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ABSTRACT: Identification of histone post-translational
modifications (PTMs) is challenging for proteomics search
engines. Including many histone PTMs in one search increases
the number of candidate peptides dramatically, leading to low
search speed and fewer identified spectra. To evaluate database
search engines on identifying histone PTMs, we present a
method in which one kind of modification is searched each
time, for example, unmodified, individually modified, and
multimodified, each search result is filtered with false discovery
rate less than 1%, and the identifications of multiple search
engines are combined to obtain confident results. We apply
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this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of
the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the
evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search
engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The
mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier

PXDO001118.
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B INTRODUCTION

Mass spectrometry (MS) has become a key technique for
proteomics analysis." The peptide-centric MS strategy is called
bottom-up, in which proteins are extracted from cells, digested
into peptides with proteases, and analyzed by liquid
chromatography tandem mass spectrometry (LC—MS/MS).
More specifically, peptides are resolved by chromatography,
ionized in mass spectrometers, and scanned to obtain full MS
spectra. Next, some high-abundance peptides (precursor ions)
are selected and fragmented to obtain MS/MS spectra by high-
energy C-trap dissociation (HCD) or collision-induced
dissociation (CID). Then, peptides can be identified by
searching the MS/MS spectra against a database and finally
assembled into identified proteins.” Database searching plays an
important role in proteomics analysis because it can be used to
translate thousands of MS/MS spectra into protein identi-
fications (IDs).

Many database search engines have been developed to
quickly and accurately analyze large volumes of proteomics
data. Some of the more well-known search engines are Mascot,’
SEQUEST,* PEAKS DB,’ ProteinPilot,® pFind,”® Andromeda,’
OMSSA,"° and X!Tandem."' However, the identification rate
of MS/MS spectra is still low (e.g., in most searches, only 10—
30% of spectra can be identified). There are many factors
influencing peptide identification, such as incorrect precursor
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monoisotopic mass-to-charge ratio (m/z) or charge state,
mixed MS/MS spectra from coeluted precursors, unspecific
cleavage by proteases, unknown post-translational modifica-
tions (PTMs), incomplete databases, disability of search
engines to distinguish similar sequences, spectra filtered out
for low matching scores, and so on.'? Among all of these
factors, incomplete PTM profiles are critical because PTMs
usually are related to important biological functions. However,
including a large number of PTMs in one database search
increases the number of candidate peptides dramatically,
leading to low search speed, more false-positive IDs, and
fewer identified spectra. Therefore, confidently identifying
more spectra with PTMs is a current major challenge in
database searching.

There are few studies about how to filter search results and
identify more spectra with PTMs. Fu et al. suggested that the
individual PTM false discovery rate (FDR) rather than the
global (unmodified and modified spectra searched together)
FDR should be used when only PTM IDs are of interest'> and
proposed a method to estimate the individual PTM FDR from
the global FDR."* Seo and coworkers analyzed the same sample
multiple times by initially identifying unmodified peptides and
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Table 1. Parameters for Database Search

+10
HCD: + 0.02; CID: + 0.4

trypsin cleaves after arginine

precursor m/z tolerance (ppm)

fragment m/z tolerance (Th)

fully enzymatic

max missed cleavages 2

fixed modification Propionyl[Peptide N-term]/+56.026

variable modifications first(un) Propionyl[K]/+56.026
second(ac)
third(me)
fourth(di)
fifth(tr)
sixth(ph)

seventh(co)

Propionyl[K]/+56.026; Acetyl[K]/+42.011

Propionyl[K]/+56.026; Methyl Propionyl[K]/+70.042

Propionyl[K]/+56.026; Dimethyl[K]/+28.031

Propionyl[K]/+56.026; Trimethyl[K]/+42.047

Propionyl[K]/+56.026; Phospho[ST]/+79.966

Propionyl[K]/+56.026; Acetyl[K]/+42.011; Methyl Propionyl[K]/+70.042; Dimethyl[K]/+28.031;

Trimethyl[K]/+42.047; Phospho[ST]/+79.966

database

57 human histone proteins and their reversed form

adding them into an exclusion list for later runs."> Huang and
coworkers proposed an iterative search algorithm for the
systematic identification of PTMs, in which unmodified spectra
were identified by a basic search, and the leftover unidentified
spectra were analyzed by iterative searches of many PTMs
using a small number of them (usually two) each time.'®

