.

3.2. Sequence Data Analysis

We sequenced cDNA libraries using the Illumina high-throughput sequencing plat-
form to study the miR-375 inhibitory effect on bMECs. The sequence data from the ex-
perimental and NC groups are listed in Table 2. The Q30 was over 92.5%, indicating a
high base quality. Moreover, high-quality reads were obtained after removing the joint
and low-quality reads (Table 2). In general, these findings demonstrated the accuracy and
reliability of the sequence data.

Table 2. Quality assessment and comparison of sequencing data with reference genomes.

Group Sample Raw Reads Error (%) Q30 (%) GC (%) Clean Reads Clean Bases Total Mapped

Inhibitor
group

i-375-1 43,314,930 0.03 93.24 47.38 43,038,262 5.95G 41,300,139 (95.96%)
i-375-2 42,091,914 0.03 92.55 47.27 41,737,124 5.77G 39,883,875 (95.56%)
i-375-3 46,367,836 0.03 93.29 47.23 46,051,060 6.37G 44,258,208 (96.11%)

Inhibitor NC
group

i-NC-1 41,433,410 0.03 93.02 47.07 41,141,648 5.7G 39,472,120 (95.94%)
i-NC-2 46,829,314 0.03 92.6 47.08 46,481,256 6.42G 44,516,188 (95.77%)
i-NC-3 46,103,512 0.03 93.28 47.05 45,797,992 6.33G 44,030,956 (96.14%)

3.3. Overall Distribution of mRNA Expression

The expression levels of the overall genes in each sample are presented in Table S2. The
results of Pearson’s correlation analysis between samples revealed that the gene expression
patterns were highly correlated among the samples (Figure 2a), further validating the
reliability of the experimental design. Further analysis showed that the distribution of
FPKM in each block diagram was similar, indicating that the overall gene expression
abundance in each sample was similar (Figure 2b).

3.4. The Differently Expressed mRNAs in MAC-T after MiR-375 Inhibition

Inhibition of miR-375 dysregulated the expression of 63 mRNAs. A total of 48 mRNAs
were significantly down-regulated, whereas the remaining 15 were significantly overex-
pressed (Table S3). We found that inhibition of miR-375 promotes expression of nuclear
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receptor subfamily 4 group A member 1 (NR4A1) and protein tyrosine phosphatase non-
receptor type 5 (PTPN5). Cluster analysis showed that the high and low expressed genes in
the samples were clustered together, indicating that DIE-mRNAs regulate critical processes
in bMECs (Figure 3).
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3.5. Validation of the DIE-mRNAs Using qPCR

The expression pattern of eight DIE-mRNAs (three up-regulated and five down-
regulated genes) based on RNA-seq was validated using qPCR analysis (Figure 4). The
qPCR results were consistent with the RNA-seq results, confirming the accuracy and
reliability of the RNA-seq results.

3.6. GO Enrichment and KEGG Analyses of the DIE-mRNAs

The 63 DIE-mRNAs were annotated to molecular function (MF), biological process (BP),
and cellular components (CC) through GO enrichment analysis (Table S4). These DIE-mRNAs
enriched nuclear membrane and nuclear envelope under CC. For MF, the DIE-mRNAs
enriched DNA-binding transcription activator activity, DNA-binding transcription factor
activity, and growth factor receptor binding. However, the enriched BP included regulation
of epithelial cell proliferation, intracellular receptor signaling, and extracellular structure
organization (Figure 5a). Meanwhile, the KEGG pathway enrichment analysis revealed that
the DIE-mRNAs mainly enriched the mitogen-activated protein kinase (MAPK) signaling
pathway, retinol metabolism, and cortisol synthesis and secretion (Table S5 and Figure 5b).
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Figure 5. GO enrichment and KEGG signaling pathway analysis of the DIE-mRNAs in bMECs after
miR-375 silencing. (a) GO enrichment of the DIE-mRNAs in bMECs (p < 0.05). (b) KEGG enrichment
analysis of the DIE-mRNAs in bMECs (p < 0.05).

4. Discussion

This study found that silencing miR-375 down-regulated and up-regulated the expres-
sion of 48 and 15 mRNAs, respectively, in MAC-T cells. Regulation of miRNA is a complex
process that affects gene expression in the entire cell. MiRNA is directly regulated for
some genes, and indirectly regulated for a large number of genes [9]. Therefore, this may
be the reason why the down-regulated genes were more abundant than the up-regulated
ones after silencing of miR-375. GO revealed that the 63 DIE-mRNAs regulated several
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biological processes, including regulation of epithelial cell proliferation, the intracellular
receptor signaling pathway, and extracellular structure organization. KEGG enrichment
analysis further revealed that the DIE-mRNAs regulate the MAPK signaling pathway,
retinol metabolism, and cortisol synthesis and secretion. The MAPK signaling pathway
regulates the growth and differentiation of cells, adaptation to environmental stress, inflam-
mation, and other important cellular physiological and pathological processes [30–32]. In
addition, the MAPK signaling pathway participates in the occurrence of mastitis in dairy
cows [33]. Other signaling pathways were not closely related to the function of bMECs.

