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Chronic and long-term methamphetamine (METH) abuse is bound to cause damages to multiple organs and systems, especially
the central nervous system (CNS). Icariside II (ICS), a type of flavonoid and one of the main active ingredients of the traditional
Chinese medicine Epimedium, exhibits a variety of biological and pharmacological properties such as anti-inflammatory,
antioxidant, and anticancer activities. However, whether ICS could protect against METH-induced neurotoxicity remains
unknown. Based on a chronic METH abuse mouse model, we detected the neurotoxicity after METH exposure and
determined the intervention effect of ICS and the potential mechanism of action. Here, we found that METH could trigger
neurotoxicity, which was characterized by loss of dopaminergic neurons, depletion of dopamine (DA), activation of glial cells,
upregulation of α-synuclein (α-syn), abnormal dendritic spine plasticity, and dysfunction of motor coordination and balance.
ICS treatment, however, alleviated the above-mentioned neurotoxicity elicited by METH. Our data also indicated that when
ICS combated METH-induced neurotoxicity, it was accompanied by partial correction of the abnormal Kelch 2 like ECH2
associated protein 1 (Keap1)-nuclear factor erythroid-2-related factor 2 (Nrf2) pathway and oxidative stress response. In the
presence of ML385, an inhibitor of Nrf2, ICS failed to activate the Nrf2-related protein expression and reduce the oxidative
stress response. More importantly, ICS could not attenuate METH-induced dopaminergic neurotoxicity and behavioral damage
when the Nrf2 was inhibited, suggesting that the neuroprotective effect of ICS on METH-induced neurotoxicity was dependent
on activating the Keap1-Nrf2 pathway. Although further research is needed to dig deeper into the actual molecular targets of
ICS, it is undeniable that the current results imply the potential value of ICS to reduce the neurotoxicity of METH abusers.

1. Introduction

Methamphetamine (METH), an amphetamine-type stimu-
lant that appears as white transparent irregular crystals,
commonly known as “ice,” is rapidly and widely abused
across the world due to easy access to raw materials, simple
synthetic methods, and low production costs [1]. The World
Drug Report 2020 issued by the United Nations Office on
Drugs and Crime pointed out that in the past year, about
27 million people worldwide have used amphetamine-type
stimulants including METH. METH is known for its strong

excitability and high potency for addiction, which can lead
to repeated withdrawal and relapse. Some researchers
defined it as a chronic recurrent disease characterized by
compulsive drug taking, inability to control intake, and
strong drug cravings [2]. Chronic and long-term METH
abuse is bound to cause serious toxic effects on abusers end-
ing with multiple organ and system damages. Especially, the
pathological changes of the central nervous system (CNS)
result in mental disorders such as psychosis, anxiety, and
depression [3, 4] and in cognitive dysfunctions such as
impairment of executive function, attention disability, and
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working memory loss [2, 5]. Nevertheless, there is still a lack
of reliable and effective drugs to prevent and treat METH-
induced neurotoxicity.

Dopaminergic neurons are one of the main attacked tar-
gets by METH, and its damage caused by METH is similar
to the pathological changes of Parkinson’s disease (PD).
While the mechanism of METH-induced neurotoxicity is
not well understood, our previous studies and those of other
researchers’ works have indicated that involves the regula-
tion of neuronal excitotoxicity, oxidative stress, neuroin-
flammation, apoptosis, and autophagy [6–11]. Among
these molecular and cellular processes, oxidative stress seems
to be a bridge connecting neuroinflammation, apoptosis,
and autophagy [4, 12, 13]. When oxidative stress occurs,
the endogenous antioxidant system is also activated, thereby
inhibiting the injury from the oxidative stress and keeping
the body in a balanced state. The pathway involving Kelch
2 like ECH2 associated protein 1 (Keap1) and nuclear factor
erythroid-2-related factor 2 (Nrf2) is crucial in the endoge-
nous antioxidant system. Nrf2 is a redox-sensitive transcrip-
tion factor containing the basic structure of the leucine
zipper [14]. Under physiological conditions, Nrf2 mainly
concentrates in the cytoplasm and forms a complex with
Keap1, which could mediate the degradation of Nrf2
through the ubiquitin-proteasome system [14, 15]. When
reactive oxygen species (ROS) or other substances stimulate,
Nrf2 will dissociate from Keap1 and enter the nucleus, where
it interacts with the antioxidant-response element and acti-
vates the expression of antioxidant enzymes such as heme
oxygenase 1 (HO-1) and NAD(P)H:quinone oxidoreductase
1 (NQO-1) [14, 15]. However, when the damage is severe
enough to exceed the regulatory range, the Keap1-Nrf2
pathway will also be affected and lead to a vicious circle of
oxidative stress. Recent studies have confirmed that the
Keap1-Nrf2 pathway dysfunction plays an important role
in METH-induced neurotoxicity [16–19].