As a group of heavily post-translationally modified proteins,
histones plaly several important roles in chromatin biology and
epigenetics.'” Owing to their complex modification patterns,
histones are known to be very challenging to analyze using
conventional commercially available search methods and often
require specific in-house developed software to properly deal
with their data sets (e.g,, MILP,'® PTMap,19 MS-TopDown,20
and FAVA-based workflow’"). In this study, we present a
method to evaluate database search engines on identifying
spectra from histone peptides containing PTMs. In this
method, no modification, each individual modification, and
multiple PTMs are searched separately. Spectra of unmodified,
individually modified, and multimodified peptides are obtained
with a global FDR of <1%. After the database search with eight
search engines (pFind, Mascot, SEQUEST, ProteinPilot,
PEAKS, OMSSA in COMPASS,*” X!Tandem in TPP,** and
Andromeda in MaxQuant**), we combine the IDs from all of
the search engines and obtain confident results by discarding
the spectra identified by only one search engine. We find that
pFind and Mascot identify most of the confident results. Our
evaluation of different search engines on identifying histone
modifications will be beneficial to those who are interested in
histone proteomics analysis.

B MATERIALS AND METHODS

Data Sets

HeLa Cell Culture. As previously described,”® HeLa cells
were cultured in suspension with minimum essential medium
Eagle (MEM) Joklik modification for suspension cultures with
10% newborn calf serum (Thermo Scientific SH30118.03), 1%
Glutmax, and 1% penicillin/streptomycin. The cell density was
maintained within the range of (1 to 10) X 10° cells/mL.
Histones were acid-extracted and subjected to chemical
derivatization using propionic anhydride and trypsin digestion,
as previously described.*® Samples were then desalted and
injected onto an online nano-LC—MS/MS, as described in ref
26.

Nanoliquid Chromatography Tandem Mass Spec-
trometry. The samples were loaded onto one of the two
instrument setups, as shown in Supplemental Table 1 in the SI,

4471

all at 300 nL/min. Histone peptides were resolved on a two-
step gradient from 2% ACN to 30% ACN in 0.1% formic acid
over 40 min, then from 30% ACN to 95% ACN in 0.1% formic
acid over 20 min. Q-Exactive and Orbitrap Velos Pro were
operated in the data-dependent mode with dynamic exclusion
enabled (repeat count: 1, exclusion duration: 0.5 min). MS
instrument methods were set up as previously reported.*”
Settings for resolution, automatic gain control (AGC), and
normalized collision energy (NCE) were listed in Supplemental
Table 1 in the SI Every cycle one full MS scan (m/z 290 to
1600) was collected and followed by 15 or 12 MS/MS scans
using either HCD or CID. All isolation windows were set at 2.0
m/z. Tons with a charge state of one and a rejection list of
common contaminant ions (including keratin, trypsin, and
BSA) (exclusion width = 10 ppm) were excluded from MS/MS.

Database Search

Database and Data. Protein sequences and MS/MS
spectra are prepared first. A histone fasta file is built from the
Uniprot human database (57 entries, including H1, H2A, H2B,
H3, and H4). Two data sets (noted as HCD Histone and
CID Histone) are obtained from the same HeLa histone
sample. We note that some precursor m/z values exported by
the instrument software Xcalibur are not monoisotopic, and
some MS/MS spectra are from two or more cofragmented
peptides. Therefore, we use pParse to convert RAW files to
MGF files by exporting the monoisotog)ic peaks of all
precursors, including coeluted precursors.”® The MGF files
are searched using pFind, Mascot, Sequest HT in Proteome-
Discoverer, ProteinPilot, and PEAKS. Because OMSSA in
COMPASS, X!Tandem in TPP, and Andromeda in MaxQuant
have their own input format, we then convert MGF files to
TXT files for OMSSA, use ReAdW? to convert RAW files to
mzXML files for X!Tandem (in which some precursors are
calibrated to the monoisotopic but no coeluted peptides are
exported), and use RAW files directly for Andromeda. (In
MaxQuant, the “second peptide” mode can detect some
coeluted peptides.)

