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This review summarizes the structure and function of the alveolar unit, comprised of
alveolar macrophage and epithelial cell types that work in tandem to respond to infection.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) helps to maintain the
alveolar epithelium and pulmonary immune system under physiological conditions and
plays a critical role in restoring homeostasis under pathologic conditions, including
infection. Given the emergence of novel severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) and global spread of coronavirus disease 2019 (COVID-19), with
subsequent acute respiratory distress syndrome, understanding basic lung physiology
in infectious diseases is especially warranted. This review summarizes clinical and
preclinical data for GM-CSF in respiratory infections, and the rationale for
sargramostim (yeast-derived recombinant human [rhu] GM-CSF) as adjunctive
treatment for COVID-19 and other pulmonary infectious diseases.
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1 INTRODUCTION

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a global health
crisis emphasizes the importance of understanding the coordination and crosstalk between alveolar
epithelial cells (AECs) and alveolar macrophages (AMs) in maintaining lung physiology during viral
illness (Lang et al., 2020). Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an
immune-modulating cytokine that plays a critical role in maintaining the alveolar epithelium and
pulmonary immune system under homeostatic and pathologic conditions, including infection
(Rosler and Herold, 2016; Lang et al., 2020). GM-CSF drives AM differentiation and
homeostasis and maintains the integrity of the lung epithelium under near-constant exposure to
inhaled pathogens (Trapnell and Whitsett, 2002; Rosler and Herold, 2016). In response to external
insult, GM-CSF facilitates and accelerates the epithelial wound-healing process, driving the immune
functions of the AMs and the repair processes initiated in the alveolar epithelium, including
restoration of barrier function, and facilitating a return to homeostasis (Rosler and Herold, 2016).

2 FUNCTIONS OF THE ALVEOLUS

2.1 Maintaining Alveolar Homeostasis
The alveolar epithelium is essential for gas exchange in the lung and serves as a physical barrier
between the lumen and the underlying submucosa (Guillot et al., 2013). The alveolar epithelium
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FIGURE 1 | (A)Overview of the alveolus under homeostatic conditions (Adapted fromGuillot et al., 2013). The alveolar epithelium is important for gas exchange and
protection from pathogens via the physical epithelial barrier and phagocytosis. Alveolar homeostasis involves the orchestration of multiple cell types including AECI and
AECII and AM. Signaling between AECs and AMs is important for epithelial repair, regeneration, and cell adhesion. AECII produce GM-CSF and other cytokines that
participate in key homeostatic processes, such as surfactant homeostasis by AM. AM-driven efferocytosis of epithelial or immune cells undergoing apoptosis also
helps to maintain the alveolar environment. (B) Role of GM-CSF in AMmaturation and GM-CSF signaling in AM andmitochondrial mechanisms. In immature monocytes,
upon binding to its receptor, GM-CSF signaling through JAK2 and STAT5 activates PU.1 transcription factor initiating differentiation into mature AM. In mature
macrophages, GM-CSF signaling through JAK2 and STAT5 activates PU.1 and PPARγ transcription factors and affects the AM transcriptome and metabolism. Effects
of these changes in AM mitochondria can result in altered amino acid biosynthesis and enhanced glycolysis needed for AM differentiation and proliferation. AM
mitochondrial changes also support fatty acid and phospholipid catabolism required to support surfactant clearance. Abbreviations: AECI, alveolar epithelial cell type I;
AECII, alveolar epithelial cell type II; AM, alveolar macrophage; CO2, carbon dioxide; DC, dendritic cell; GM-CSF, granulocyte-macrophage colony-stimulating factor; O2,

oxygen; STAT5, signal transducer and activator of transcription 5.
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accounts for 99% of the surface area of the lung and is continually
bombarded by external insults, such as inhaled particulates and
pathogens (Guillot et al., 2013). Maintaining alveolar homeostasis
and protecting the integrity and function of the epithelial layer
requires the dynamic orchestration of multiple cell types,
including type I and type II AEC (AECI, AECII, respectively)
and alveolar macrophages, as well as processes such as repair and
regeneration, surfactant homeostasis, and pathogen clearance
and defense (Figure 1A) (Fehrenbach, 2001; Mason, 2006;
Guillot et al., 2013).

