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Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a

rare monogenic autoimmune disease with variable clinical manifestations, ranging from

early-onset severe autoimmunity, including enteropathy, eczema, and type 1 diabetes,

to late-onset or atypical symptoms. Despite the clinical heterogeneity, the unifying

feature of IPEX is mutation of the FOXP3 gene, which encodes a transcription factor

essential for maintenance of thymus-derived regulatory T cells (Tregs). In IPEX patients,

Tregs can be present, although unstable and impaired in function, unable to inhibit

proliferation and cytokine production of effector T (Teff) cells. Mutated FOXP3 can

also disrupt other compartments: FOXP3-deficient Teff cells proliferate more than the

wild-type counterpart, display altered T-cell-receptor signaling response, a reduced

T-naïve compartment and a skew toward a Th2 profile. Due to FOXP3 mutations,

the frequency of autoreactive B cells is increased and the IgA and IgE production is

altered, together with early emergence of tissue-specific autoantibodies. Recently, the

awareness of the wide clinical spectrum of IPEX improved the diagnostic tools. In cases

presenting with enteropathy, histological evaluation is helpful, although there are no

pathognomonic signs of disease. On the other hand, the study of FOXP3 expression

and in vitro Treg function, as well as the detection of specific circulating autoantibodies,

is recommended to narrow the differential diagnosis. Nowadays, Sanger sequencing

should be limited to cases presenting with the classical triad of symptoms; otherwise,

next-generation sequencing is recommended, given the cost-effectiveness and the

advantage of excluding IPEX-like syndromes. The latter approach could be time spearing

in children with severe phenotypes and candidate to advanced therapies.

Keywords: regulatory T cells, IPEX syndrome, FOXP3, immune tolerance, autoimmunity, diagnosis, next generation

sequencing

INTRODUCTION

Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome was
originally described in the early ‘80s as an early-onset life-threatening systemic autoimmunity
in male children (1). The hallmark features comprised enteropathy, severe dermatitis, and
autoimmune endocrinopathies (1, 2). Subsequent studies identified the X-linked gene Forkhead
box P3 (FOXP3), a transcription factor member of the forkhead family, as the gene responsible of
the disease (3–5). An increasing number of disease-causing variants and a variety of milder clinical
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forms have been described (2, 6, 7). Increasing clinical awareness
was accompanied by growing knowledge of FOXP3 biology on
researchers’ side. The early evidence that IPEX was associated
with T-cell abnormalities (1) and the similarities between the
autoimmunity caused by depletion of CD4+CD25+ regulatory
T cells (Tregs) and the phenotype of foxp3 mutants led to the
discovery that FOXP3 dictates Treg function (8, 9). Tregs are a
cell subset specialized for immune suppression with a crucial role
in maintaining tolerance to self-antigens (10): loss of functional
Tregs in IPEX patients is the key pathogenic event leading to
uncontrolled autoimmunity (11).

The identification of early signs of multiple autoimmunity
in males should prompt clinicians to deeper investigations
aimed at identifying other signs of immune dysregulation,
possibly sustained by FOXP3-mutated Tregs. Therefore, besides
histological and serological evaluation, specific study of Tregs
may help to validate the suspicion of IPEX syndrome, which,
however, needs genetic confirmation.

In this review, we summarize the current knowledge on the
function of FOXP3 in the regulation of immunity, with special
attention to the immune pathways affected by FOXP3mutations.
We further highlight the laboratory findings that should drive
the differential diagnosis, especially for atypical forms of the
disease. We believe that the novel insights into the cellular
pathways disrupted by FOXP3 mutations are of help to speed
up diagnosis, optimize the therapeutic approach, and improve
clinical outcome.

IMMUNE PATHOGENESIS OF IPEX
SYNDROME

FOXP3 is primarily expressed by CD4+CD25+ Tregs and
controls their function and maintenance (10). In IPEX patients,
its mutations cause different degrees of Treg dysfunction, ranging
from complete lack of suppressive function and skewing to
effector phenotype, to partially preserved inhibitory activity (12–
16). So far, the impact of few mutations has been characterized
in details (13–15); therefore, clear correlation between type and
site of the mutation and degree of T-cell functional impairment
is still incomplete. Despite its primary function in Tregs, FOXP3
is expressed by other cell types, including effector T (Teff)
cells; and its deficiency can affect, either directly or indirectly,
their function.