Search Parameters. Search parameters are set for all search
engines. The version of each search engine is shown in
Supplemental Table 2 in the SI. We set the following search
parameters (as shown in Table 1): precursor mass tolerance
+10 ppm, fragment mass tolerance +0.02 Th for HCD and
+0.4 Th for CID, trypsin only cleaving after arginine and up to
two miscleavages, peptide N-terminal propionylation
(Propionyl[Peptide N-term]/+56.026) as the fixed modifica-
tion. To obtain more identification for different kinds of

dx.doi.org/10.1021/pr5008015 | J. Proteome Res. 2014, 13, 4470—4478



Journal of Proteome Research

Technical Note

peptides, we set seven sets of variable modifications: (1) only
Propionyl[K]/+56.026 for unmodified peptides, (2) Propionyl-
[K]/+56.026 and Acetyl[K]/+42.011 for acetylated peptides,
(3) Propionyl[K]/+56.026 and Methyl Propionyl[K]/+70.042
for monomethylated peptides, (4) Propionyl[K]/+56.026 and
Dimethyl[K]/+28.031 for dimethylated peptides, (S)
Propionyl[K]/+56.026 and Trimethyl[K]/+42.047 for trime-
thylated peptides, (6) Propionyl[K]/+56.026 and Phospho-
[ST]/+79.966 for phosphorylated peptides, and (7) all of the
above modifications for multimodified peptides. In total, we
have 112 searches (i.e., two data sets, eight search engines, and
seven searches).

Workflow. The workflow is shown in Figure 1. First, RAW
files are converted to MGF files, TXT files, and mzXML files.

RAW files
| pParse | | ReAdW |
MGF TXT mzXML
Convert J. J. J.

pFind | OMSSA || X!Tandem || MaxQuant
Mascot
SEQUEST
ProteinPilot
PEAKS
Search un ac me di tr ph co
Target-decoy approach (TDA)
FDR<=1%
Filter un ac me di tr ph co
A4 A4 A

Remove redundancy and collect [Ds |

De-redundant

Mascot| SEQUEST] MaxQuant

'pFind ProteinPilot PEAKSXOMSSA X!Tandem
L v v Y

| Combine IDs I

Confident IDs

Figure 1. Workflow of evaluating database search engines on
identifying histone modifications. There are five steps: (1) converting
RAW files to MGF files, TXT files, and mzXML files, (2) searching
with separate modifications, (3) filtering with FDR <1%, (4) removing
redundant IDs from different searches with lower scores, and (5)
combining IDs of all search engines.

Combine

v

Second, each search engine searches with separate modifica-
tions. Third, search results are filtered for separate modifica-
tions. The target-decoy approach is used in most search
except TPP, which uses probability to filter search
results.’’ An FDR of <1% at the spectra level is used to filter
search results. Fourth, redundant IDs are removed. When there

.30
engines,

are redundant spectra in different searches for one specific
engine, the peptide-spectral matches with higher scores are
kept. Lastly, to obtain confident results, all filtered IDs for
different search engines are combined. The number of search
engines identifying one specific spectrum is counted, and

spectra identified by only one search engine are filtered out.
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B RESULTS

After generating the ID lists, we investigate the following results
between search engines: (1) proportion of confident IDs, (2)
proportion of overlapping IDs, and (3) search time and result
space.

Proportion of Confident IDs

To compare different peptides, we categorize them as follows. If
a peptide has only propionylation, it is an unmodified peptide.
Otherwise, it is a modified peptide (ie., it has acetylation,
methylation, etc.). So from the first to the seventh set of search
parameters, we can identify seven kinds of peptides
individually: unmodified peptides (un), acetylated peptides
(ac), monomethylated peptides (me), dimethylated peptides
(di), trimethylated peptides (tr), phosphorylated peptides (ph),
and multimodified peptides with different modifications
coexisting (co), respectively.

To obtain confident results, we combine the IDs from all
search engines. Although peptide identification is controlled by
FDR less than 1%, the identification list may still include some
false-positive results. If two or more search engines can identify
one spectrum, the identification is considered confident. We
therefore combine all IDs from the eight search engines
together. More precisely, for a specific spectrum we count the
number of search engines that identify the spectrum and then
filter out the spectra that are identified by only one search
engine.

