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A B S T R A C T   

Background: Gastric cancer (GC) is a malignancy known for its high fatality rate. Disulfidptosis, a 
potentially innovative therapeutic strategy for cancer treatment, has been proposed. Neverthe-
less, the specific involvement of disulfidptosis in the context of GC remains uncertain. 
Methods: The mRNA expression profiles were obtained from the TCGA and GEO databases. 
Univariate and LASSO Cox regression analyses were employed to identify differentially expressed 
genes and develop a risk model for disulfidptosis-related genes. The performance of the model 
was evaluated using Kaplan-Meier curve, ROC curve, and nomogram. Univariate and multivariate 
Cox regression analyses were conducted to determine if the risk model could serve as an inde-
pendent prognostic factor. The biological function of the identified genes was assessed through 
GO, KEGG, and GSEA analyses. The prediction of drug response was conducted employing the 
package “pRRophetic”. Furthermore, gene expression was determined using qRT-PCR. 
Results: An eight-gene signature were identified and utilized to categorize patients into low- and 
high-risk groups. Survival, receiver operating characteristic (ROC) curve, and Cox analyses pro-
vided clarification that these eight hub genes served as a favorable independent prognostic factor 
for patients with GC. A nomogram was constructed by integrating clinical parameters with the 
risk signatures, demonstrating high precision in predicting 1-, 3-, and 5-year survival rates. 
Additionally, drug sensitivity was different in the high-risk and low-risk groups, and the 
expression of three genes was verified by qRT-PCR. 
Conclusion: The prognostic risk model developed in this study demonstrates the potential to 
accurately forecast the prognosis of patients with GC.   

1. Introduction 

Gastric Cancer (GC) ranks as the fifth most prevalent malignant tumor globally and the fourth leading cause of cancer-related 
mortality [1]. Epidemiological data reveal higher age-standardized cancer mortality for gastric and liver cancer in China compared 
to the United States and the United Kingdom for both genders [2]. Notably, the occurrence of GC among individuals under 50 is 
progressively increasing, this rise varying with the geographical region [3]. A significant proportion of patients with GC receive a 
diagnosis at an advanced stage due to insufficient early detection measures [4]. Several risk factors associated with GC have been 
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identified, including Helicobacter pylori infection, age, sex, smoking, obesity, metabolic dysfunction, dietary factors, alcohol use, 
medication, and host genetics [5]. Immunotherapy has emerged as an effective therapeutic approach for combating tumors. Specif-
ically, immune checkpoint inhibitors (ICI) enhance T cell anti-tumor effects by inhibiting their corresponding negative regulatory 
mechanisms [6]. Despite the transformative impact of ICI on the treatment of advanced GC, its efficacy is limited in most patients [7]. 
As stated earlier, immunotherapy is currently not good for GC, so our research needs to improve the efficiency of immunotherapy for 
GC. 

Cell death is highly intricate, encompassing various mechanisms by which cells perish. These include abrupt physiological im-
pairments due to intense and rapid external influences, commonly referred to as accidental cell death (ACD). Conversely, cells can 
undergo regulated cell death (RCD) through specific molecular pathways that can be manipulated pharmacologically or genetically. 
Under physiological circumstances, RCD encompasses various types of programmed cell death mechanisms, including programmed 
cell death [8]. Recent investigations unveiled a novel form of cell death termed disulfidptosis. Disulfidptosis primarily occurs in cancer 
cells with high expression of SLC7A11. This is mainly due to insufficient NADPH supply, which is needed to reduce cystine to cysteine, 
causing disulfide stress. Furthermore, introducing additional cystine to a glucose-free medium also leads to the excessive consumption 
of NADPH in low SLC7A11 expression cells. This, in turn, induces actin protein crosslinking and cytoskeletal contraction, ultimately 
leading to disulfidptosis [9]. The mechanism of disulfidptosis in gastric cancer is still in its nascent stage in the existing literature, 
necessitating further investigations to elucidate whether activating disulfidptosis could serve as a viable therapeutic approach for the 
treatment of gastric cancer. However, the precise mechanism of disulfidptosis in GC remains unknown. 

In this study, we employed lasso and Cox regression techniques to identify prognostic disulfidptosis signature genes. The risk scores 
derived from differentially expressed genes (DEGs) demonstrated high accuracy in predicting various clinical outcomes, including 
prognosis, immune invasion, microsatellite instability (MSI), tumor mutational burden (TMB), stem cell analysis, immunotherapy 
response, and drug sensitivity. Additionally, we performed molecular docking and molecular dynamics simulations on shikonin, 
predicted to possess anticancer properties. Our study effectively illustrated the significance of disulfidptosis patterns in GC for 
prognostic prediction, immune infiltration, immunotherapy response, and drug sensitivity. 

In summary, our findings offer a novel discovery, as they demonstrate for the first time that assessing the risk associated with 
disulfidptosis can unveil its significance in the context of GC. This discovery provides a fresh perspective for clinical immunotherapy 
and medication strategies in patients with GC. 

2. Materials and methods 

2.1. Sample collection and processing 

Data of patients with GC were collected from The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) and Gene 
Expression Omnibus (GEO) GSE84437 and GSE84433 databases. Complete RNA-seq data were downloaded from both databases, 
along with mutation information for TCGA samples. The “SVA” R software package merged standardized TCGA-STAD (407 samples) 
and GSE84437 (433 samples) patient data, retaining only one copy of each transcript. The data is batch corrected and the corrected 
results are outputted using code commands. GSE84433 from the GEO database as an external data validation model. This approach 
aimed to maximize the availability of transcription data for future studies while maintaining analytical accuracy. 

2.2. Consistent gene cluster analysis for disulfidptosis 

In Liu’s study [9], ten disulfidptosis-associated genes were identified. The ConsensusClusterPlus R software package was utilized to 
cluster and evaluate the data, considering the expression profiles of these genes for consistency analysis. The “survival” R software 
package was employed to examine survival disparities among the identified clusters. Additionally, the R software packages “igraph”, 
“psych”, “reshape2″, and “RColorBrewer” were utilized to construct a network representation of disulfidptosis-related genes. A 
heatmap was generated to visualize clinical characteristic dissimilarities between the clusters, using the “pheatmap” function. 

2.3. Evaluation of tumor microenvironment (TME) of molecular subtypes 

To investigate the relationship between identified subtypes through clustering and the TME, we utilized an R software package to 
assess the scores of all samples. The R “ESTIMATE” package was employed to export TME and immune scores for all patients with GC. 
To examine the differential immune signatures within the clusters, we employed a single-sample gene set enrichment analysis 
(ssGSEA). The “GSEABase” and “GSVA” packages were utilized to assess immune characteristics. Cluster analysis was conducted using 
the “limma” R software package, and the resulting outcomes were visualized using the “ggpubr” box plot. 