Icariside II (ICS), a type of flavonoid, is one of the main
active ingredients of the traditional Chinese medicine Epime-
dium [20]. Extensive data have shown that ICS could exhibit
a variety of biological and pharmacological properties, includ-
ing anti-inflammatory [21, 22], antioxidant [23, 24], and anti-
cancer [20, 25] activities. Recent studies have also found that
ICS has a protective effect against CNS damage. For example,
ICS could attenuate lipopolysaccharide-induced amyloid pro-
duction and inflammation in astrocytes [21] and suppress
oxygen-glucose deprivation/reperfusion- (OGD/R-) induced
hippocampal neuronal death [26]. However, there are no
research reports on whether ICS could protect against
METH-induced neurotoxicity. And if it does so, the relevant
molecular mechanisms are worthy of further study.

To verify this hypothesis, we observed the intervention
effect of ICS and investigated the potential influence of the
Keap1-Nrf2 pathway in a chronic METH-abuse mouse
model that developed CNS injury.

2. Materials and Methods

2.1. Reagents. METH (purity ≥ 99:1%) was obtained from
the National Institute for the Control of Pharmaceutical

and Biological Products (Beijing, China). ICS (Figure 1(a))
was purchased from the ZZBIO Co., Ltd. (Shanghai, China),
and ML385 was purchased from the Macklin Biochemical
Co., Ltd. (Shanghai, China). The antibodies used in this
study were TH (AB152, Millipore, Germany), DAT (bs-
1714R, Bioss, China), α-syn (A7215, Abclonal, China),
GFAP (16825-1-AP, Proteintech, China), Iba1 (ab220815,
Abcam, USA), Keap1 (60027-1-Ig, Proteintech, China),
Nrf2 (66504-1-Ig, Proteintech, China), HO-1 (70081S,
CST, USA), NQO1 (ab80588, Abcam, USA), β-actin (bs-
0061R, Bioss, China), and corresponding secondary anti-
bodies (BL003A and BL001A, Biosharp, China).

2.2. Animal Treatments. Male C57BL/6J mice (20-22 g, 8
weeks old) were purchased from the Laboratory Animal
Center of Southern Medical University (Guangzhou, China)
and housed in a standard animal room with temperature
(22 ± 2°C), humidity (55 ± 5%), light cycles (12 h light and
12 h dark), and free access to food and water. All experi-
ments were approved by the Animal Care and Use Commit-
tee of Southern Medical University (No. L2017208) and
were performed according to ethical standards described in
the NIH guidelines. The chronic METH-abuse mice model
was established according to the 14-day administration
schedule (Table 1), which was determined based on our pre-
vious studies [8, 27, 28]. And 10mg/kg or 30mg/kg of ICS
was administered orally to investigate the intervention effect
of ICS on METH-induced neurotoxicity by referring to an
earlier study [29]. As shown in Figure 1(b), the animal
experiments were divided into two phases.

In the first phase, the mice were randomly divided into
five groups (16 mice per group):

(1) Control: saline (orally, once a day for four week-
s)+saline (saline in place of METH, intraperitoneal
injection, according to the 14-day dosing schedule)

(2) ICSH: 30mg/kg of ICS (orally, once a day for four week-
s)+saline (saline in place of METH, intraperitoneal
injection, according to the 14-day dosing schedule)

(3) METH: saline (orally, once a day for four week-
s)+METH (intraperitoneal injection, according to
the 14-day dosing schedule)

(4) METH+ICSL: 10mg/kg of ICS (orally, once a day for
four weeks)+METH (intraperitoneal injection,
according to the 14-day dosing schedule)

(5) METH+ICSH: 30mg/kg of ICS (orally, once a day for
four weeks)+METH (intraperitoneal injection,
according to the 14-day dosing schedule)

In the second phase, the mice were randomly divided
into six groups (16 mice per group):

(1) Control: saline (intraperitoneal injection, once a
week for four weeks)+saline (orally, once a day for
four weeks)+saline (intraperitoneal injection,
according to the 14-day dosing schedule, but replace
METH with saline)
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(2) METH: saline (intraperitoneal injection, once a week
for four weeks)+saline (orally, once a day for four
weeks)+METH (intraperitoneal injection, according
to the 14-day dosing schedule)

(3) METH+ICSH: saline (intraperitoneal injection, once
a week for four weeks)+30mg/kg of ICS (orally, once
a day for four weeks)+METH (intraperitoneal injec-
tion, according to the 14-day dosing schedule)