The number of IDs before and after combination of search
engines is shown in Figure 2. The last green solid bar indicates
all confident IDs. Other solid bars indicate IDs before
combination. Dashed bars indicate IDs after combination. In
the seventh search, PEAKS does not have any results because
the program runs out of memory. Other programs, however, do
not have such a problem. OMSSA identifies comparable
unmodified and acetylated spectra to other search engines but
identifies very few other modified spectra. X!Tandem identifies
comparable individually modified spectra to other search
engines, but it could not identify many unmodified and
multimodified spectra. The remaining search engines, pFind,
Mascot, SEQUEST, ProteinPilot, and MaxQuant, identify
comparable spectra in all cases.

To select suitable search engines for the analysis of histone
modifications, we compare the confident results for each search
engine (dashed bars in Figure 2). pFind, Mascot, SEQUEST,
and PEAKS identify more confident spectra than the other
search engines in general. Among these four search engines,
SEQUEST and PEAKS identify the fewer acetylated spectra;
PEAKS could not identify multimodified spectra; and pFind
and Mascot behave better in most cases. Therefore, on the basis
of results, we conclude that pFind and Mascot are the best
search engines for the analysis of histone modifications.

To quantify the accuracy of search engines, we calculate the
proportion of confident IDs (as shown in Table 2). The
confident IDs by pFind are the spectra that are identified by
pFind and at least one other search engine. All confident IDs
are the spectra that are identified by at least two search engines.
The precision of pFind is the proportion of confident IDs by
pFind to all IDs by pFind (dashed red bar divided by solid red
bar in Figure 2). The recall of pFind is the proportion of
confident IDs by pFind to all confident IDs (dashed red bar
divided by solid green bar in Figure 2). F-score is the harmonic
mean of precision and recall, that is, F-score = 2/(1/Precision +
1/Recall). When the largest three F-scores (the third largest
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Number of histone IDs before and after combination of search engines
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Figure 2. Number of histone IDs before and after combination of search engines. The last green solid bar indicates all confident IDs. Other solid
bars indicate IDs before combination. Dashed bars indicate IDs after combination.

>80%) in each row are highlighted, it shows that pFind,
Mascot, and PEAKS are the best three search engines. Because
PEAKS is not good at identifying acetylated and multimodified
spectra, pFind and Mascot are recommended.

Proportion of Overlapping IDs

To evaluate the similarity of search engines, we compare the
overlapping of confident IDs between search engines. Figure 2
and Table 2 show that pFind and Mascot have more IDs than
other search engines. We compare pFind to other search
engines with confident IDs (as shown in Figure 3). Other-
pFind indicates IDs only in the other search engine.
pFindNOther indicates IDs in both pFind and the other search
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engine. pFind-Other indicates IDs only in pFind. Compared
with pFindNOther, Other-pFind is small, which means pFind
covers most IDs of the other search engine. Compared with
pFindNMascot, pFind-Mascot is also small, which means pFind
and Mascot get similar results.

To quantify the similarity of search engines, we calculate the
proportion of overlapping IDs (as shown in Table 3). Common
means IDs in both pFind and the other search engine.
Common/pFind is the proportion of confident IDs in common
with confident IDs by pFind. Common/Other is the
proportion of confident IDs in common with confident IDs
by the other search engine. The harmonic mean of these two
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Table 2. Proportions of Confident IDs for Each Engine

F-score (precision,

recall)? pFind Mascot SEQUEST
HCD Histone un  98%” (99%,  98% (100%, 96% (100%,
98%) 95%) 92%)
ac  96% (97%, 94% (97%, 42% (87%,
95%) 91%) 28%)
me 95% ()94%1 93% ()98%r 85% ()89%1
96% 90% 82%
di  94% (95%, 96% (99%, 87% (79%,
94%) 93%) 97%)
tr  88% (88%, 89% (96%, 77% (68%,
87%) 84%) 88%)
ph  65% (50%, 100% (100%,  80% (67%,
93%) 100%) 100%)
co  81% (70%, 84% (78%, 45% (30%,
96%) 91%) 87%)
CID_Histone un  99% (100%,  99% (100%, 96% (100%,
999%) 98%) 93%)
ac  92% (88%, 95% (93%, 50% (79%,
96%) 97%) 36%)
me  96% (99%,  95% (98%, 73% (95%,
93%) 92%) 59%)
di  99% (98%, 98% (97%, 72% (92%,
100%) 999%) 59%)
tr 94% (95%, 90% (97%, 82% (83%,
949%) 83%) 80%)
ph  40% (25%, 100% (1009%, 33% (20%,
100%) 100%) 100%)
o 52% (42%, 57% (40%, 50% (41%,
71%) 98%) 66%)