2.4. Functional enrichment analysis between molecular subtypes 

To investigate potential biological functions between clusters, gene set variation analysis was conducted. Function expansion was 
performed using MSigDB data (“c2. Cp. Kegg. V7.4. Symbols. GMT” and “c5. Go. V2023.1. Hs. Symbols. GMT”). The genomic 
enrichment pathway was determined using the “GSVA” package. Statistical significance between clusters was defined as an adjusted P- 
value <0.05. 

X. Liu and J. Ou                                                                                                                                                                                                       



Heliyon 10 (2024) e26013

3

2.5. Identification of DEGs in disulfidptosis subtype 

The DEGs within the disulfidptosis subtypes were identified using the “limma” software package. In this study, |log2FC| > 0.585 
was selected, that is, the genes up-regulated or down-regulated by 1.5 times [10,11]. DEGs between clusters were determined based on 
an adjusted |log2FC| > 0.585 and an adjusted P-value <0.05. “ClusterProfiler” was used to analyze the functional enrichment of Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for DEGs in each disulfidptosis subtype. 

2.6. Establishment and verification of disulfidptosis-related prognostic model 

To quantitatively assess the correlation between disulfidptosis pattern and GC, we implemented a disulfidptosis-related prognosis 
model. Survival-related genes within DEGs were identified through clustering DEGs and subsequent univariate Cox analysis. Addi-
tionally, a lasso-Cox analysis was used to develop a prognostic risk model for disulfidptosis, employing the “caret” and “glmnet” R 
software packages. GC samples were evenly divided into training and test sets. The disulfidptosis risk score was calculated by applying 
the model equations based on the expression profiles of pivotal genes. The model formula utilized in this study was the following: Risk 
score =

∑
n i = 1 expi * coefficient (where expi represents gene expression, and coef represents gene risk factor). Risk score classi-

fication followed common rules, specifically, those of the median method, categorizing patients with GC into high- or low-risk groups. 
The clinical prognosis significance of the risk score was assessed through Kaplan-Meier survival analysis. Model predictive accuracy 
was validated using a receiver operating characteristic curve (ROC). 

2.7. TME and immune status in different risk groups 

To estimate tumor purity and infiltration of immune cells across different cancer types, we computed the immune score for each 
sample within the TCGA-STAD cohort, using the “estimate” package in R. The CIBERSORT algorithm in R software was utilized to 
evaluate 22 immune cell types within the TME of each sample. 

2.8. Analysis of TMB and drug sensitivity 

The “maftools” R software package was employed to perform mutation spectrum mapping for the two risk groups, facilitating the 
visualization of the frequency and types of mutated genes [12]. Box diagrams were utilized to visually depict the disparities between 
TMB risk groups. The R software package “pRRophetic” was employed to compute the maximum half inhibitory concentration (IC50) 
values of chemotherapy agents and targeted agents for high- and low-risk STAD groups, forecasting therapeutic efficacy. The cut-off 
criteria for drug sensitivity were set at P < 0.001 [13]. 

2.9. Molecular docking and molecular dynamics simulation 

Based on network pharmacology results, the 3D structures of the target proteins were obtained from the Protein Data Bank (PDB) 
(http://www.rcsb.org/) [14]. They were conFig.d in AutoDock4 as follows: water was removed, hydrogen was replaced, and a re-
ceptor designation was made. The drug was similarly prepared and set as a ligand. 

The software automatically conFig.d the torsion tree. The structure was saved as a PDBQT protein-ligand file. Receptor and ligand 
PDBQT structures were imported into AutoDock4, and docking parameters were defined by setting their docking ranges. Molecular 
docking in AutoDock4 involved inserting small drug molecules into macromolecular protein constructs, along with configuring 
operating methods and docking parameters. Subsequently, docking is performed. Molecular dynamics simulations were performed as 
previously described [15]. 

2.10. Correlation analysis of satellite instability and stem cells 

The prognosis of GC can be influenced by the status of MSI [16]. The correlation between risk score and MSI status was examined 
using the R software packages “plyr”, “ggpubr”, and “ggplot2” [17]. Stem cell correlation analysis was performed using R software 
packages “limma”, “ggpubr”, “ggplot2″, and “ggExtra”, employing Spearman’s test [18–20]. 

2.11. Construction and verification of nomogram 

A nomogram was developed to assess the risk of disulfidptosis and predict the prognosis of GC. The nomogram was constructed 
using various clinical features and risk scores of patients with GC, employing the “rms” R software package. Subsequently, the survival 
probabilities at 1, 3, and 5 years were determined based on individual patient scores. Calibration and ROC curves were employed to 
evaluate the predictive accuracy of the nomogram. 

2.12. Cell culture and validation of gene expression 

The GES-1 immortalized gastric cell line and two human gastric cancer cell lines, MGC-803 and SGC-7901, were procured from the 
Chinese Academy of Science in Shanghai, China. These cell lines were cultured in Roswell Park Memorial Institute (RPMI) 1640 
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medium (Hyclone, Logan, Utah, USA) and maintained in a humidified chamber at 37 ◦C with 5% CO2, adhering to the guidelines 
provided by the manufacturer. 

Cell samples were subjected to RNA extraction using TRIzol (Invitrogen) followed by reverse transcription into cDNA utilizing the 
Reverse Transcription Kit (Vazyme, Nanjing, China) as per the manufacturer’s guidelines. Subsequently, qRT-PCR was performed 
using the HiScript® Q RT SuperMix for the qPCR kit (Vazyme) along with the appropriate primers. The relative expression levels were 
determined using the 2− ΔΔCt method. The primer sequences were as follows: OXSM: Forward: 5′-TGGTGTTGGAACTCACCTGG -3′, 
Reverse 5′- CCGGGCTCTTCATCACTACC -3’; SLC3A2: Forward: 5′- AGCTGGAGTTTGTCTCAGGC-3′, Reverse 5′-GGCCAATCT-
CATCCCCGTAG -3’; SLC7A11: Forward: 5′- AGATGATGATACCTGCCTGTCTG-3′, Reverse 5′-CTGAATTGAGCAATACAAGGAAGC-3’; 
GAPDH: Forward: 5′- GACAGTCAGCCGCATCTTCT-3′, Reverse 5′-GCGCCCAATACGACCAAATC-3’. 

2.13. Statistical analysis 

All statistical analysis and visualization were conducted using R software (version 4.3.0). A P-value <0.05 was considered sta-
tistically significant. 