FOXP3 Mutations and Regulatory T-Cell
Fitness
Although first described as the master regulator of Tregs, several
studies have demonstrated that FOXP3 is neither necessary nor
sufficient to the establishment of the Treg lineage. However,
its sustained expression is indispensable for the maintenance of
regulatory function, stability, and metabolic fitness (17, 18), that
is, full Treg specification.

Indeed, early studies of peripheral T cells in the scurfy
mice, the natural foxp3-mutant, suggested that Foxp3 deficiency
resulted in lack of Treg development and complete absence of
tTregs (19). Thanks to the use of foxp3 reporter-gene models

(20–22) and to a deeper knowledge of the thymus-derived (t)
Treg developmental process (23), it became evident that Treg
development in the thymus can occur regardless of FOXP3,
although Foxp3-deficient tTregs display functional defects
harnessing suppressive ability and peripheral maintenance (20,
24). Through genetic marking of cells actively transcribing a
Foxp3null allele, Gavin and co-workers demonstrated that in the
thymus, these marked “Treg-to-be” cells do not undergo negative
selection and give rise to a population of Treg precursors,
detectable within both mature thymocytes and peripheral CD4+

T cells, displaying several common Treg features, including low
IL7R expression, in vitro anergy, and low cytokine production
(20). On the same line, through the generation of a Treg-
specific Cre-mediated recombination induced by transcription
of a foxp3-null allele, Foxp3-deficient Tregs could be traced in
vivo: these cells acquired the epigenetic features typical of wild-
type (wt) Tregs (22). Similarly, other studies showed that the
full development of Treg cells is achieved by the combination
of two independent processes, that is, the establishment of
specific epigenetic changes and the expression of Foxp3: the two
processes are independent since epigenetic features occur before
Foxp3 expression and Foxp3 expression can be induced in the
absence of Treg methylation patterns (25). Although most of the
mechanistic studies were performed in murine models, parallel
evidences were found when studying T cells in IPEX patients.
First, depending on the type and site of FOXP3 mutation,
normal frequencies of CD4+CD25+CD127lowFOXP3+ Treg-
like cells can be found in the peripheral blood of patients,
suggesting that a population of dysfunctional Treg-like cells can
emerge from the IPEX thymus and persist in the periphery
(7, 26, 27). Second, molecular studies showed that the Treg
lineage determining features, including epigenetic imprinting,
are acquired during tTreg development prior to FOXP3
expression and occur regardless of FOXP3 function (22). In
line with these observations, circulating Treg-like cells of IPEX
patients display demethylation of the Conserved Non-coding
Sequence 2 (CNS2) in the first intron of the FOXP3 gene (28).
The methylation status of this genomic region, also known
as Treg cell-specific demethylated region (TSDR), has been
recognized as an epigenetic marker unambiguously identifying
Tregs, which allows distinction of tTregs from activated T-
conventional cells and in vitro-induced Tregs (29, 30). Thus,
in IPEX syndrome, FOXP3 mutations do not hamper the
development of tTreg precursors and the emergence of Tregs
in the periphery. Third, gene expression profiling of Tregs
demonstrated that a FOXP3-independent molecular signature
exists (20, 21). Similarly, expression profiling of IPEX Tregs or of
FOXP3-mutated transgenic Tregs demonstrated that expression
of many Treg signature genes, including TNFRSF18, IKZF2,
and LRRC32, are maintained (13, 31), while ectopic FOXP3
expression in T-conventional cells does not fully reproduce
natural Treg signature (21, 32) and does not induce Treg-specific
methylation pattern (15, 25).