ProteinPilot PEAKS OMSSA X!Tandem MaxQuant
84% (99%, 98% (99%, 79% (100%,  24% (99%, 73% (97%,
73%) 97%) 65%) 14%) 59%)
71% (97%, 42% (98%, 79% (98%, 78% (92%, 72% (87%,
55%) 27%) 67%) 67%) 62%)
55% (61%, 80% (100%, 0% (0%, 0%)  52% (80%, 58% (70%,
51%) 67%) 38%) 50%)
83% (97%, 98% (99%, 5% (100%, 68% (97%, 73% (92%,
73%) 96%) 2%) 53%) 60%)
61% (95%, 95% (94%, 0% (0%, 0%)  83% (98%, 77% (82%,
45%) 96%) 72%) 72%)
57% (86%, 83% (100%, 0% (0%, 0%)  53% (100%,  57% (57%,
43%) 71%) 36%) 57%)
63% (92%, 0% (0%, 0%) 0% (0%, 0%) 5% (15%, 3%) 36% (48%,
49%) 29%)
90% (100%, 98% (99%, 72% (100%,  12% (95%, 71% (99%,
81%) 98%) 56%) 6%) 55%)
21% (88%, 55% (99%, 39% (99%, 6% (70%, 3%) 62% (59%,
12%) 38%) 24%) 65%)
53% (95%, 95% (99%, 0% (0%, 0%)  57% (98%, 78% (84%,
36%) 91%) 41%) 73%)
7% (67%, 4%)  92% (94%, 0% (0%, 0%)  64% (93%, 78% (99%,
91%) 49%) 65%)
21% (17%, 95% (97%, 0% (0%, 0%)  25% (92%, 31% (96%,
28%) 94%) 14%) 19%)
100% (100%, 100% (100%, 0% (0%, 0%) 0% (0%, 0%) 0% (0%, 0%)
100%) 100%)
48% (87%, 0% (0%, 0%) 0% (0%, 0%) 0% (0%, 0%)  15% (10%,
33%) 34%)

“Precision = #IDs after combination/#IDs before combination. Recall = #IDs after combination/#all confident IDs, F score = 2/(1/Precision + 1/
Recall). bLargest three F-scores (the third largest >80%) in each row are underlined.

ratios is 2/(1/(Common/pFind) + 1/(Common/Other)).
When the largest three harmonic means (the third largest
>80%) in each row are highlighted, it shows that Mascot has
very similar results to pFind, and SEQUEST and PEAKS have
less similar results to pFind.

Search Time and Result Space

Besides the accuracy of search engines, we also compare their
search time and result space. We obtain the search time and
size of the result files from the first to the sixth set of search
parameters for each search engine. As the search time and result
space are similar between the six searches for each search
engine, we show only the median of time and space for each
search engine (as shown in Table 4). PEAKS runs the most
slowly, from 2 to 7 h. MaxQuant runs the second most slowly,
~15 min. X!Tandem runs the fastest, ~20 s. pFind and
OMSSA run the second fastest, from 20 to 100 s. The
MaxQuant results are the largest, from 200 to 600 MB. The
OMSSA results are the smallest, from 1 to S MB. The pFind
results are the second smallest, from 15 to 40 MB.

B DISCUSSION

There are a couple of items to note from the histone database
searches: (1) the performance on a reverse of the database, (2)
distinguishing between mixed spectra of peptide isoforms, (3)
dealing with the large search space of combinatorial PTMs, and
(4) the usage and functions of search engines.