Fig. 1. Expression of disulfidptosis-regulatory genes in GC. A Comparison of expression between normal and tumor tissues of unpaired samples. B 
Comparison of expression between normal and tumor tissues of paired samples. C Spearman correlations between genes. The color blue represents 
negative regulation; the color red represents positive regulation. D Comprehensive network map combining disulfidptosis regulator interactions and 
prognosis. E Distribution of disulfidptosis-related genes on chromosomes. F CNV values for disulfidptosis regulators in GC specimens. G Mutation 
frequencies of the 10 regulatory genes in 433 GC specimens. *P < 0.05; **P < 0.01; ***P < 0.001. 
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3. Results 

3.1. Genetic study of genes related to disulfidptosis in GC 

To investigate the involvement of disulfidptosis in GC, this study incorporated 10 disulfidptosis-related genes. The expression levels 
of these genes exhibited substantial differences between the normal and GC cohorts. Notably, NDUFS1 exhibited no statistically 
significant difference in expression between unpaired and paired samples. Similarly, the levels of expression of NUBPL, NDUFA11, 
NCKAP1, and GYS1 showed no significant differences in paired samples. Conversely, the expression of other genes exhibited a sig-
nificant increase in GC (Fig. 1A and B). Correlation analysis of disulfidptosis-related genes revealed positive correlations among all 
genes except NDUFS1, OXSM, LRPPRC, NUBPL, NCKAP1, RPN1, and NUDFA11, which exhibited a negative correlation (Fig. 1C). 
Notably, the highest positive correlation (0.72) was observed between NCKAP1 and NDUFS1. Additionally, the regulatory analysis 
network provided evidence of gene interactions and highlighted the potential prognostic significance of this relationship for GC 
(Fig. 1D). Furthermore, the genetic map (Fig. 1E) displayed the chromosomal locations of the copy number variation (CNV) genes 
associated with disulfidptosis, and this CNV occurrence was observed across all 10 genes. Notably, NUBPL and SLC3A2 exhibited high 
amplification, while NCLAP1, LRPPRC, OXSM, and NDUFA11 exhibited a higher frequency of deletions (Fig. 1F). Subsequent analysis 
revealed that 13.16% of the 433 samples exhibited 57 mutations in total. SLC3A2 displayed the highest number of mutations, mainly 
frameshift deletions, followed by GYS1 and NCKAP1, which exhibited missense mutations. NDUFA11 exhibited no mutations 

Fig. 2. Identification of disulfidptosis clusters. A Consensus matrix based on disulfidptosis regulator expression in the GC cohort at k = 2. B PCA of 
consensus matrix when k = 2. C K-M survival analysis between the two disulfidptosis clusters. D Heatmap of clinical characteristics between the two 
subtypes. E Biological pathways analysis between the two disulfidptosis clusters. F Multiple pathways analysis between the two disulfidptosis 
clusters. G Infiltration of immune cells between the two disulfidptosis clusters. *P < 0.05; **P < 0.01; ***P < 0.001. 
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(Fig. 1G). 

3.2. GC classification pattern based on disulfidptosis 

To investigate disulfidptosis gene expression characteristics in GC, we analyzed 407 study samples from the TCCA-STAD dataset 
using clustering analysis. Employing a commonly used algorithm, we based this analysis on the expression data of the 10 disulfidptosis 
genes. The results of the consensus clustering, visualized through a cumulative distribution function (CDF) diagram, indicated an 
optimal cluster number of k = 2. Notably, each sample within the cluster exhibited a strong correlation (Fig. 2A), leading to the 
categorization of patients with GC into two distinct groups: geneCluster A and B. Principal component analysis highlighted distinct 
directions within the cluster (Fig. 2B). Furthermore, a notable disparity in patient outcomes was observed, with geneCluster B patients 
exhibiting superior overall survival (Fig. 2C). The heat map results revealed higher expression levels of the disulfidptosis-related genes 
in geneCluster B compared to geneCluster A (Fig. 2D). Additionally, GSEA enrichment analysis unveiled significant differences in GO 
between the clusters, particularly in metabolic, tumor signaling pathways, and immune-related pathways (Fig. 2E). Cluster A exhibited 
a higher degree of enrichment in metabolic processes such as monoatomic ion transmembrane transport, chemical synaptic trans-
mission, and regulation of postsynaptic membrane potential. On the other hand, cluster B demonstrated a greater enrichment in 
cysteine-type peptidase activity, positive regulation of telomere maintenance, and ER-nucleus signaling pathways. Pathway enrich-
ment analysis indicated that cluster A displayed increased activity in neuroactive ligand-receptor interaction and calcium signaling 
pathway, while cluster B was primarily associated with amino sugar and nucleotide sugar metabolism, protein export, basal tran-
scription factors, glyoxylate- and dicarboxylate-metabolism, and the pentose phosphate pathway (Fig. 2F). Subsequently, an exami-
nation of the infiltrating immune cells within the cluster (Fig. 2G) revealed significant variations in B cells, different types of T cells, 
mast cells, monocytes, and neutrophils. 

Fig. 3. Gene cluster determination. A Consensus matrix based on disulfidptosis-related gene expression in the GC cohort at k = 2. B Differential 
expression of disulfidptosis regulators in the two clusters. C K-M survival analysis of disulfidptosis regulators in the two clusters. D Multiple GSVA 
analysis between the two clusters of biological pathways. E Multiple GSVA analysis between the two clusters of pathways. **P < 0.01; ***P < 0.001. 
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3.3. Characterization of phenotypes associated with disulfidptosis 

Differential genes were identified and classified based on the type of disulfidptosis, with optimal selection indicated at k = 2 
(Fig. 3A). Expression analysis of disulfidptosis genes in different subtypes revealed significant differences in the expression levels of 
GYS1, NDUFS1, OXSM, LRPPRC, NUBPL, RPN1, SLC3A2, and SLC7A11 (Fig. 3B). Furthermore, gene cluster B exhibited significantly 
increased survival time compared to gene cluster A (Fig. 3C). To identify prognostic-related genes, we utilized R-packages “limma” and 

Fig. 4. Construction of the risk signature. A Cross-validation for selection of tuning parameters in LASSO regression. B LASSO coefficient profiles of 
candidate DEGs. C-E Survival curves for risk score groups in total sample, train, and test data. F–H Survival status curves for risk scores in total 
sample, train, and test data. I–K ROC curves for total sample, train, and test data. L Columnar plots predicting one, three, and five years overall 
survival in patients with GC. J Calibration curves for nomogram-predicted survival outcomes. ***P < 0.001. 
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“survival” to analyze patient clinical data, resulting in the generation of 194 prognostic-related DEGs (Fig. S1). GSEA analysis indicated 
that DEG enrichment was associated with DNA repair, regulation of the cell cycle, and immune cell regulation. This finding confirms 
the close relationship between disulfidptosis and processes such as the cell cycle, DNA replication, and the regulation of the TME 
(Fig. 3D and E). These findings suggest the existence of two distinct regulatory patterns associated with disulfidptosis in GC, with 
functional enrichment differences between subtypes possibly influencing observed patient outcome variations. 