While dispensable for the establishment of the Treg lineage
during thymic development, evidences in female foxp3gfpko

transgenic mice supported a fundamental role of Foxp3
in the regulation of Treg homeostasis: Foxp3-dependent
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downregulation of Pde3b expression strictly regulates Treg
homeostatic fitness (20). Similar to findings in reporter gene
models, functional FOXP3 is indispensable for peripheral
maintenance of human Tregs. Indeed, variable frequency
of circulating Tregs, ranging from complete absence of
FOXP3-expressing cells to increased frequencies as compared
with healthy subjects, were found in IPEX patients (7,
26, 33). Furthermore, in healthy female carriers of FOXP3
mutations, Tregs express exclusively the wt FOXP3 allele,
thus demonstrating that in the periphery, healthy Tregs
outcompete those expressing a mutated FOXP3 (34). Similarly,
in transplanted IPEX patients with mixed chimerism, donor-
derived Tregs display a selective advantage (35, 36). On the same
line, in humanized mice (hu-mice) repopulated with FOXP3-
KD/KO human hematopoietic stem cells (HSCs), the Treg
compartment is uniquely composed of wt FOXP3-expressing
cells (37), clearly supporting the idea that in chimeras, FOXP3-
deficient Tregs are less fit than their healthy counterpart for
long-term survival.

A non-redundant function of FOXP3 is the ability to
confer full suppressive function to mature Tregs. The FOXP3-
dependent transcriptional program includes genes involved in
Treg effector mechanisms, such as Il2ra, Ctla4, Tnfrsf18, and
Nrp1 (20, 21). As a consequence, ectopic expression of FOXP3 is
sufficient to endow human T-conventional cells with suppressive
ability (9, 38, 39), while deregulation of FOXP3 expression leads
to loss of suppressive function (40). Of note, stable FOXP3
expression is required not only to confer full Treg activity
(39, 41) but also to maintain lineage stability. Although the
issue of Treg lineage stability has been actively debated (42),
several evidences suggest that Tregs bear an intrinsic plasticity,
which allows conversion to Teff cells via losing Foxp3 expression
under inflammatory conditions (43, 44). Similarly, in IPEX
syndrome, dysfunctional Tregs, unable to properly regulate
cytokine production, skew to an effector phenotype, either Th17
or Th2, possibly contributing to the autoimmune damage (16,
45).

FOXP3 has also been described as the “metabolic gatekeeper”
of Tregs. While Teff cells are dependent on glycolysis to
sustain their metabolism, Tregs preferentially utilize fatty-acid
oxidation for proliferation and survival (46). FOXP3 controls
Treg metabolism by limiting glycolysis and promoting fatty-acid
oxidation via inhibition of the mTORC2 pathway (22). In IPEX
syndrome FOXP3 deficiency causes metabolic reprogramming of
Tregs with heightened aerobic glycolysis, mainly due tomTORC2
deregulation (22). Indeed, mTORC inhibition improves Treg
fitness and partially restores suppressive function of FOXP3-
deficient Tregs (22, 31).

Hence, FOXP3mutations affect Treg biology at multiple levels
(Figure 1). Therefore, in IPEX syndrome, despite commitment
to a Treg cell program during thymic development, full Treg
specification is not achieved due the lack of full functional
properties. Since clear correlation between site of mutation
and Treg defects is still unclear, systematic functional and
phenotypical analysis of Tregs from patients with immune
dysregulation suggestive of IPEX syndrome would help to
validate the diagnosis.

Role of FOXP3 Beyond the Regulatory
T-Cell Compartment
Although originally described as exclusively expressed by
Tregs (8), transient FOXP3 expression can be induced by
activation of T-conventional cells, which do not undergo
Treg reprogramming (47). Activated FOXP3-deficient Teff
cells displayed increased proliferation and cytokine production
and deregulated gene expression, as compared with wt Teff
cells, thus indicating a direct effect of FOXP3 expression
in Teff cell homeostasis (48). Following studies in FOXP3-
KD/KO hu-mice showed that peripheral FOXP3-deficient Teff
cells were expanded with a skew toward a memory Th2-
type, reminiscent of an aged immune system. The latter hu-
mice showed altered thymocyte differentiation, with increased
T-cell-receptor (TCR) repertoire diversity and reduced TCR
signaling. Data were confirmed by analysis of IPEX patients’
peripheral Teff cells (37), thus assigning to FOXP3 deficiency
an additional pathogenic mechanism, via shaping of an aberrant
Teff compartment.

As indirect consequence of FOXP3 deficiency, B-cell tolerance
is also impaired in IPEX: autoreactive B cells accumulate
in the periphery, due to altered control of peripheral B-cell
tolerance checkpoints by dysfunctional Tregs, resulting in the
production of tissue-specific autoantibodies, which can in turn
contribute to the clinical manifestations (49–51). Although
multiple antigenic specificities have been described (50, 51), the
underlying mechanism for loss of checkpoint control by FOXP3-
deficient Tregs has not been fully clarified.