Performance on a Reverse of the Database
After the FDR is controlled <1% on acetylation for pFind, the
score threshold of charge +2 is much higher than that of charge

+4, which leads to less acetylated spectra identified. When
checking the high-score spectra matched with reversed
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peptides, we find that these peptides are the reversed H4 4—
17. When checking the peptide-spectral matches, we find that
the reversed form is the same or even better than the original
H4 4-17 (as shown in Supplemental Figure 1 in the SI).
Because the first reversed peptide-spectral match score is too
high, the score threshold for FDR < 1% also becomes much
higher. If we delete the first three amino acids from H4, then
the reversed H4 4—17 will disappear. Before modifying H4, for
HCD_Histone with charges +2, +3, and +4, the score
thresholds are 1.26 x 107, 3.09 x 107", and 7.51 x 1077,
respectively; the ID numbers are 354, 485, and 105,
respectively. After modifying H4, for HCD_ Histone with
charges +2, +3, and +4, the score thresholds are 8.41 X 1076,
7.05 X 107°, and 7.51 X 1077, respectively; the ID numbers are
1705, 623, and 105, respectively. Therefore, with the modified
H4, we can get more acetylated IDs. We get the final results
with the modified H4 database for other search engines.

Distinguishing between Mixed Spectra of Peptide Isoforms

Peptide isoforms can be defined as peptides with one kind of
PTM on different sites (i.e., the same amino acids but different
positions). Because histones are heavily modified, histone
peptide isoforms are commonly observed. The biological
functions of isoforms can be different, so it is important to
distinguish them. Because their precursor masses are the same
and retention time is close (sometimes even coeluting), it is
difficult to distinguish isoforms using full MS scans.
Fortunately, isoforms can be identified by the key fragment
ions from MS/MS spectra between the PTM sites.

There are many peptide isoforms on H3, for example, K9ac
and Kl4ac, K18me and K23me, K18ac and K23ac, and so on.
Because the isoforms’ masses are the same and retention time is
close, the MS/MS spectrum is a mixture of the isoforms. We

dx.doi.org/10.1021/pr5008015 | J. Proteome Res. 2014, 13, 4470—4478
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Number of confident IDs between pFind and other engines
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Figure 3. Number of confident IDs between pFind and other engines. Other-pFind indicates IDs only in the other search engine. pFindNOther
indicates IDs in both pFind and the other search engine. pFind-Other indicates IDs only in pFind.

take H3K18ac and H3K23ac in CID_Histone as an example
(as shown in Supplemental Figure 2 in the SI). At the retention
time of 35.88 min (scan no. 9756), K18ac/K23ac is 0.82:0.18.
When we get the mixed spectra at different time points, we can
calculate the ratio (K18ac/K23ac) by the intensity of key
fragment ion pairs between K18 and K23 (e.g, b1 in K18ac and
bl in K23ac). Then, we can separate K18ac and K23ac with
these ratios from the total chromatography peak. After the
calculation, K18ac is 14% of the total chromatography peak.
Therefore, MS/MS spectra can help to separate peptide
isoforms and can even calculate the proportion of each part
from the total chromatography peak.

Dealing with the Large Search Space of Combinatorial
PTMs

Histones often carry multiple PTMs in vivo, and many histone
peptides harbor combinatorial PTMs.>* Increasing evidence
suggests that histone PTMs cross-talk (ie, PTMs work
together), and this is important for many biological processes.
The peptide H3 9-17 has different known PTM combinations,
including H3K9meKl14ac, H3K9diKl4ac, H3K9trKl4ac,
H3K9meS10ph, H3K9diS10ph, and H3K9trS10ph.

The seventh set of search parameters is used to identify
combinatorial PTMs. The combinatorial search will lead to
large search space and also more false-positive IDs. In
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Table 3. Proportions of Confident IDs between pFind and Other Engines

harmonic mean
(Common/pFind,
Common/Other)“

HCD_Histone un

ac

di
tr
ph
co
CID_Histone un

ac

di
tr
ph

co

Mascot
98%" (97%, 99%)

94% (92%, 96%)
94% (91%, 97%)
93% (93%, 94%)
97% (95%, 99%)
96% (100%, 93%)
95% (92%, 98%)
99% (99%, 99%)
96% (97%, 96%)
96% (96%, 97%)
100% (99%,
100%)

94% (89%, 100%)
100% (100%,

100%)
83% (98%, 71%)

SEQUEST
97% (94%, 100%)

44% (28%, 97%)
90% (83%, 97%)
96% (98%, 94%)
90% (91%, 89%)
96% (100%, 93%)
91% (86%, 96%)
97% (94%, 100%)
55% (38%, 100%)
77% (63%, 98%)
74% (59%, 100%)
90% (83%, 97%)
100% (100%,

100%)
75% (72%, 78%)

ProteinPilot
84% (74%, 99%)