3.4. Construction and verification of disulfidptosis prognosis model 

Classifying disulfidptosis holds significant potential for clinical prognosis in GC. To further investigate the characteristics of 
disulfidptosis, we developed a prognostic model. Lasso-Cox regression analysis identified 8 key genes from 194 prognostic genes 
(Fig. 4A and B), forming the basis of a disulfidptosis risk score. These 194 genes were p < 0.05 genes in cross-validation, namely lasso- 
cox regression significant genes, which were obtained by disulfidptosis typing, equivalent to new disulfidptosis genes. The risk score 
formula was established as: (− 0.1866 × SLC27A2) + (0.1240 × PPP1R14A) + (0.1623 × PHLDA1) + (0.1156 × LAMC2) + (0.1157 ×
KRT80) + (0.1571 × NMU) + (0.1111 × GPC3) + (0.0553 × SFRP2). Subsequently, GC samples were categorized into high-risk and 
low-risk groups based on these risk scores, validated by Kaplan-Meier survival curves (Fig. 4C–E). The analysis of the risk curve 
indicated that an increase in the risk score was associated with an elevated risk of death (Fig. 4F–H). The disulfidptosis risk score 
demonstrated notable accuracy in predicting 1-, 3-, and 5-year outcomes, with values of the area under the curve (AUC) for the overall 
samples of 0.621, 0.644, and 0.668, respectively (Fig. 4I). Internal training set AUC values were 0.653 (1 year), 0.652 (3 years), and 
0.703 (5 years) (Fig. 4J). Similarly, test set AUC values were 0.586 (1 year), 0.630 (3 years), and 0.625 (5 years) (Fig. 4K). The AUC 
values obtained from the external dataset GSE84433 were 0.704 (1 year), 0.663 (3 years), and 0.688 (5 years) (Fig. S2). These results 
demonstrate a higher level of accuracy in model construction. Enhancing prognostic prediction, we constructed a histogram of the 
disulfidptosis risk score. The characteristics of the patients with GC included in this study can be found in Fig. S3. 

Notably, survival data from the GC cohort in this study did not include patients with a survival time of 0. We considered age, sex, T 
stage, and N stage as clinical characteristics, calculating 1-, 3-, and 5-year survival rates based on the corresponding scores (Fig. 4L). 
The obtained survival rates were 0.73, 0.401, and 0.287, respectively. A calibration curve demonstrated alignment between the 
predicted probabilities from the column graph and the actual probabilities (Fig. 4M). In conclusion, our findings highlight the 
promising potential of the disulfidptosis risk score for prognostic assessment. 

Fig. 5. Survival predictive value of disulfidptosis risk model. A Forest plot of risk scores and clinical characteristics for univariate Cox regression 
analysis. B Forest plot of risk scores and clinical characteristics for multivariate Cox regression analysis. C Differences in risk scores between the two 
geneclusters. D Differential expression of disulfidptosis regulators in the two risk groups. E Alluvial diagram showing disulfidptosis clusters, gene 
clusters, risk grouping, and survival status. ***P < 0.001. 

X. Liu and J. Ou                                                                                                                                                                                                       



Heliyon 10 (2024) e26013

9

3.5. Independent predictive value of disulfidptosis risk prognostic model 

We developed a prognostic model for disulfidptosis risk, revealing diverse survival outcomes. Expanding our investigation, we 
integrated comprehensive clinical data across all samples, identifying four common clinical features: age, sex, grade, and stage. Our 
analysis confirms risk scores as potent prognostic indicators for GC (Fig. 5A and B). Additionally, genecluster B exhibited significantly 
lower risk than genecluster A (Fig. 5C). Furthermore, significant differences in gene expression used in constructing the disulfidptosis 
model were observed between the two risk groups (Fig. 5D). Sankey’s map demonstrated that the low-risk cohort primarily consisted 
of patients with cluster B, including a significant proportion of survivors. Conversely, higher risk scores and association with cluster A 
were prominent among patients who succumbed to the disease (Fig. 5E), aligning with previous analyses. 

3.6. The disulfidptosis risk score has considerable potential in predicting tumor treatment outcomes 

Immune infiltration analysis was performed across GC risk groups (Fig. 6A), revealing significant differences in factors such as 
cytolytic activity, human leukocyte antigen type, mast cells, natural killer cells, inflammation-promoting factors, major histocom-
patibility complex class I, and T cell co-inhibition scores between the risk groups. Additionally, T cell co-stimulation, Th1 cells, Th2 
cells, and type II interferon response also varied notably. The correlation between immune cells and risk genes is depicted in Fig. 6B, 
demonstrating their significant association. Furthermore, the tumor immune dysfunction and exclusion (TIDE) score serves as an 
evaluative tool for the clinical efficacy of immune checkpoint inhibitor (ICI) therapy, being employed to appraise the response of both 
high-risk and low-risk populations to immunotherapy. A greater TIDE predictive score corresponds to an increased probability of 
immune evasion, indicating that patients are less inclined to derive benefits from immunotherapy [21]. Our analysis revealed a 
substantial disparity in TIDE scores between the low-risk and high-risk cohorts (Fig. 6C). Risk scores correlated significantly with TIDE 
scores. Furthermore, the analysis of tumor stemness revealed a significant inverse correlation between risk score and replicative 
senescence-associated secretory phenotype (Fig. 6D). 

Based on the microsatellite instability analysis, patients were categorized into three groups: microsatellite stabilization group 
(MSS), low-frequency microsatellite instability group (MSI-L), and high-frequency microsatellite instability group (MSI-H). In the low- 
risk group, a higher proportion of patients belonged to the MSI-H subgroup, while the high-risk group had more patients belonging to 
the MSS and MSI-L subgroups (Fig. 6E). There was no statistically significant difference in risk values between MSS and MSI-L groups. 
Risk values differed significantly between MSS and MSI-H subgroups, with the MSI-H subgroup having a lower risk (Fig. 6F). TMB 

Fig. 6. Immune landscape analysis. A Immune cell scores between high-risk and low-risk groups. B Correlation between immune immune cells and 
disulfidptosis regulators. C TIDE scores in different risk groups. D Relationships between risk scores and RNAss values. E The proportion of MSI-L +
MSI-H in the low-risk group was higher than that in the high-risk group. F Comparison of the risk score among MSS, MSI-L samples, and MSI-H 
samples. *P < 0.05; **P < 0.01; ***P < 0.001. 
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serves as an indicator of mutation counts in cancer [22]. A higher TMB increases self-neoantigens and immunogenic recognition, 
enhancing the likelihood of T cell recognition, facilitating T cell responses against tumor cells, and indicating improved outcomes with 
ICI [23]. “Maftools” software package was used to analyze somatic mutation distribution in TCGA and GSE84437 cohorts. Fig. 7A and 
B revealed a higher TMB in the low-risk group (mutation rate 92.77% with 154 alterations in 166 samples) compared to the high-risk 
group (mutation rate 90.26% with 176 alterations in 195 samples). 

Furthermore, our analysis revealed notable differences in TME between the high-risk and low-risk groups (Fig. 7C). Correlation 
analysis revealed variations in tumor mutation load between the two risk groups, with the low-risk group exhibiting a higher TMB 
(Fig. 7D). Furthermore, a negative correlation was observed between the two genotypes (Fig. 7E). Kaplan-Meier survival curves 
indicated superior survival for patients in the high TMB group than those in the low TMB group (Fig. 7F and G), indirectly validating 
the predictive efficacy of the risk score in immunotherapy. For drug sensitivity, analysis using the “pRRophetic package” revealed that 
patients in the low-risk group were more sensitive to bexarotene, bicalutamide, bortezomib, dasatinib, and imatinib (Fig. 7H). These 
drugs have the potential to enhance outcomes in patients with low-risk GC. Conversely, patients in the high-risk group demonstrated 
greater sensitivity to gemcitabine, gefitinib, bosutinib, sorafenib, and vorinostat, as illustrated in Fig. 7I. Treatment with these agents 
may be beneficial for patients in the high-risk group. 