These findings support an intrinsic role for human FOXP3
in controlling immune homeostasis in a Treg-independent
manner. Therefore, functional analysis and mechanistic
studies not only of Tregs, but also of Teff, autoantibodies,
and B-cell compartments in patients with suspected IPEX
syndrome may help in driving diagnosis (Figure 1) and
could potentially indicate targetable pathways to restore
immune homeostasis.

DIAGNOSIS OF IPEX SYNDROME

IPEX syndrome is a prototype of monogenic autoimmune
disease. Due to the autoimmune aggression of different organs,
the clinical manifestations at onset may be misleading, since
they are common to several inherited disorders (52, 53) mainly
attributable but not limited to other inborn errors of immunity
(IEI) (54, 55). Hence, the diagnostic process presents two main
critical issues. On the one hand, patients with early-onset severe
phenotype, mainly related to enteropathy and uncontrolled
diabetes, deserve a quick and precise diagnosis, to guarantee an
adequate therapy, that is, immunosuppression followed by HSC
transplantation (HSCT), whenever feasible. On the other hand,
patients displaying atypical, milder, or late-onset autoimmune
manifestations can be underdiagnosed for years with consequent
slow but constant progression of the damage. In the latter case,
a deep characterization of the Treg compartment could drive
further investigation, and a wide genetic analysis exploiting next-
generation sequencing (NGS) platforms is desirable.
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FIGURE 1 | Multiple alterations affecting the Treg, Teff, and B-cell compartments as a consequence of FOXP3 mutations. HAA, anti-harmonin autoantibodies; VAA,

anti-villin autoantibodies; ANKS4B, ankyrin repeat and sterile alpha motif domain containing 4; ACSL5, acyl-CoA synthetase long chain family member 5; HNF4A,

hepatic nuclear factor 4 alpha; OCR, oxygen consumption rate; Treg, regulatory T cell; Teff, effector T cell.

Clinical Presentation
IPEX syndrome typically involvesmale patients and encompasses
several kinds of clinical presentation, including not only the
classical triad [i.e., enteropathy, type 1 diabetes (T1D), and
dermatitis], which affects more than a half of IPEX patients, but
also autoimmune manifestations involving other target organs
(6, 7, 56). While the early onset of enteropathy, autoimmune
diabetes, and dermatitis, either alone or in combination, is
suggestive of IPEX syndrome, the presence of autoimmunity
involving organs other than the typical triad may be misleading,
especially if the age of onset is delayed and progression through
other autoimmune manifestations either lacks or takes years
(6, 53, 56). In the latter cases, evolution over time may help
to raise suspicion, since the majority of IPEX patients develop
additional autoimmune diseases. Studies on the largest cohorts
of IPEX patients (6, 56, 57) report delayed onset above 1 year
of age in a limited number of cases ranging from 6% (2/30)
(57) to 10.4% (10/96) (6). According to our cohort study (6),
the majority of patients with onset between 1 month and 1

year share a clinical picture similar to that of babies below 1
month of age displaying the “classical triad” of symptoms. The
same study includes 10 cases (10.4%) of IPEX patients presenting
the first symptom over 1 year of age, sometimes consisting of
manifestations that are uncommon at onset, such as nephritis or
hepatitis. Single case reports have described patients presenting
typical symptoms, such as intractable diarrhea, but with onset
delayed to early childhood (1, 58, 59) or even later to adolescence
(1, 60). These patients experienced mild enteropathy (loose
stools or recurrent/remittent diarrhea) as first manifestation,
thus resulting in a significant diagnostic delay. Other studies
reported onset above 1 year of life with mild phenotype, such as
alopecia and dermatitis (61), and arthritis involving one or more
joints (62, 63).