74% (58%, 100%)
69% (53%, 100%)
84% (75%, 96%)
63% (47%, 92%)
53% (38%, 83%)
63% (47%, 94%)
90% (82%, 100%)
22% (13%, 100%)
56% (39%, 100%)
7% (4%, 100%)
46% (30%, 99%)
100% (100%,

100%)
54% (40%, 85%)

PEAKS
98% (98%, 98%)

43% (27%, 96%)
82% (70%, 100%)
95% (96%, 94%)

95% (100%, 90%)

87% (77%, 100%)
0% (0%, 0%)

98% (98%, 99%)
57% (39%, 100%)
92% (91%, 93%)
95% (91%, 100%)
94% (94%, 93%)
100% (1009%,

100%)
0% (0%, 0%)

OMSSA

78% (65%,
98%)

80% (68%,
97%)

0% (0%, 0%)

5% (2%,
100%)

0% (0%, 0%)

0% (0%, 0%)

0% (0%, 0%)

72% (56%,
99%)

39% (24%,
97%)

0% (0%, 0%)

0% (0%, 0%)

0% (0%, 0%)

0% (0%, 0%)

0% (0%, 0%)

X!Tandem
24% (14%,
97%)
81% (69%,
98%)
54% (38%,
96%)
71% (55%,
98%)
819% (74%,
90%)
44% (31%,
80%)

6% (3%, 100%)
11% (6%, 98%)
6% (3%, 100%)

61% (44%,
100%)

66% (49%,
100%)

18% (10%,
68%)

0% (0%, 0%)

0% (0%, 0%)

MaxQuant
74% (59%,
99%)
76% (63%,
96%)
64% (49%,
94%)
73% (60%,
93%)
76% (69%,
84%)
67% (54%,
88%)
46% (30%,
100%)
71% (55%,
99%)
77% (65%,
95%)
81% (72%,
91%)
79% (65%,
100%)
30% (18%,
89%)
0% (0%, 0%)

35% (26%,

54%)
“Common means IDs in both pFind and the other engine. Common/pFind = #IDs in common/#IDs in pFind, Common/Other = #IDs in

common/#IDs in the other engine. Harmonic mean = 2/(1/(Common/pFind) + 1/(Common/Other)). bLargest three harmonic means (the third
largest >80%) in each row are underlined.

Table 4. Search Time and Result Space®

median search time (s) for six searches

pFind Mascot SEQUEST ProteinPilot PEAKS OMSSA X!Tandem MaxQuant
HCD_ Histone 45.25 263 834 140 24413 20 20.5 963
CID_Histone 46.15 313.5 127.2 441.5 5024.5 60 16.5 950.5
median result space (MB) for six searches
pFind Mascot SEQUEST ProteinPilot PEAKS OMSSA X!Tandem MaxQuant
HCD_Histone 37.1 111 108 76.65 78.3 3.45 77475 348
CID_Histone 43.9 244 154 195 100.5 4.85 127.25 559

“Search time is obtained in the PC: processor with Intel Core i7-3770 CPU @ 3.4 GHz and 8 cores, RAM with 8 GB, 64-bit Windows 7
Professional.

CID_Histone, when we search on acetylation (the second
search), the average number of candidate peptides is 107 if the
peptide mass is <3000; the average number of candidate
peptides is 10* if the peptide mass is >3000. When we search
on combinatorial PTMs (the seventh search), the average
number of candidate peptides is 10° if the peptide mass is
<3000; the average number of candidate peptides is 107 if the
peptide mass is >3000 (as shown in Supplemental Figure 3 in
the SI). The spectra with precursor mass >3000 is only 4% of
the total spectra, but their total candidate peptide number is
738-fold of the spectra with precursor mass <3000 in the
seventh search. In the seventh search, pFind uses 51 s to search
the spectra with precursor mass <3000 and 9168 s to search all
spectra. In the second search, pFind uses 37 s to search the
spectra with precursor mass <3000 and 48 s to search all
spectra. The precursor mass >3000 leads to an extremely large
number of candidate peptides and also combinatorial PTMs

and more false-positive IDs. Therefore, it is better to only use
the spectra with precursor mass <3000 for the combinatorial
search.