Fig. 7. Mutation profile and drug sensitivity analysis of disulfidptosis risk score in GC. A Top 20 genes in the low risk group in terms of mutation 
frequency. B Top 20 genes in the high risk group in terms of mutation frequency. C Differences in stromal score, immune score and ESTIMATE score 
between subtypes. D TMB values in the groups with high and low risk. E Association between risk scores and TMB. F-G K-M curves for OS in the 
groups with high and low TMB. H–I The relationship between risk groups and drug sensitivity. *P < 0.05; **P < 0.01; ***P < 0.001. 
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3.7. Molecular docking analysis 

Through the use of molecular docking analysis, it was determined that the binding free energies of SLC27A2, PPP1R14A, PHLDA1, 
LAMC2, KRT80, NMU, GPC3, and SFRP2 proteins with shikonin were calculated to be − 7.6, − 8.3, − 5.9, − 6.1, − 5.2, − 4.6, − 7.3, and 
− 5.6 kcal/mol, respectively (Fig. 8). Specifically, THR242 and LYS465 of the GPC3 protein were observed to interact with shikonin, 
resulting in the formation of a conventional hydrogen bond. Furthermore, LYS247 and VAL458 of the proteins were found to interact 
with shikonin, leading to the generation of an alkyl interaction. Additionally, THR242 exhibited a pi-sigma interaction with shikonin. 
Moreover, GLU238, HIS245, LEU246, and GLN461 were observed to interact with shikonin through van der Waals forces. 

3.8. Molecular dynamics simulation analysis 

The root-mean-square deviation (RMSD) is a metric utilized in assessing the stability of a simulation system by quantifying the 
deviation of a particular atom’s coordinates from a reference structure [24]. A stable RMSD indicates the stability of the corresponding 
atom, whereas a fluctuating RMSD signifies variability. Fig. 9A illustrates the attainment of equilibrium by the protein ligand after a 
duration of 35 ns. 

The solvent-accessible surface area (SASA) is determined through the interplay between van der Waals forces and solvent molecules 
[25]. SASA of a protein diminishes as its compactness increases, thereby enabling the prediction of structural alterations in the protein. 
Fig. 9B illustrates a consistent decline in SASA values throughout all ligand recombination simulations, signifying an augmented 
protein tightness. Radius of gyration (Rg) is employed as a measure of the compactness of the protein structure in the simulation 
procedure, representing the distance between the center of mass of all atoms and their respective termini within a designated time 
interval [26]. As depicted in Fig. 9C, the protein Rg values exhibited a consistent decline throughout the entirety of the complex 
molecular dynamics (MD) simulation, aligning with the observed trend in SASA values. This concurrence suggests an augmentation in 
the tightness of the protein structure. Root mean square fluctuation (RMSF) is employed to assess the variation of individual atoms in 
relation to their mean positions, providing insight into the average structural alterations over time and offering an understanding of the 
flexibility exhibited by different protein regions [27]. Analysis of Fig. 9D reveals substantial fluctuations in the amino acid residues 

Fig. 8. Representation of the interaction between the shikonin and the different proteins. left side, illustrate the interactions in a three-dimensional 
format, while on the right side, depict the same interaction in a two-dimensional format. A GPC. B KRT8. C LAMC2. D NMU. E PHLDA1. F PPP1R14. 
G SFRP. H SLC27A2. 
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within the protein ligand complex group at the 100–200 stage, suggesting a higher degree of flexibility in the protein during this 
particular stage. 

To investigate the interaction between protein and ligand, an initial analysis of hydrogen bonding between the protein and ligand 
was conducted. As depicted in Fig. 9E, the average count of hydrogen bonds formed between proteins and small molecules was 
determined to be 2.15, suggesting the presence of hydrogen bond interactions between proteins and ligands. To elucidate the inter-
action between protein and ligand, the gmx_mmpbsa script (https://jerkwin.github.io/gmxtool/) is employed to determine the 
binding energy of all protein and ligand complexes in the equilibrium phase. The MMPBSA method decomposes the total binding 
energy into four distinct components, namely electrostatic interaction, van der Waals interaction, polar solvation, and non-polar 
solvation interaction, with the latter commonly referred to as SASA. The binding energies of the protein and ligand are presented 
in Table 1. In the intricate protein-ligand system, the protein and small molecule exhibit a negative binding free energy of − 47.493 kJ/ 
mol, respectively, suggesting a stable binding capability. The primary interaction is likely attributed to van der Waals forces. 

3.9. Validation of the expression levels of three genes in GC 

We used qRT-PCR to validate the mRNA levels of three genes between GC cell line (MGC-803 and SGC-7901) and normal gastric 
cell line (GES-1). The results revealed that OXSM, SLC3A2, and SLC7A11 mRNA levels were dramatically higher in GC cells than in 
normal gastric cells (Fig. 10). 

4. Discussion 

GC is a malignancy with high global prevalence, ranking fifth worldwide in frequency and third in cancer-related mortality, leading 

Fig. 9. Comparing post-dynamic data of key shikonin compounds-GPC3 systems, including A (RMSD), B (SASA), C (Rg), D (RMSF), and E (number 
of intramolecular H-bond plots), over varying ns simulation periods. 

Table 1 
Protein ligand MMPBSA analysis.  

Energy Protein-ligand 

Van der Waals Energy (KJ/mol) − 130.484 
Electrostatic energy (kJ/mol) − 46.699 
Polar solvation energy (KJ/mol) 121.904 
Nonpolar solvation Energy (KJ/mol) − 19.422 
Total Binding Energy (KJ/mol) − 74.701 
TΔS(KJ/mol) 27.207 
Total Binding Free Energy (KJ/mol) − 47.493  
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to approximately 800,000 deaths annually [28]. Incidence among young individuals is gradually increasing [29]. High-incidence 
regions include East Asia, Eastern Europe, and South America, while North America and Africa have the lowest rates [30]. Further-
more, males have double the prevalence of GC compared to females [31]. Patients with GC present “three high and three low” at-
tributes: the prevalence, metastasis rate, and mortality being high, while the rates of early diagnosis, radical resection, and 5-year 
survival are notably low [32]. Surgical intervention is the preferred approach for advanced cases of the disease [33]. However, for 
patients who are unsuitable for surgery, combining neoadjuvant chemotherapy, targeted therapy, immunotherapy, radiotherapy, and 
other treatments can potentially extend survival and enhance the overall quality of life [34]. Immunotherapy, including tumor vac-
cines, monoclonal antibodies, and ICI, holds significant promise in the treatment of GC. 

Disulfidptosis, a newly identified form of programmed cell death, distinguishes itself from previously investigated forms of cell 
death such as apoptosis, necrosis, pyroptosis, autophagy, ferroptosis, and cuproptosis [35]. Although disulfidptosis shows promise as a 
treatment strategy for tumors, including GC, its mechanism of action remains unclear. 