(4) ML385: 30mg/kg of ML385 (intraperitoneal injec-
tion, once a week for four weeks)+saline (orally, once
a day for four weeks)+saline (intraperitoneal injec-
tion, according to the 14-day dosing schedule, but
replace METH with saline)

(5) METH+ML385: 30mg/kg of ML385 (intraperitoneal
injection, once a week for four weeks)+saline (orally,
once a day for four weeks)+METH (intraperitoneal
injection, according to the 14-day dosing schedule)

(6) METH+ICSH+ML385: 30mg/kg of ML385 (intra-
peritoneal injection, once a week for four
weeks)+30mg/kg of ICS (orally, once a day for four
weeks)+METH (intraperitoneal injection, according
to the 14-day dosing schedule)

All mice were euthanized 24 h after behavioral tests and
the brains were harvested for further analysis.

2.3. Behavioral Tests. For pole test, the pole (length: 75 cm
and diameter: 1.5 cm) was placed on the ground verticality.
The mice were placed near the top (5 cm from the top) of
the pole facing upwards. The total time taken to reach the
bottom of the pole was recorded. For rotarod test, the mice

were placed on a wheel and the time of latency to fall was
recorded. The speed of the rotarod started from 4 to
40 rpm, and the acceleration rate was 20 rpm/min. Each test
was conducted 3 times after 2 days of training. For gait test,
the apparatus is a U-shaped runway (length: 60 cm, width:
10 cm, and height: 10 cm). The paper was placed on the bot-
tom of the runway. The mice were allowed to run from one
side to the other side. Before the test, the mice were trained
for 2 days. In the test trials, the mice forepaws were painted
red and hindpaws black using nontoxic dyes. The mice were
placed on the runway, and the footprints were acquired.
Stride length was measured between each of the forepaw
and hindpaw footprints.

2.4. Immunohistochemical (IHC) Staining. The mice brains
were fixed in 4% paraformaldehyde and then dehydrated
in gradient alcohol. After being embedded in paraffin, the
brain tissues were sectioned at the coronal plane using a
microtome (RM 2235, Leica, Germany). Sections containing
substantia nigra (SNc) and caudate and putamen (CPu)
areas were subjected to IHC staining. Briefly, the sections
were immersed into sodium citrate solution for antigen
recovery. The sections were then incubated with the anti-
TH antibody for 12 h at 4°C. Thereafter, the targeted pro-
teins were visualized by 3’3-diaminobenzidine Kits
(CW2069, CW Bio, China). The images were captured by a
microscope (CX23, Olympus, Japan).

2.5. Nissl Staining. The Nissl staining was performed by
using a Nissl staining kit (G 1434, Solarbio Life Sciences,
China). The paraffin-embedded brains were sectioned using
a microtome (RM 2235, Leica, Germany). The sections were
dewaxed, rehydrated, and then immersed into methylene
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Figure 1: (a) Molecular structure of ICS. (b) Experimental protocol.

Table 1: The METH (mg/kg) administration schedule.

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14

8 : 00 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0

10 : 00 1.0 1.5 1.5 2.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0

12 : 00 1.0 1.5 1.5 2.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0

14 : 00 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0
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blue staining solution for 10min. After being immersed in
the Nissl differentiation solution for 3 s, the sections were
rinsed in water and then dehydrated in pure alcohol. A
microscope (CX23, Olympus, Japan) was used to obtain
images.

2.6. Western Blot. The striatum tissues were homogenized in
a protein extraction buffer (Beyotime, China) containing
protease and phosphatase inhibitors. After centrifugation
(12,000 g, 10min, 4°C), the protein supernatant was col-
lected and measured with a Protein Quantitative Analysis
kit (Biocolors, China). The protein loading buffer was added
to the supernatant and boiled at 99°C for 10min. The sam-
ples were separated by SDS-PAGE and transferred to
0.45μm PVDF membranes (Millipore, USA). After blocking
in 5% nonfat milk at room temperature for 1 h, the mem-
branes were then incubated overnight at 4°C with the follow-
ing primary antibodies: TH, DAT, α-syn, GFAP, Iba1,
Keap1, Nrf2, HO-1, NQO1, and β-actin. The dilution ratios
for all antibodies were 1 : 1000. In the next day, the mem-
branes were incubated with the secondary antibody at room
temperature for 1 h, and electrochemiluminescence reagents
(Bio-Rad, USA) were added to visualize the immunoblot sig-
nals. ImageJ software was used to measure band densities.