Additional atypical and rare manifestations of IPEX
syndrome include autoimmune pancreatic exocrine insufficiency
(33, 64–66), gastritis (33, 65, 67), kidney disease (68–72),
interstitial lung disease (62, 73, 74), or steroid-responsive
pneumonia (63).
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Intractable diarrhea can lack, however, the association
of manifestations likely due to immune dysregulation (e.g.,
dermatitis, alopecia, cytopenia, and nephropathy), and the
presence of failure to thrive should prompt immunological
investigations (75). Similarly, any autoimmune endocrinopathy
(besides T1D), arising in males at birth or very early in life,
should prompt an immunological follow-up to monitor the
development of any other autoimmune manifestation (76). Also
patients displaying severe allergic conditions in association with
other autoimmune symptoms should raise the suspicion of IPEX
syndrome (70, 77–79). The increasing number of diagnosed
patients with atypical forms suggests that the expressivity of the
disease is variable and likely influenced by epigenetic factors or
modifying genes.

The diagnosis of IPEX syndrome relies on the collaboration
of several specialists. The first step to improve patients’ referral
is to improve the awareness of each physician that could come
to face the clinical signs. Clinical reports taught us that a timely
diagnosis is crucial, since supportive and immunosuppressive
therapies, although life-saving in the acute phase, are not per
se curative (6). An early genetic diagnosis may allow a prompt
donor search for HSCT, which would halt disease progression,
restoring a functional Treg compartment.

Laboratory Findings
Laboratory investigations in IPEX patients should aim at
excluding other IEI that can present with enteropathy or other
autoimmune manifestations and at driving differential diagnosis
with IPEX-like syndromes and other Treg-opathies (52, 80, 81).

First-line investigations, for example, complete blood cell
counts, lymphocyte subsets, lymphocyte proliferative response to
mitogens, and immunoglobulin (Ig) plasmatic levels, are usually
associated with screening for dysfunction of potential target
organs, for example, nutritional indexes, glycated hemoglobin,
fasting glucose, and kidney and hepatic function. In IPEX
patients, the mentioned laboratory investigations can be normal
at onset. Leukocytosis, if present, is due to an increase in
lymphocytes, although subset composition and the proportion
of naive and memory T cells are not deeply affected, despite
immune dysregulation (2, 7, 53, 56). Of note, the CD4/CD8 ratio
was reported as increased (53). Proliferative response tomitogens
is usually present (53). Serum IgG and IgM are generally
normal or low if protein-losing enteropathy is present (33). The
identification of eosinophilia, cytopenias, or increased IgE and
IgA are common features of IPEX patients (2, 6). In the presence
of abnormalities in Ig levels, lymphocyte counts, or function, the
differential diagnosis will include both immunodeficiencies of the
T and/or B cell subsets or other IPEX-like diseases (6, 7, 56).
TCR repertoire is polyclonal, and the in vitro cytokine production
shows a skew to a Th2-type profile (3, 26, 61).

In IPEX patients with either enteropathy or gastritis,
histological evaluation is essential to exclude other etiologies,
but it is not diagnostic: the inflammatory infiltrates are
usually polymorphic with predominance of lymphocytes
and eosinophils. Villous atrophy is typical, although not
pathognomonic. Other unspecific inflammatory lesions (ulcers,
crypt hyperplasia, and abscesses) can be present. Metaplastic and

dysplastic lesions of the gastric mucosa are rare complications
(6, 31, 70, 71).

Similarly, skin histopathological changes are variable and
non-specific, ranging from atopic/psoriasiform dermatitis to
uncommon allergic, autoimmune, or infectious complications
(61, 67, 82, 83). Thus, histological evaluation of the gut and
skin can highlight the autoimmune etiology without necessarily
confirming the diagnosis (Figure 2, step 1).