Maintaining the integrity of the alveolar epithelium is a key
function of alveolar tight junctions that seal the lateral space
between adjacent AECs and control the passage of molecules
between the alveolar lumen and interstitial compartment to help
defend against infection (Guillot et al., 2013; Short et al., 2016;
Wittekindt, 2017). Pathogens that target the alveolar epithelium
can interfere with tight junctions; for example, respiratory viruses
such as influenza have evolved mechanisms to disrupt or alter
tight junctions (Short et al., 2016). Pseudomonas aeruginosa has
also been shown to cause disruption of tight junctions in patients
with cystic fibrosis (Higgins et al., 2016), and Aspergillus
fumigatus proteases damage the respiratory epithelial barrier,
leading to the loss of tight junctions (Knutsen et al., 2002).

2.2 Alveolar Epithelial Cells and
Inflammation
AECI comprise 96% of the surface of the lung and are critical to
gas exchange (Guillot et al., 2013). AECI are flat, thin cells that
have substantial interaction with AMs and neighboring AECs,
including those in adjacent alveoli (Guillot et al., 2013). Although
AECI do not readily repair or proliferate, they can initiate the
innate immune response (Yamamoto et al., 2012; Guillot et al.,
2013). Pneumococcal pneumonia induces expression of CXCL5
and pattern recognition receptors TLR2 and STING (Yamamoto
et al., 2012). The observed induction of innate immune responses
in AECI and expression of toll-like receptors (TLR) through
proinflammatory cytokines suggest a role for AECI in innate
immune response initiation (Wong et al., 2012; Yamamoto et al.,
2012; Guillot et al., 2013).

AECII are dynamic cells similar in number to AECI but
account for far less surface area due to their cuboidal shape
(Guillot et al., 2013). AECII contribute to pulmonary homeostasis
by secreting surfactant and key surfactant proteins that
participate in pathogen clearance (Bissonnette et al., 2020).
Expression of a variety of receptors helps AECII monitor the
alveolar niche and produce cytokines and other signaling
molecules (Bissonnette et al., 2020). AECII are able to
proliferate and act as progenitors to replace old or damaged
AECI cells (Aspal and Zemans, 2020). Interaction between AM-
derived immune mediators and signals from other AECs helps
promote and regulate AECII proliferation and differentiation
(Aspal and Zemans, 2020).

2.3 Macrophages of the Alveolus
Tissue-resident AMs are the predominant macrophages under
physiological conditions within the lumen of the alveolus and the

interstitial macrophages between alveoli (Tan and Krasnow,
2016). As the resident-dedicated phagocyte, AMs interact with
both the innate and acquired immune systems, protecting the
alveoli from inhaled pathogens (Trapnell and Whitsett, 2002;
Evren et al., 2020). AMs interact with AECs of both types to
maintain alveolar homeostasis (Bissonnette et al., 2020).

Efferocytosis is a constitutive function of macrophages
required for maintaining immune homeostasis in health and
during inflammatory responses (Fadok et al., 1998; McDonald
et al., 1999; Ortega-Gomez et al., 2013) and is also an important
antimicrobial effector mechanism to regulate intracellular
pathogens (Behar et al., 2010; Martin et al., 2014). AMs are
responsible for the clearance of apoptotic neutrophils through
efferocytosis, the process through which apoptotic cells are
removed without release of their contents (Ortega-Gomez
et al., 2013; Boada-Romero et al., 2020). Defective efferocytosis
results in chronic inflammation and significantly increases the
likelihood of developing lung injury (Fadok et al., 1998;
McDonald et al., 1999). Efferocytosis is a major contraction
mechanism for the recruited macrophage pool following acute
lung injury (ALI) (Janssen et al., 2011). This scenario is unique to
the lungs because the alveoli and conducting airways are
extraepithelial and communicate directly with the external
environment. In the lung, efferocytosis can be performed by
dedicated phagocytes, such as AMs and dendritic cells (DCs), and
to a lesser extent by airway epithelial cells (Boada-Romero et al.,
2020). In animal models, exposure to second-hand smoke
impaired the ability of AMs to perform phagocytic activities,
including efferocytosis. Delivery of intranasal recombinant
murine GM-CSF restored AM function and improved host
defense, conferring protection against pneumonia
(Subramaniam et al., 2016).

Monocyte-derived AMs may be recruited and differentiated
from monocytes upon lung injury or infection (Morales-Nebreda
et al., 2015). Investigators have long thought that AMs originate
from circulating blood monocytes, based on their observations
that bone marrow-derived monocytes can replenish the AM pool
after lethal irradiation or in response to injury (Morales-Nebreda
et al., 2015). In response to AM injury or depletion, monocytes
are recruited to the lung and differentiate into AMs (Misharin
et al., 2017; Joshi et al., 2020), where they may replace the tissue-
resident AMpopulation over time (Morales-Nebreda et al., 2015).
The degree to which resident AMs are replaced by persistent
monocyte-derived AMs depends on several factors: the extent of
AM depletion, the intensity of inflammation, and the ability of
monocytes to reach the niche. During mild infections associated
with a small reduction in resident macrophages, very few
monocytes will engraft into the resident macrophage pool as
proliferation of resident macrophages is usually sufficient
(Guilliams et al., 2020).