KEGG analysis further revealed that inhibiting miR-375 up-regulated the expression
of PTPN5 and NR4A1 genes, all regulated via the MAPK signaling pathway. NR4A1 (also
called Nur77) is a member of the orphan nuclear receptor family 4A (NR4A), which regu-
lates inflammation and immunity [34,35]. The anti-inflammatory gene NR4A1 is rapidly
expressed in the early stages of inflammatory upon entry of stimuli such as lipopolysac-
charide (LPS), or secretion of cytokines such as interleukin-1β (IL-1β), and tumor necrosis
factor α (TNF-α) [36]. It indicated that NR4A1 might be an important mediator in the early
inflammation. NF-κB plays a critical role in regulating inflammation [37,38]. In vascular
endothelial cells, NR4A1 up-regulates IκBα expression but inhibits the activation of NF-κB
by binding to the IκBα promoter [39]. NR4A1 modulates the expression of NF-κB by
directly interacting and blocking the binding of p65 to its κB, inhibiting the secretion of
pro-inflammatory cytokines [40]. Modulating NR4A1 expression induces NF-κB depen-
dent activation of macrophages [41]. The interaction between NR4A1 and NF-κB/p65 in
microglia alleviates brain injury caused by cerebral ischemia, thus inhibiting neurogenic
inflammation [42]. NR4A1 inhibited LPS-induced inflammation in acute liver injury by
directly binding to TRAF6 [43]. Therefore, NR4A1 may be a potential target for regulating
and preventing inflammation in bMECs. Meanwhile, miR-375 modulates mastitis in dairy
cows by regulating the expression of NR4A1.

Reversible phosphorylation of tyrosine residues plays a key role in many signaling
pathways [44], catalyzed by protein tyrosine phosphatases (PTPs) [45]. In humans, the PTP
genes have been linked to several diseases and, thus, potential therapeutic targets in such
complications [46]. PTP genes are divided into four families. The non-receptor protein
tyrosine phosphatase (PTPN) belongs to the class I family [47]. The PTPN gene family
members regulate numerous physiological processes and participate in the development
and pathogenesis of numerous diseases [47–49]. PTPN5 (also known as striatum-enriched
protein tyrosine phosphatase (STEP)) mainly participates in regulating neuronal signal
transduction, and abnormal expression of this protein impairs motor control and cognitive
function [50,51]. PTPN5 binds and reduces the affinity to MAPK substrates, negatively
regulating the activity and cell localization of MAPK family members. These events block
the kinase nuclear translocation of some cellular functions, such as inflammation [52].
In vivo studies revealed that PTPN5 inhibits the growth of breast tumors by blocking the
epidermal growth factor (EGF)-induced MAPK signaling pathway [53]. Additionally, high
PTPN5 activity decreases with aging [54], whereas PTPN5 deficiency induces neuronal
inflammation and exacerbates ischemic brain injury [55]. Inhibition of PTPN5 reverses
cognitive deficit impairment in mouse models with Alzheimer’s disease [56]. Our RNA-seq
results revealed that PTPN5 modulates inflammation by inhibiting the MAPK signaling
pathway in the mammary gland of dairy cows with mastitis. Therefore, silencing miR-375
alleviates mastitis in cows by promoting PTPN5 expression and while inhibiting the MAPK
signaling pathway.

It is worth noting that IL-6 is a key inflammatory cytokine. The infected mammary
glands can promote the secretion of IL-6 and initiate the inflammatory response and body
immunity by activating various signaling pathways [57]. It has been reported that the
expression of IL-6 is positively correlated with the severity of mastitis in dairy cows [57,58].
We found that inhibition of miR-375 down-regulated IL-6 expression. Therefore, the down-
regulation of IL-6 in the miR-375 inhibition group suggested that inhibition of miR-375
might alleviate the inflammatory response.
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5. Conclusions

In summary, miR-375 silencing dysregulated the expression of 63 mRNAs in bMECs.
Additionally, miR-375 silencing increased the expression of NR4A1 and PTPN5 genes,
all anti-inflammatory genes, via the MAPK signaling pathway. Given silencing of miR-
375 significantly up-regulates NR4A1 and PTPN5 gene expression, miR-375 potentially
promotes inflammation in the mammary gland through the MAPK signaling pathway. The
findings of this study provide a new perspective on treating mastitis in cows.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12111431/s1, Table S1: The list of RNA quality in the miR-375
inhibitor and inhibitor NC groups; Table S2: The list of FPKM for each gene in miR-375 inhibitor
and inhibitor NC group; Table S3: The list of DIE-mRNAs in the miR-375 inhibitor vs. inhibitor NC
groups; Table S4: The list of GO enrichment analysis results for DIE-mRNAs; Table S5: The list of
KEGG enrichment analysis results for DIE-mRNAs.
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