The limitation of glucose supply to cancer cells with high expression of SLC7A11 triggers substantial intracellular glycoside 
accumulation, disrupting the oxidoreductase system and inducing cell death [36]. This presents a novel therapeutic strategy for cancer 
treatment. While the exact molecular mechanisms of disulfidptosis in tumors require further investigation, a tumor prognosis model 
based on it has been outlined [37–39]. 

Our study classified patients as belonging to two subtypes of disulfidptosis through unsupervised clustering, revealing distinct 
patterns of tumor progression and treatment in GC. Significantly increased expression of the disulfidptosis-related genes except 
NDUFA11, was observed in GC. This elevated expression is associated with notable differences in patient survival, except for RPN1 and 
SLC3A2. Additionally, we observed that the upregulation of DRG, which is associated with copy number amplification, was prevalent 
in GC, suggesting that copy number amplification may contribute to the overexpression of this gene. We included 871 patients in this 
study. Through an analysis of prognosis, we observed that high disulfidptosis subtypes indicated poor prognosis, while low disul-
fidptosis subtypes exhibited a more favorable prognosis. The GSEA enrichment analysis revealed significant differences between 
clusters A and B. Notably, cluster B exhibited enrichment in processes positively regulating telomere maintenance, a key aspect in 
cancer cell perpetuation. This process enables the unlimited proliferation of human malignant cells and the maintenance of other 
cancer-related characteristics [40]. Cancer cells achieve perpetual replication by activating the telomere maintenance mechanism 
through the activation of telomerase or telomere lengthening pathway [41]. Consequently, enhancing this process could potentially 
improve survival rates in cluster B patients. The analysis of signaling pathways revealed that calcium signaling pathways were notably 
active in cluster A. Calcium ions (Ca2+) serve as crucial second messengers in numerous physiological and pathological processes. 
Within tumor cells, Ca2+ signaling influences proliferation, invasion, and metastasis. Several existing chemotherapeutic agents such as 
cisplatin, can modify intracellular Ca2+, prompting tumor cell apoptosis [42]. Furthermore, the calcium signaling pathway signifi-
cantly contributes to drug resistance in tumors [43]. Consequently, proteins that regulate Ca2+ such as transmembrane cation 
channels, hold promise as potential targets for cancer treatment. 

The investigation revealed that the pentose phosphate pathway (PPP), either directly or indirectly, supplies the necessary reducing 
capacity for lipid, nucleotide biosynthesis, and antioxidant reactions, supporting cellular survival and proliferation. Cancer cells 
undergo metabolic reprogramming to redirect glucose toward the PPP, enhancing tumor growth and survival, particularly under 
stress. Notably, cancer cells exhibit downregulation of the glycolytic pathway during oxidative stress, increasing glucose flux through 
the PPP. This metabolic shift results in the production of higher levels of NADPH, which serves as an essential antioxidant defense 
element [44]. The enzyme glucose-6-phosphate dehydrogenase (G6PD) is pivotal in the PPP, and recent studies reveal that tumor 
suppressor p53 acts as a negative regulator of G6PD. Specifically, p53 directly binds to G6PD, preventing its activation. Silencing the 
G6PD-encoding gene in the PPP results in the accumulation of p53 protein in cells, leading to cellular senescence in lung cancer and 
slowing tumor growth in mouse xenotransplantation models [45]. Recent research has demonstrated that cancer cells with high 
expression of SLC7A11 heavily rely on glucose and the PPP. This reliance results from the rapid conversion of cystine to cysteine, 
demanding a significant NADPH supply [46]. Additionally, disulfidptosis has been observed in cancer cells with elevated SLC7A11 

Fig. 10. The mRNA levels of OXSM, SLC3A2, and SLC7A11 were quantified using qPCR in the GES-1 immortalized gastric cell line, as well as in two 
human gastric cancer cell lines, MGC-803 and SGC-7901. *P < 0.05, **P < 0.01, and ***P < 0.001. 
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expression. Further investigation is needed to clarify the link between disulfidptosis and the PPP pathway. Notably, our findings also 
indicate enrichment in the ubiquitin-mediated proteolytic pathway and cell cycle processes. Ubiquitin signaling plays a vital role in 
regulating the cell cycle to safeguard genomic integrity and maintain the identity of progeny cells. Disrupting ubiquitination perturbs 
the cell cycle, leading to tumorigenesis [47]. Thus, targeting the ubiquitin system may represent a promising therapeutic approach for 
the treatment of cancer. Currently, the understanding of the disulfidptosis mechanism is still in a preliminary stage, requiring further 
investigation to elucidate the intricate regulatory mechanism of protein ubiquitination in disulfidptosis. 

To examine the significance of the disulfidptosis in GC, we screened DEGs between subtypes, identifying eight key genes: SLC27A2, 
PPP1R14A, PHLDA1, LAMC2, KRT80, NMU, GPC3, and SFRP2. Subsequently, a prognostic risk model was developed based on these 
eight genetic traits, and its accuracy was validated both internally and externally. The disulfidptosis model independently predicts 
prognosis, tumor immune microenvironment, TMB, tumor stemness, and microsatellite instability. Compared to conventional staging, 
the disulfidptosis risk score better predicts prognosis. Furthermore, we explored how belonging to high or low-risk groups impacts the 
response to immunotherapy. TIDE algorithm aids oncologists to identify patients who are more likely to benefit from ICI and has been 
validated as a tool to predict immune response to glioma treatment through pyroptosis-related genes [48]. TIDE score findings confirm 
our hypothesis that high-risk groups are associated with a higher prevalence of immunosuppression scores. Thus, the low-risk group 
may derive therapeutic advantages from immunotherapy. 

TMB indicates the mutational burden in cancer [23]. Patients with untreated advanced cancer patients present a significant cor-
relation between TMB-H and extended survival [49]. Similarly, our study associates high-risk scores with elevated TMB levels and 
prolonged survival. Furthermore, we analyzed chemotherapy response in patients with GC based on risk. Low-risk patients were more 
sensitive to bexarotene, bicalutamide, bortezomib, dasatinib, docetaxel, imatinib, lapatinib, and pazopanib. High-risk patients were 
sensitive to all-trans retinoic acid, bosutinib, gefitinib, gemcitabine, lenalidomide, methotrexate, sorafenib, and roscovitine. Sorafenib, 
a tyrosine kinase inhibitor, exhibits significant antitumor properties across various cancer types, including gastric cancer. Sorafenib 
effectively impedes the progression of GC by inducing ferroptosis [50]. Furthermore, identifying disulfidptosis-associated genes could 
lead to the development of disulfidptosis inducers, thereby enhancing the predictive capabilities of sorafenib and other chemotherapy 
drugs. We identified shikonin in Arnebia euchroma (Royle) Johnst as a potent agent with anti-inflammatory, antioxidant, anticancer, 
and wound healing properties. Additionally, it has beneficial effects on autoimmune disorders [51]. A recent investigation has revealed 
that shikonin effectively impedes the progression of counteracts ovarian cancer resistance through the induction of ATF3-dependent 
ferroptosis [52]. Thus, shikonin has demonstrated significant promise in the field of anticancer therapy. Its limited bioavailability led 
to the development of diverse nanosystems of drug delivery to enhance its efficient delivery and augment its anti-tumor effect [53]. 