2.7. Measurement of Dopamine (DA) Levels. The striatum
was homogenized in an ice-cold buffer containing 0.01mM
of HClO4 and 0.01% EDTA. After centrifugation (20,000 g,
20min, 4°C), DA levels in the supernatant were assessed by
using HPLC.

2.8. Dendritic Spine Analysis. Brain tissues were fixed in 4%
paraformaldehyde for 6 h. The sections (thick in 200μm)

were acquired using a vibratome (VT1200S, Leica, Ger-
many). Lucifer yellow dye (L453, MA, USA) was loaded in
a pipette for injection into the neurons of CPu. The dye
was injected into a neuron for 25min with a 1-3 nA current.
The pipettes were removed when the dendritic branches
were visualized. Dendritic images were acquired under a
confocal microscope (LSM 880, Zeiss Carl, Germany). The
numbers of dendritic spines were analyzed using ImageJ
software.

2.9. Measurement of ROS, MDA, SOD, and GSH Levels. The
ROS levels in striatum were measured by using an ELISA
assay kit (MEIMIAN, China). Briefly, the striatum was
homogenized in ice-cold saline, and the supernatant was
collected after centrifugation (3500 rpm, 15min, 4°C).
After a series of incubation and washing, a microplate
reader (BioTek, USA) was used to detect the absorbance
at 450 nm, which can be used to calculate the ROS levels.
The MDA, SOD, and GSH levels in striatum were mea-
sured by using commercial kits (Nanjing Jiancheng Bioen-
gineering Institute, China) according to the manufacturer’s
instructions. The samples from striatum were measured
with a microplate reader (BioTek, USA) at 532, 450, and
405 nm for further calculating MDA, SOD, and GSH
levels, respectively.

2.10. Data Analysis. All experiments were repeated at least
four times and data were represented as the mean ± SD.
One-way ANOVA (followed by the Tukey HSD and LSD
tests) was performed by using SPSS 21 (IBM SPSS, Chicago,
United States), and p < 0:05 was considered statistically
significant.
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Figure 2: ICS attenuated neuronal loss and improved behavioral performance in chronic METH abuse mice model. (a) The fall latency was
determined by rotarod test. (b) The descend time was determined by pole test. (c) Representative micrographs of TH staining in CPu and
SNc (scale bar = 400 μm for the low-magnification images and 20 μm for the high-magnification images). (d) Quantification of TH-positive
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behavioral tests and n = 4 per group for IHC staining and Nissl staining.
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3. Results

3.1. ICS Attenuated Neuronal Loss and Improved Behavioral
Performance in Chronic METH-Abuse Mice Model. Rotarod
test, pole test, and gait test revealed that chronic METH abuse
induced the impairment of motor coordination and balance,
while both low (10mg/kg) and high (30mg/kg) dosages of
ICS could improve these impaired behavioral performances
elicited by METH (Figures 2(a), 2(b), 2(g), and 2(h)). We next
performed IHC staining of TH to detect the dopaminergic
neuron number in SNc and CPu of each group of mice
(Figure 2(c)). Quantitative analysis of TH staining showed that
both 10mg/kg and 30mg/kg of ICS could attenuate the loss of
dopaminergic neurons in METH-treated mice (Figures 2(d)
and 2(e)). Similarly, the numbers of Nissl-positive cells were
increased in SNc and CPU of ICS+METH mice compared to
METH mice (Figure 2(f)).

3.2. ICS Increased TH, DAT, and DA Levels and Decreased
GFAP, Iba1, and α-Syn Levels in Striatum of METH Mice
Model. To further verify the protective effects of ICS on
dopaminergic neurons decreased by METH, WB and
HPLC analyses were used to detect DAT, TH, and DA
levels in striatum of each group of mice, respectively. We
found that the levels of DAT, TH, and DA remarkably
decreased in METH mice compared to control mice. How-
ever, treatment with ICS increased TH, DAT, and DA
levels reduced by METH (Figures 3(a)–3(d)). Considering
that glial activation and high expression of α-syn are man-
ifestations of METH neurotoxicity, we continued to detect
the expression of GFAP, Iba1, and α-syn in striatum of
each group of mice. The WB results suggested that
METH-induced high-level expressions of GFAP, Iba1,
and α-syn were suppressed in ICS-received mice
(Figures 3(e)–3(h)).

3.3. ICS Alleviated the Abnormalities of Dendritic Spines of
Neurons in CPu of METH Mice Model. We next conducted
morphology analysis for dendritic spines of neurons in CPu
area. Compared with the control mice, METH-treated mice
exhibited decreased numbers of total dendritic spines,
mushroom-type dendritic spines, and stubby-type dendritic
spines in neurons. Both low and high dosage ICS intervention
alleviated the abnormalities of dendritic spines of neurons in
CPu of METH mice model (Figures 4(a)–4(d)). In addition,
we found that there was no difference in the numbers of thin-
type dendritic spines of neurons between each group of mice
(Figure 4(e)).