Second-line investigations should include, if available, specific
tests aimed at identifying the typical immunological alterations
of IPEX syndrome. Since Treg dysfunction alters the humoral
response, specific autoantibodies detectable in patients’ serum
are possible biomarkers of the disease in the presence of
gastrointestinal manifestations. IPEX patients typically harbor
circulating autoantibodies against harmonin (HAA), a 75-kDa
protein also known as USH1C, expressed in the intestinal
epithelia and renal tubules (70, 71, 77, 84). Although the
assay is not widely accessible, positivity of serum or plasma
samples to HAA is highly suggestive of the diagnosis (85).
Moreover, circulating autoantibodies against villin (VAA, actin-
binding 95-kDa protein), an antigen with the same histological
distribution of harmonin, have been described as concomitant or
alternative to HAA (85, 86). All IPEX patients, positive for either
HAA or VAA, tested positive for anti-enterocyte antibodies by
indirect immunofluorescence (85). Moreover, new autoantibody
targets have recently been identified in three structural proteins:
Ankyrin Repeat And Sterile Alpha Motif Domain Containing
4 (ANKS4B), which interacts with harmonin in the intestinal
microvilli; Acyl-CoA Synthetase Long Chain Family Member 5
(ACSL5), a regulator of enterocytes proliferation; and Hepatic
Nuclear Factor 4 Alpha (HNF4A), a regulator of the intestinal
and renal epithelium differentiation (50). Nevertheless, presence
of circulating autoantibodies to the latter targets has a weaker
association with IPEX syndrome as compared with HAA, while
they could support the diagnosis in rare cases of HAA/VAA
negativity (50). Recently, elevated levels of plasmatic neutralizing
autoantibodies against interferon-α have been described in a
cohort of IPEX patients (87).

A variety of other autoantibodies have been detected
in most patients, and their presence in circulation usually
correlates with signs of pathology in specific target organs
(e.g., anti-insulin, anti-pancreatic islet cells, anti-glutamate
decarboxylase, anti-thyroglobulin, anti-microsome peroxidase,
Coombs test, anti-platelets, anti-neutrophils, anti-smooth-
muscle, and anti-liver-kidney-muscle antibodies), although
their production may be a sign of immune dysregulation
without a related pathological evidence (6, 88). Serological
as well as histological markers are indicative of the
diagnosis only when considered in combination with the
clinical manifestations.

Moreover, second-line investigations should consider the
possible effect of FOXP3mutations in Tregs, which result largely
in dysregulation in IPEX patients, as previously illustrated.
The proportion of Tregs, evaluated by flow cytometry, may be
highly variable: low or absent FOXP3-expressing cells can be
considered as highly suspicious for IPEX syndrome; however,
several FOXP3 mutations demonstrate deleterious effects on
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FIGURE 2 | Diagnostic steps driving toward IPEX syndrome. Ig, immunoglobulin; HbA1c, glycated hemoglobin; FOXP3, forkhead box protein P3; CTLA4, cytotoxic

T-lymphocyte protein 4; BACH2, BTB Domain And CNC Homolog 2; TNF, tumor necrosis factor alpha; IL-10, interleukin 10; STAT1, signal transducer and activator of

transcription 1; STAT3, signal transducer and activator of transcription 3; IGF1, insulin-like growth factor I; STAT5b, signal transducer and activator of transcription 5b;

TSDR, Treg cell-specific demethylated region; NGS, next-generation sequencing; IPEX, immune dysregulation, polyendocrinopathy, enteropathy, X-linked.
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the protein function, without preventing protein expression
(27, 33). Especially in these cases, in vitro evaluation of Treg
function may dispel any doubt on Treg dysfunction, even
though Treg suppression assays are not standardized (Figure 2,
step 2). It is important to underline that defects in FOXP3
expression or in Treg function can be shared by different
Treg-opathies, as defined by IUIS 2019, due to mutations
in genes with an impact on Treg fitness and/or function
(CD25, CTLA4, LRBA, STAT3, BACH2, CD122, DEF6, and
FERMT1) (80, 81). Clinically, they resemble IPEX syndrome,
especially if manifesting with enteropathy and cytopenias.
However, Treg-opathies other than IPEX syndrome show
higher prevalence of infections and/or lymphoproliferation,
which are indeed rather uncommon in IPEX syndrome (80).
Moreover, some diseases of immune dysregulation fall in
differential diagnosis with IPEX syndrome mainly due to
the fact that patients can present severe inflammatory bowel
disease and other IPEX-like autoimmune features, but they
do not show tTreg cell impairment (mutations in ITCH,
TPP2, JAK1, PEPD, IL10, and IL10R) (52, 80). Finally, some
IEI, also classified as combined immunodeficiencies, can share
with IPEX syndrome signs of enteropathy or widespread
autoimmunity early in life, with or without Treg impairment,
but with clear defects in other T- and B-cell subsets and
additional manifestations strictly related to the consequent
immunodeficiency (e.g., mutations in RAG1, RAG2, CD3G,
NEMO, WASP, ARPC1B, XIAP, NLRC4, STAT5b, NFKBIA, and
TTC7A) (52, 80).