Comparing the acetylated IDs in the second search and the
seventh search, we find fewer IDs in the seventh search. For the
number of candidate peptides of one specific spectrum, the
increase in candidates can be 1000-fold in the seventh search, as
compared with the second search. It is more likely to get a
peptide-spectral match from the decoy database in the seventh
search. The best score of the peptide-spectral match from the
decoy database is much higher in the seventh search than in the
second search (data not shown). This shows that fewer
peptide-spectral matches are identified in the seventh search at
the same FDR < 1%. This is the common problem when the

database becomes larger.
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Usage and Functions of Search Engines

There are some aspects that users need to know to correctly
use these search engines: how to correctly input search
parameters and the pros and cons.

The first aspect is the usage of search engines. Users need to
know (1) how to add new items into search engines, (2) how
to set search parameters, and (3) how to set filtering
parameters. pFind, Mascot, SEQUEST, PEAKS, and MaxQuant
provide user interfaces for adding new items such as
modifications. OMSSA in COMPASS does not provide such
a user interface, and the option to add new modifications is not
functional. ProteinPilot does not provide user interfaces to add
new items, although users can manipulate XML files, which are
prone to casual mistakes. Although TPP has an XML editor
online, it is difficult to use.

The second aspect is the pros and cons of search engines.
According to our experience, each search engine has its pros
and cons for the identification of histone modifications. (1)
pFind finishes the first six searches in several minutes but
finishes the seventh search with all spectra in several hours. (2)
Mascot exhibits excellent performance in our data sets but
cannot identify more than nine modifications in one search. (3)
Sequest HT is much faster than the old SEQUEST version
(e.g, v27 revl2) but cannot identify more than six
modifications in one search. (4) ProteinPilot can identify
many modifications in one search by assigning different
probabilities beforehand, but the way to preprocess spectra
does not work well (e.g, in pParse, the scan number and the
precursor type of a filename can be put in different order; when
the scan number is ahead such as histone.4.110.2.dta, very few
spectra can be identified; when the precursor type is ahead such
as histone.110.4.2.dta, many spectra can be identified). (5)
PEAKS Studio has many powerful tools for de novo
sequencing, database searching, and PTM discovery, but
when the maximal allowed modification site per peptide
becomes large (e.g, >3) or many modifications are considered
PEAKS DB becomes slow or even runs out of memory. (6)
OMSSA in COMPASS is fairly easy to use but except for
acetylation other PTMs are not identified well. (7) X!Tandem
in TPP is pretty fast but cannot identify modifications on the
same residue (e.g., when Propionyl[K] and Acetyl[K] are both
set as variable modifications, only the last modification is
included in search, so Propionyl[K] has to be set as fixed
modification and other PTMs’ masses minus the mass of
Propionyl[K] are set as the variable modifications, but in the
seventh search, only Trimethyl[K] and Phospho[ST] are
included in search because ac, me, di, and tr all occur on
lysine; this causes X!Tandem to be unable to identify many
multimodified spectra). (8) Andromeda in MaxQuant has
advantages for analyzing SILAC data,”® but the speed becomes
slow due to 38 processing steps and fewer PTM spectra can be
identified due to the too high default score threshold for
modified peptides. (The default threshold is 40; in our
parameters we set it to 0.)

B CONCLUSIONS

Our aim is to compare search engines within the same histone
PTM data set. We search the histone data with separate
modifications, filter each search result with FDR <1%, discard
the redundant IDs between different searches with low scores,
and combine the search results of all search engines to obtain
confident results. The high proportion of confident IDs

4477

demonstrates that pFind and Mascot are the best of the eight
search engines for histone modification analysis. In conclusion,
we present a method to evaluate database search engines, which
can be used to evaluate other more database search engines; we
discuss some important aspects during the analysis of histone
modifications, which will be beneficial to those who are
interested in histone proteomics analysis.
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© Supporting Information

Nano-LC—MS/MS instrument settings (Supplementary Table
1), version of each search engine (Supplementary Table 2),
peptide-spectral matches of reversed and original H4 4—17
(Supplementary Figure 1), separation of peptide isoforms
K18ac and K23ac (Supplementary Figure 2), and number of
peptide candidates in the second and the seventh searches
(Supplementary Figure 3). This material is available free of
charge via the Internet at http://pubs.acs.org. The mass
spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the PRIDE partner repository with
the data set identifier PXDO001118 and DOI 10.6019/
PXDO001118.
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