3.4. ICS Activated the Keap1-Nrf2 Pathway and Reduced
Oxidative Stress in Striatum of METH Mice Model. Given the
crucial role of oxidative stress in METH neurotoxicity, we then
investigated whether the Keap1-Nrf2 pathway and its mediated
antioxidative stress were countable for the neuroprotective abil-
ity of ICS. Here, we found thatMETH inhibited the Keap1-Nrf2
pathway and elicited a serve oxidative stress response, which
was featured by the upregulation of ROS (Figure 5(a)), MDA
(Figure 5(b)), and Keap1 (Figures 5(h) and 5(i)) levels and by
the downregulation of SOD (Figure 5(c)), GSH (Figure 5(d)),
Nrf2 (Figures 5(e) and 5(f)), NQO1 (Figures 5(e) and 5(g)),
and HO-1 (Figures 5(h) and 5(j)) levels in striatum of METH
mice, whereas the decrease or increase of these indicators was
all recovered to some extent in both ICSL+METH mice and
ICSH+METH mice compared to METH mice (Figures 5(a)–
5(j)). These data implied that ICS might protect against
METH-induced neurotoxicity by activating the Keap1-Nrf2
pathway and reducing oxidative stress.

3.5. In the Presence of ML385, an Inhibitor of Nrf2, ICS
Failed to Activate the Nrf2-Related Protein Expression and
Reduce Oxidative Stress in Striatum of METH Mice Model.
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Figure 3: ICS increased TH, DAT, and DA levels and decreased GFAP, Iba1, and α-syn levels in striatum of METH mice model.
Figures 3(a)–3(c) Representative WB images and quantification of TH and DAT. (d) Measurement of DA levels by using HPLC.
Figures 3(e)–3(h) Representative WB images and quantification of GFAP, Iba1, and α-syn. n = 4 per group.
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Figure 4: ICS alleviated the abnormalities of dendritic spines of neurons in CPu of METH mice model. Figure 4(a) Representative images of
dendritic spines (scale bar = 1μm). Figures 4(b)–4(e) Analysis of the numbers of total dendritic spines, mushroom-type dendritic spines,
stubby-type dendritic spines, and thin-type dendritic spines. n = 4 per group.
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Figure 5: Continued.
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ML385, an inhibitor of Nrf2 [30], was used to further con-
firm whether the Keap1-Nrf2 pathway and its mediated
antioxidative stress were involved in the protective effect of
ICS on METH neurotoxicity. First, we focused on the effect
of ML385, ICS, and METH on the Keap1-Nrf2 pathway and
oxidative stress response. Consistent with the first phase of
the experiment, we found that ICS activated the Keap1-
Nrf2 pathway and reduced oxidative stress in striatum of
METH mice (Figures 6(a)–6(j)). Besides, the mice treated
with ML385 alone exhibited lower levels of Nrf2, NQO1,
HO-1, GSH, and SOD but higher levels of ROS and MDA
than the control mice. The changes of these indicators were
more obvious in ML385+METH mice compared to METH
alone mice (Figures 6(a)–6(h) and 6(j)). In addition, we
found that the regulation of Keap1 by ICS was not affected
in the presence of ML385 (Figures 6(h) and 6(i)). Neverthe-
less, after inhibiting Nrf2 by ML385, ICS failed to activate

the Nrf2-related protein expression and to reduce oxidative
stress in striatum of METH mice model (Figures 6(a)–6(h)
and 6(j)).