Analysis of the demethylation status of the TSDR, possibly
combined with T cell-Specific-Demethylated-Region (TLSDR)
analysis, in order to exclude a bias related to lymphopenia
can be considered as additional tools to discriminate IPEX-
like patients, who display a significantly reduced percentage
of peripheral Tregs, as compared with healthy subjects,
patients with IPEX syndrome, and patients with different
autoimmune and autoinflammatory diseases (28). Although few
patients were investigated, based on TSDR analysis on the
peripheral blood of IPEX patients, we reported that Tregs,
although FOXP3-mutated, are present in a higher amount
than those detected in IPEX-like patients and healthy subjects
(28). This method has been recently applied also to dried
blood spots of a newborn and an infant carrying FOXP3
mutations: similarly to previous report (28), the percentage
of Tregs within CD3+ T cells increased compared with
that in non-affected healthy newborns (89). Although the
finding needs further validation, quantification of TSDR and
TLSDR is a promising approach for larger application in
patients with immune dysregulation during the diagnostic
workup, integrating flow cytometric evaluation, especially in the
presence of inflammation, and standardizing the quantification
of Tregs.

As further support in the diagnostic process, the use of flow
cytometry to investigate biological alterations related to other IEI
can fill the gap between conventional immunological tests and
genetic analysis (90). Indeed, based on the clinical features of the
patient, a selection of functional and phenotypical tests can be
performed to narrow the differential diagnosis and to anticipate

and guide the genetic analysis especially when NGS is ongoing.
Some examples are provided in Figure 2, step 2.

Definitive Molecular Diagnosis
IPEX syndrome has heterogeneous clinical presentation and
evolution; hence, finding FOXP3 mutation is at the same time
challenging and paramount for the child prognosis. Both in case
of severe rapidly evolving symptoms and in case of chronic slowly
progressive clinical course, the risk–benefit evaluation of the
therapeutic options could be difficult without a genetic diagnosis.

Given the mentioned phenotypical overlap of IPEX syndrome
with a series of IEI (with or without immune dysregulation),
Sanger sequencing of the FOXP3 gene is usually applied to
selected cases, such as classical triad of symptoms, neonatal
T1D, and intractable diarrhea in neonates with significant family
history in the maternal lineage (including affected males, fetal
hydrops, and multiple miscarriages of male fetuses) (1, 4, 91).

In neonatal forms presenting with isolated symptoms, such as
intractable diarrhea or widespread dermatitis, without significant
family history, structural diseases of the gut or skin epithelium
as well as other IEI could be included in the differential
diagnosis, before the full-blown clinical picture is evident. Hence,
the contemporary analysis of multiple genes by NGS would
be the approach of choice, given the cost-effectiveness and
the advantage of excluding simultaneously multiple diseases.
Moreover, this approach could be time-spearing in children
with severe phenotypes and candidate to HSCT or advanced
therapies, currently under development (38, 92, 93). The choice
between targeted gene sequencing and whole-exome sequencing
depends on the single center practice. However, in order to
guide the analysis and prioritize candidate genes, IEI typically
associated with immune dysregulation should be investigated
(52, 80). Among them, Treg-opathies related to gain-of-function
mutations of STAT1 or STAT3 and deficiency of LRBA have
been recently reported as most frequently associated with IPEX-
like diseases (7, 56). A similar phenotype can be determined by
mutations in IL2RA, CTLA4, BACH2, STAT5B, and IL10/IL10R
(7, 56, 81).

Although genetic analysis is useful to support therapeutic
choices, genotype–phenotype correlation remains debated (2,
6, 7). Therefore, it cannot be used currently to foresee disease
progression (Figure 2, step 3).

CONCLUSIVE REMARKS

Lessons from nearly 20 years of research on basic biology
and patients taught us that mutations in the FOXP3 reduce
suppressive function of Tregs due to deregulation of key effector
genes, but also show consequences on other lymphocyte subsets.
In this light, the study of Tregs and specific autoantibodies in
patients with suggestive clinical phenotype can contribute to steer
genetic diagnosis and to choose the most suitable method for
genetic analysis, since timing is crucial and a prompt intervention
would revert the autoimmune process, thus preserving the target
organ from fatal injury.
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