Molecular docking, a computer-based approach extensively employed in drug discovery, plays a crucial role in identifying novel 
compounds of therapeutic relevance. Compounds exhibiting binding energies below − 5.6 kcal/mol to receptor proteins bind robustly 
to their targets. Most of the eight proteins used to construct the risk model exhibited a binding energy to shikonin below − 5.6 kcal/mol 
[54]. Notably, the docking score between shikonin and PPP1R14A was the highest. As the expression of GPC3 is significantly different 
in the survival of gastric cancer patients, we further simulated the binding of shiksin-GPC3 by molecular dynamics, and the results 
revealed that the protein ligand binds stably, and the main interaction is van der Waals interaction. These drugs effectively inhibit 
tumors, benefiting high/low disulfidptosis risk patients, and potentially acting as disulfidptosis inducers. 

5. Conclusion 

In summary, this study represents a pioneering effort to integrate the disulfidptosis subtype pattern with immune infiltration in 
individuals diagnosed with GC. The identification of distinct clusters aids in understanding the varying degrees of immune infiltration 
among patients. Moreover, we have successfully developed a disulfidptosis risk score for prognosis and response to immunotherapy 
prediction, serving as a novel biomarker. Significant prognostic genes associated with the development of GC were identified, with 
validated expressions in cancer cells, offering novel targets and avenues for the prognosis and treatment of gastric cancer. To rationally 
optimize drug use in patients with varying risks, a drug sensitivity analysis was conducted, revealing the potential of shikonin to induce 
disulfidptosis. Overall, this research offers a robust foundation for understanding the prognostic significance of disulfidptosis-related 
genes and uncovering novel therapeutic approaches. Nevertheless, our investigation is subject to certain limitations, necessitating 
analysis of clinical samples, pharmacological experiments, or animal studies to authenticate its results. 
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[28] C. Röcken, Predictive biomarkers in gastric cancer, J. Cancer Res. Clin. Oncol. 149 (2023) 467–481. http://10.1007/s00432-022-04408-0. 
[29] Z. Sun, Q. Wang, X. Yu, et al., Risk factors associated with splenic hilar lymph node metastasis in patients with advanced gastric cancer in northwest China, Int. 

J. Clin. Exp. Med. 8 (2015) 21358–21364. 
[30] D. Forman, V.J. Burley, Gastric cancer: global pattern of the disease and an overview of environmental risk factors, Best practice & research, Clinical 

gastroenterology 20 (2006) 633–649. http://10.1016/j.bpg.2006.04.008. 
[31] E.C. Smyth, M. Nilsson, H.I. Grabsch, et al., Gastric cancer, Lancet (London, England) 396 (2020) 635–648. http://10.1016/s0140-6736(20)31288-5. 

X. Liu and J. Ou                                                                                                                                                                                                       

https://doi.org/10.1016/j.heliyon.2024.e26013
http://10.3322/caac.21660
http://10.1002/cac2.12197
http://10.1186/s13045-023-01451-3
http://10.1186/s13045-023-01451-3
http://10.1016/s0140-6736(12)60643-6
http://10.1038/s41571-023-00747-0
http://10.3390/cancers15082273
http://10.1016/s0140-6736(17)31827-5
http://10.1016/j.ijsu.2022.106936
http://10.1038/s41556-023-01091-2
http://10.1038/s41556-023-01091-2
http://10.7150/ijbs.22619
http://10.3389/fimmu.2023.1175384
http://10.1101/gr.239244.118
http://10.1371/journal.pone.0107468
http://10.1093/nar/28.1.235
http://10.1021/acs.est.2c09352
http://10.3892/ijmm.2018.3643
http://10.3389/fgene.2022.996625
http://10.3389/fimmu.2023.1111494
http://10.3389/fgene.2022.801056
http://10.3389/fmolb.2023.1131402
http://10.1186/s12943-023-01752-8
http://10.3390/ijms24043441
http://10.3390/ijms24043441
http://10.1016/j.ccell.2020.10.001
http://10.1021/jp412776d
http://10.2174/1389203715666140327114232
http://10.1063/1.2710272
http://10.1063/1.2710272
http://10.1016/j.ijbiomac.2019.01.126
http://10.1007/s00432-022-04408-0
http://refhub.elsevier.com/S2405-8440(24)02044-9/sref29
http://refhub.elsevier.com/S2405-8440(24)02044-9/sref29
http://10.1016/j.bpg.2006.04.008
http://10.1016/s0140-6736(20)31288-5


Heliyon 10 (2024) e26013

16

[32] Z. Song, Y. Wu, J. Yang, et al., Progress in the treatment of advanced gastric cancer, Tumour biology : the journal of the International Society for 
Oncodevelopmental Biology and Medicine 39 (2017) 1010428317714626. http://10.1177/1010428317714626. 

[33] H.N. Tang, J.H. Hu, A comparison of surgical procedures and postoperative cares for minimally invasive laparoscopic gastrectomy and open gastrectomy in 
gastric cancer, Int. J. Clin. Exp. Med. 8 (2015) 10321–10329. 

[34] C. Fong, E. Johnston, N. Starling, Neoadjuvant and adjuvant therapy approaches to gastric cancer, Curr. Treat. Options Oncol. 23 (2022) 1247–1268. http://10. 
1007/s11864-022-01004-9. 

[35] T. Zheng, Q. Liu, F. Xing, et al., Disulfidptosis: a new form of programmed cell death, J. Exp. Clin. Cancer Res. : CR 42 (2023) 137. http://10.1186/s13046-023- 
02712-2. 

[36] X. Liu, K. Olszewski, Y. Zhang, et al., Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable 
metabolic vulnerability in cancer, Nat. Cell Biol. 22 (2020) 476–486. http://10.1038/s41556-020-0496-x. 

[37] Y. Wang, Y. Deng, H. Xie, et al., Hub gene of disulfidptosis-related immune checkpoints in breast cancer, Medical oncology (Northwood, London, England) 40 
(2023) 222. http://10.1007/s12032-023-02073-y. 

[38] K. Xu, Y. Zhang, Z. Yan, et al., Identification of disulfidptosis related subtypes, characterization of tumor microenvironment infiltration, and development of 
DRG prognostic prediction model in RCC, in which MSH3 is a key gene during disulfidptosis, Front. Immunol. 14 (2023) 1205250. http://10.3389/fimmu.2023. 
1205250. 

[39] Y. Chen, C. Jin, J. Cui, et al., Single-cell sequencing and bulk RNA data reveal the tumor microenvironment infiltration characteristics of disulfidptosis related 
genes in breast cancer, J. Cancer Res. Clin. Oncol. (2023), https://doi.org/10.1007/s00432-023-05109-y. http://10.1007/s00432-023-05109-y. 