3.6. When Nrf2 Was Suppressed, ICS Could Not Attenuate
Dopaminergic Neurotoxicity, nor Improve Impaired
Behavioral Performance in Chronic METH Abuse Mice
Model. Next, we will determine if ICS, when Nrf2 was sup-
pressed, could still attenuate dopaminergic neurotoxicity
and improve impaired behavioral performance in chronic
METH abuse mice model. Compared with the METH alone
group, the indicators that reflected the damage to dopami-
nergic neurons and motor coordination and balance became
more serious in METH+ML385 group. In behavioral perfor-
mance, the fall latency in rotarod test was lower
(Figure 7(a)), the descend time in pole test was longer
(Figure 7(b)), and the stride length in gait test was shorter
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Figure 5: ICS activated the Keap1-Nrf2 pathway and reduced oxidative stress in striatum of METH mice model. Figure 5(a) The ROS levels
were measured by using an Elisa kit. Figures 5(b)–5(d) The MDA, SOD, and GSH levels were measured by using commercial kits.
Figures 5(e)–5(j) Representative WB images and quantification of Nrf2, NQO1, Keap1, and HO-1. n = 4 per group.
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(Figures 7(h) and 7(g)). In morphological and molecular
studies, the numbers of TH-positive neurons and Nissl-
positive neurons were lower in SNc and CPu
(Figures 7(c)–7(f)). The TH, DAT, and DA levels were lower
(Figures 8(a)–8(d)), and the GFAP, Iba1, and α-syn levels
were higher (Figures 8(a) and 8(e)–8(g)). The decreased
numbers of total dendritic spines, mushroom-type dendritic
spines, and stubby-type dendritic spines in neurons were
also more obvious (Figures 9(a)–9(d)). More importantly,
while ICS treatment could alleviate the above-mentioned
neurotoxicity and behavioral damage induced by METH,
however, when Nrf2 was suppressed, ICS failed to show its
neuroprotective effects in chronic METH abuse mice model
(Figures 7–9). This suggests that the neuroprotective effect
of ICS on METH-induced neurotoxicity was achieved by
activating the Keap1-Nrf2 pathway.

4. Discussion

This study showed that METH could trigger neurotoxicity,
which was characterized by dopaminergic neurons loss, glial
cell activation, α-syn upregulation, DA depletion, and den-
dritic spines abnormalities. The neurotoxicity is also accom-
panied by behavioral impairments (specifically, dysfunction
of motor coordination and balance). ICS treatment allevi-
ated the above-mentioned neurotoxicity and behavioral
impairments induced by METH. We also found that the
neuroprotective effect of ICS on METH-induced neurotoxic-
ity was achieved by activating the Keap1-Nrf2 pathway and
decreasing the oxidative stress response.

The toxic effect of METH on dopaminergic neurons is
one of its most representative neurotoxic manifestations,

which has been extensively studied. Due to the high lipid
solubility, METH can cross the blood-brain barrier (recent
studies suggested that METH can destroy it [31]) and enter
the brain parenchyma. METH infiltrates the brain further
into dopaminergic neurons through the DAT and exerts its
toxic effects there. METH initially enhances DA release
and inhibits DA reuptake, thereby activating dopaminergic
signals in the reward pathway to trigger reward behavior
and subsequently drug addiction. However, with the pro-
longed METH exposure, neurotoxic effects on dopaminergic
neurons occur, specifically manifested as the downregulation
of TH and DAT levels and DA depletion [10, 32]. Using pos-
itron emission tomography imaging, Volkow et al. [33]
found that the DAT density in striatum of METH abusers
was decreased compared to those of healthy individuals. Pre-
vious studies have also found that METH treatment could
reduce the expression levels of TH, DAT, and DA in labora-
tory animals [6, 8, 34, 35]. Consistent with these studies, we
duplicated the dopaminergic neurotoxic phenotype in mice
after chronic METH exposure. Considering the various
pharmacological properties of ICS, we selected it as a candi-
date to study whether it could reduce the neurotoxicity
induced by METH. We have collected evidence showing that
ICS could attenuate the loss of dopaminergic neurons and
the decrease of DA concentrations in the METH mice
model. The neuroprotective effects of ICS have been men-
tioned in other animal disease models. Xu et al. [26] demon-
strated that ICS could mitigate OGD/R-induced primary
hippocampal neuron injury. ICS also remarkably amelio-
rated beta-amyloid (Aβ) generation and neuronal degrada-
tion in APP/PS1 double transgenic mice [29]. Interestingly,
a recent study found that human amniotic mesenchymal

0

1

2

3

Ke
ap

1/
β-

A
ct

in

0.000 0.003 0.0200.000

Sal
ine

METH

Saline

METH+IC
S

Sal
ine

METH

METH+IC
S

ML385

(i)

0.0

0.5

1.0

1.5

H
O

-1
/β

-A
ct

in

0.000 0.035

0.039

0.004

0.728

Sal
ine

METH

Saline

METH+IC
S

Sal
ine

METH

METH+IC
S

ML385

(j)

Figure 6: In the presence of ML385, an inhibitor of Nrf2, ICS failed to activate the Nrf2-related protein expression and to reduce oxidative
stress in striatum of METH mice model. Figure 1(a) The ROS levels were measured by using an Elisa kit. Figures 6(b)–6(d) The MDA, SOD,
and GSH levels were measured by using commercial kits. Figures 6(e)–6(j) Representative WB images and quantification of Nrf2, NQO1,
Keap1, and HO-1. n = 4 per group.
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Figure 7: ML385 blocked the protective effects of ICS on neuronal loss and behavioral impairment in METH mice model. Figure 7(a) The
fall latency was determined by rotarod test. Figure 7(b) The descend time was determined by pole test. Figure 7(c) Representative
micrographs of TH staining in CPu and SNc (scale bar = 400μm for the low-magnification images and 20 μm for the high-magnification
images). Figure 7(d) Quantification of TH-positive fibers in CPu. Figure 7(e) Quantification of TH-positive neurons in SNc. Figure 7(f)
Representative micrographs of Nissl staining in CPu (scale bar = 100 μm) and SNc (scale bar = 400μm). Figure 7(g) Representative
footprint patterns from gait test. Figure 7(h) Analysis of stride length. n = 6 per group for behavioral tests and n = 4 per group for IHC
staining and Nissl staining.
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Figure 8: Continued.
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stem cells could differentiate into dopaminergic neuron-like
cells under the influence of ICS [36]. Thus, both this study
and previous studies suggest the neuroprotective potential
of ICS.

METH-induced dopaminergic neuron damage is similar
to the pathological changes of PD, which is an increased risk
for METH abusers [37]. In this study, a high-level expres-
sion of α-syn was observed in striatum of METH mice
model, which was consistent with our previous studies [35,
38, 39]. The abnormalities in the dendritic spines of striatal
neurons were observed in PD [40]; therefore, the pathologi-
cal changes of dendritic spines of neurons in CPu were ana-
lyzed after METH exposure. We found that METH caused
abnormal dendritic spine morphology and spine number.

We then detected the motor coordination and balance abil-
ity of METH-treated mice through pole test, rotarod test,
and gait test. Compared with the control mice, mice treated
with METH exhibited poorer behavioral performance. The
above results further proved that METH could induce PD-
like symptoms [35]. Surprisingly, unlike the protective
effects of ICS on the Alzheimer’s disease (AD) model
[41–44], we found in this study that ICS could alleviate
METH-induced high-level expression of α-syn, dendritic
spines abnormalities, and dysfunction of motor coordina-
tion and balance.

Oxidative stress plays an essential role in METH-
induced neurotoxicity [45], and it always has crosstalk with
inflammatory response, apoptosis, autophagy, and other
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Figure 8: Inhibition of Nrf2 eliminated the regulatory effect of ICS on the abnormal expression of TH, DAT, DA, GFAP, Iba1, and α-syn in
striatum of METH mice model. (a–c and e–g) Representative WB images and quantification of TH, DAT, GFAP, Iba1, and α-syn. (d)
Measurement of DA levels by using HPLC. n = 4 per group.
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molecular pathological mechanisms [4, 12, 46]. ROS is a by-
product of aerobic metabolism, including superoxide anion,
hydroxyl radical, and hydrogen peroxide. Under the
dynamic equilibrium between the oxidation system and
antioxidant system, excess ROS will be cleared in time. How-
ever, when the body’s antioxidant system is weakened or
ROS is greatly increased, oxidative stress damage will occur.
Due to the strong oxidative effect, METH abuse will result in
oxidative stress damage. Zeng et al. [46] pointed out that
METH augmented intracellular ROS levels and downregu-
lated the level of glutathione peroxidase 1 (GPX1) and
SOD1. This severe oxidative stress further induced autoph-
agy and apoptosis in human SH-SY5Y neuroblastoma cells
and rat striatum.

Nrf2 exerts an antioxidant effect by dissociating from
Keap1 and transferring into nuclear, where it interacts with
the antioxidant response element and activates the expres-
sion of antioxidant enzymes. When Nrf2 nuclear transloca-
tion and its downstream gene expression be inhibited, it
will cause redox imbalance and oxidative stress injury [47].
Conversely, activating the Keap1-Nrf2 pathway by increas-
ing the expression and effect of Nrf2 will play a protective
role against disease states [48, 49]. Unfortunately, multiple
exposures to METH increased Keap1 expression but
decreased Nrf2 expression and thus downregulated down-
stream antioxidant enzyme expressions like HO-1 and
glutamyl-cysteine synthetase-γ [18]. Besides, METH not
only enhanced ROS production but also inhibited the
Keap1-Nrf2 pathway, thus resulting in damage to neurons
in ventral tegmental area of rats [19]. In line with these pre-
vious results, in this study, we also found that chronic
METH abuse inhibited the Keap1-Nrf2 pathway and elicited
oxidative stress. Moreover, ICS exhibited positive effects on
activating the Keap1-Nrf2 pathway and attenuating oxida-
tive stress in striatum of METH mice model, implying the
involvement of the Keap1-Nrf2 pathway and oxidative stress
in ICS-regulated METH neurotoxicity.