[40] X. Yuan, M. Dai, D. Xu, Telomere-related markers for cancer, Curr. Top. Med. Chem. 20 (2020) 410–432. http://10.2174/1568026620666200106145340. 
[41] J. Gao, H.A. Pickett, Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies, Nat. Rev. Cancer 22 (2022) 515–532. http:// 

10.1038/s41568-022-00490-1. 
[42] L. Liu, X. Sun, Y. Guo, et al., Evodiamine induces ROS-Dependent cytotoxicity in human gastric cancer cells via TRPV1/Ca(2+) pathway, Chem. Biol. Interact. 

351 (2022) 109756. http://10.1016/j.cbi.2021.109756. 
[43] D.R. Principe, A.F. Aissa, S. Kumar, et al., Calcium channel blockers potentiate gemcitabine chemotherapy in pancreatic cancer, Proc. Natl. Acad. Sci. U. S. A. 

119 (2022) e2200143119. http://10.1073/pnas.2200143119. 
[44] P. Jiang, W. Du, M. Wu, Regulation of the pentose phosphate pathway in cancer, Protein & cell 5 (2014) 592–602. http://10.1007/s13238-014-0082-8. 
[45] N. Ghanem, C. El-Baba, K. Araji, et al., The pentose phosphate pathway in cancer: regulation and therapeutic opportunities, Chemotherapy 66 (2021) 179–191. 

http://10.1159/000519784. 
[46] X. Liu, Y. Zhang, L. Zhuang, et al., NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox 

regulation, Genes & diseases 8 (2021) 731–745. http://10.1016/j.gendis.2020.11.010. 
[47] T. Zou, Z. Lin, The involvement of ubiquitination machinery in cell cycle regulation and cancer progression, Int. J. Mol. Sci. 22 (2021). http://10.3390/ 

ijms22115754. 
[48] X. Jiang, S. Guo, M. Xu, et al., TFAP2C-Mediated lncRNA PCAT1 inhibits ferroptosis in docetaxel-resistant prostate cancer through c-Myc/miR-25-3p/SLC7A11 

signaling, Front. Oncol. 12 (2022) 862015. http://10.3389/fonc.2022.862015. 
[49] P. Riviere, A.M. Goodman, R. Okamura, et al., High tumor mutational burden correlates with longer survival in immunotherapy-naïve patients with diverse 

cancers, Mol. Cancer Therapeut. 19 (2020) 2139–2145. http://10.1158/1535-7163.Mct-20-0161. 
[50] X. Xu, Y. Li, Y. Wu, et al., Increased ATF2 expression predicts poor prognosis and inhibits sorafenib-induced ferroptosis in gastric cancer, Redox Biol. 59 (2023) 

102564. http://10.1016/j.redox.2022.102564. 
[51] Y. Guo, M. Zhou, Z. Mu, et al., Recent advances in shikonin for the treatment of immune-related diseases: anti-inflammatory and immunomodulatory 

mechanisms, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 165 (2023) 115138. http://10.1016/j.biopha.2023.115138. 
[52] M. Ni, J. Zhou, Z. Zhu, et al., Shikonin and cisplatin synergistically overcome cisplatin resistance of ovarian cancer by inducing ferroptosis via upregulation of 

HMOX1 to promote Fe(2+) accumulation, Phytomedicine, international journal of phytotherapy and phytopharmacology 112 (2023) 154701. http://10.1016/ 
j.phymed.2023.154701. 

[53] C. Yan, Q. Li, Q. Sun, et al., Promising nanomedicines of shikonin for cancer therapy, Int. J. Nanomed. 18 (2023) 1195–1218. http://10.2147/ijn.S401570. 
[54] K.Y. Hsin, Y. Matsuoka, Y. Asai, et al., systemsDock: a web server for network pharmacology-based prediction and analysis, Nucleic Acids Res. 44 (2016) 

W507–W513. http://10.1093/nar/gkw335. 

X. Liu and J. Ou                                                                                                                                                                                                       

http://10.1177/1010428317714626
http://refhub.elsevier.com/S2405-8440(24)02044-9/sref33
http://refhub.elsevier.com/S2405-8440(24)02044-9/sref33
http://10.1007/s11864-022-01004-9
http://10.1007/s11864-022-01004-9
http://10.1186/s13046-023-02712-2
http://10.1186/s13046-023-02712-2
http://10.1038/s41556-020-0496-x
http://10.1007/s12032-023-02073-y
http://10.3389/fimmu.2023.1205250
http://10.3389/fimmu.2023.1205250
https://doi.org/10.1007/s00432-023-05109-y
http://10.1007/s00432-023-05109-y
http://10.2174/1568026620666200106145340
http://10.1038/s41568-022-00490-1
http://10.1038/s41568-022-00490-1
http://10.1016/j.cbi.2021.109756
http://10.1073/pnas.2200143119
http://10.1007/s13238-014-0082-8
http://10.1159/000519784
http://10.1016/j.gendis.2020.11.010
http://10.3390/ijms22115754
http://10.3390/ijms22115754
http://10.3389/fonc.2022.862015
http://10.1158/1535-7163.Mct-20-0161
http://10.1016/j.redox.2022.102564
http://10.1016/j.biopha.2023.115138
http://10.1016/j.phymed.2023.154701
http://10.1016/j.phymed.2023.154701
http://10.2147/ijn.S401570
http://10.1093/nar/gkw335

	The development of prognostic gene markers associated with disulfidptosis in gastric cancer and their application in predic ...
	1 Introduction
	2 Materials and methods
	2.1 Sample collection and processing
	2.2 Consistent gene cluster analysis for disulfidptosis
	2.3 Evaluation of tumor microenvironment (TME) of molecular subtypes
	2.4 Functional enrichment analysis between molecular subtypes
	2.5 Identification of DEGs in disulfidptosis subtype
	2.6 Establishment and verification of disulfidptosis-related prognostic model
	2.7 TME and immune status in different risk groups
	2.8 Analysis of TMB and drug sensitivity
	2.9 Molecular docking and molecular dynamics simulation
	2.10 Correlation analysis of satellite instability and stem cells
	2.11 Construction and verification of nomogram
	2.12 Cell culture and validation of gene expression
	2.13 Statistical analysis

	3 Results
	3.1 Genetic study of genes related to disulfidptosis in GC
	3.2 GC classification pattern based on disulfidptosis
	3.3 Characterization of phenotypes associated with disulfidptosis
	3.4 Construction and verification of disulfidptosis prognosis model
	3.5 Independent predictive value of disulfidptosis risk prognostic model
	3.6 The disulfidptosis risk score has considerable potential in predicting tumor treatment outcomes
	3.7 Molecular docking analysis
	3.8 Molecular dynamics simulation analysis
	3.9 Validation of the expression levels of three genes in GC

	4 Discussion
	5 Conclusion
	Availability of data and material
	Funding support
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix A Supplementary data
	References