We next used ML385, an inhibitor of Nrf2, to further
confirm whether the Keap1-Nrf2 pathway and oxidative
stress were involved in the protective effect of ICS on METH
neurotoxicity. Just as expected, in the presence of ML385,
ICS failed to activate the Keap1-Nrf2 pathway and to reduce
oxidative stress in striatum of METH mice. More impor-
tantly, ML385 blocked the protective effects of ICS on neu-
ronal loss, dendritic spines abnormalities, and behavioral
impairments induced by METH. Also, inhibition of Nrf2
eliminated the regulatory ability of ICS on the abnormal
expression of TH, DAT, DA, GFAP, Iba1, and α-syn. These
results proved that ICS could attenuate the METH-induced
neurotoxicity via modulating the Keap1-Nrf2 pathway and
the oxidative stress. Although previous studies have shown
that ICS might achieve antioxidant effects by activating
Nrf2-related protein expression and decreasing ROS levels
in several diseases [50–52], we collected evidence for the first
time that ICS could combat METH-induced neurotoxicity
and PD-like symptoms through mediating the classic anti-
oxidant Keap1-Nrf2 pathway and oxidative stress.

For decades, accumulative evidence from preclinical
studies has shown that many natural plants and their active
ingredients have preventive and therapeutic effects on neu-
rodegenerative diseases. For example, in the 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine- (MPTP-) induced PD
mice model, chlorogenic acid, ursolic acid, Tinospora cordi-
folia, andMucuna pruriens could exhibit antiapoptotic, anti-
inflammatory, antioxidant, or other pharmacological prop-
erties, which contribute to protection against neurotoxicity
elicited by MPTP [53–57]. Similarly, our study found that
ICS, a type of flavonoid and one of the main active ingredi-
ents of the traditional Chinese medicine Epimedium, could
confer neuroprotection against METH-induced neurotoxic-
ity via the Keap1-Nrf2 pathway activation and subsequent
antioxidant and anti-inflammatory reinforcement.

While the mechanism of how Nrf2 dissociates from
Keap1 is unclear, studies have shown that several kinases,
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Figure 9: When Nrf2 was suppressed, ICS could not alleviate the abnormalities of dendritic spines of neurons in CPu of METHmice model.
Figure 9(a) Representative images of dendritic spines (scale bar = 1μm). Figures 9(b)–9(e) Analysis of the numbers of total dendritic spines,
mushroom-type dendritic spines, stubby-type dendritic spines, and thin-type dendritic spines. n = 4 per group.
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such as advanced protein kinase B (AKT) and extracellular
signal-regulated kinase (ERK), may be involved in Nrf2 acti-
vation and nuclear translocation. Lv et al. [58] found that
Licochalcone A could enhance Nrf2 nuclear translocation
and HO-1 expression through AKT and ERK activation in
tert-butyl hydroperoxide-treated RAW 264.7 cells. The pro-
tective effect of sesamin on ulcerative colitis was also
involved in the activation of AKT/ERK and subsequent
enhancement of Nrf2 signaling [59]. The limitation of this
study was that we did not investigate the prime target mole-
cules directly affected by ICS in the METH exposure model.
Therefore, the exact mechanism by which ICS activates the
Keap1-Nrf2 pathway remains to be answered in the future.

Besides, the anti-inflammatory role of the Keap1-Nrf2
pathway has been fully verified and widely recognized. The
nuclear factor kappa B (NF-κB) is one of the most concerned
transcription factors in inflammatory pathways. It has been
suggested that there is complex crosstalk between the Nrf2
and NF-κB pathways. A review written by Bellezza et al.
[60] pointed out that compounds that suppress NF-κB sig-
naling could activate the Nrf2 pathway, and activated NF-
κB could also stimulate the Nrf2 pathway, which could
inhibit NF-κB activity conversely. Previous studies indicated
that ICS could attenuate lipopolysaccharide-induced neuro-
inflammation by regulating the NF-κB pathway [21, 22].
Consistently, in this study, ICS activated the Keap1-Nrf2
pathway suppressed by METH to decrease glial cell activa-
tion. However, this positive influence was blocked when
Nrf2 was inhibited.

In sum, the major findings of this work are that ICS can
attenuate the METH-induced neurotoxicity and PD-like
behavioral impairments via activating the Keap1-Nrf2 path-
way. Although further research is needed to dig deeper into
the actual molecular targets of ICS, it is undeniable that the
current results imply the potential value of ICS to reduce the
neurotoxicity of METH abusers.
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