2.4 Alveolar Epithelial Cell and Alveolar
Macrophage Crosstalk
It is well-established that AECs and AMs communicate via
autocrine and/or paracrine signaling to promote epithelial
repair following injury. While particle exposure of AM-AEC
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co-cultures induces release of GM-CSF, TNFα, and macrophage
inflammatory proteins (e.g., MIP-1β and MIP-2), AM or AEC
monocultures, or fibroblast co-cultures of either AMs or AECs do
not (Tao and Kobzik, 2002; Ishii et al., 2005). During pulmonary
infection with Legionella, AECII enable communication between
AMs and recruited myeloid cells (Liu et al., 2020). Infected AMs
cannot produce the cytokines needed to control the infection.
However, IL-1 released by infected macrophages induces AECII
to produce GM-CSF, which in turn metabolically reprograms
monocytes, promoting host defense (Liu et al., 2020). Epithelial
cell-derived GM-CSF improves host-defense function by
reprogramming monocytes to generate the cytokines needed to
control infection (Liu et al., 2020); therefore, via AM/AECII
crosstalk, GM-CSF signaling helps to orchestrate pulmonary
immune response.

3 PULMONARY RESPONSE TO INHALED
PATHOGENS

3.1 Overview of Pulmonary Acute Lung
Injury and Acute Respiratory Distress
Syndrome
ALI and acute respiratory distress syndrome (ARDS) have been
considered events along a clinical spectrum, although the 2012
Berlin definition does not include a separate definition for the less
severe ALI (Costa and Amato, 2013). Triggering events that may
result in ALI and ARDS may include exposure to an inhaled
chemical or physical agent, such as gases, or viral, bacterial, or
fungal pathogens (Aranda-Valderrama and Kaynar, 2018). Other
factors, such as genetic predispositions or comorbidities may
magnify the pulmonary insult resulting from the triggering event
(Aranda-Valderrama and Kaynar, 2018). ALI and ARDS are
characterized by damage to the alveolar-capillary membrane
resulting in excess production of inflammatory molecules,
followed by noncardiogenic pulmonary edema and varying
degrees of hypoxemia (Aranda-Valderrama and Kaynar, 2018;
Guillamat-Prats et al., 2018). One of the major hallmarks of ALI/
ARDS is AEC injury, for which the receptor for advanced
glycation end products (RAGE) has been suggested as a
biomarker (Uchida et al., 2006). AECII rapidly proliferate
following epithelial injury, with some eventually differentiating
into AECI (Fehrenbach, 2001; Herzog et al., 2008; Guillot et al.,
2013). In ALI and ARDS, both AECII and AECI sustain damage,
and the lack of viable AECII compromises the repair process,
favoring the progression of ALI to ARDS (Pison et al., 1988;
Guillamat-Prats et al., 2018).Whenmassive inflammation cannot
be controlled (as happens in ∼50% of cases), fibroblasts are
activated in an attempt to repair the lung damage (Guillamat-
Prats et al., 2018).

In an experimentally-induced ALI rat model, transplanted
AECII reduced early inflammation, promoted recovery of lung
function, and reduced mortality (Guillamat-Prats et al., 2018).
Moreover, transplantation of AECII dampened inflammatory
markers to control levels, demonstrating a reduction in the
inflammatory response and significantly decreasing monocyte

chemoattractant protein-1 concentrations in lung homogenates
(Guillamat-Prats et al., 2018). The proposedmechanism by which
AECII reduced injury is through release of prostaglandin E2
(PGE2) and surfactant protein A, thus reprogramming AMs to
an anti-inflammatory phenotype (Guillamat-Prats et al., 2018).
This further demonstrates the close interplay between the AECs
and AMs.

3.2 Pulmonary Response to Infection
Upon lung infection with viruses, bacteria, or fungi, sensor cells
such as AECs, AMs, and DCs initiate an immunologic response
(Table 1) (Iwasaki et al., 2017). The alveolar response to challenge
by pathogens is characterized by how it responds to the presence
of infectious agents and how it shapes the response to the newly
recruited immune cells. Given that a prolonged or exaggerated
immune response can damage the respiratory tract, it is critical to
closely monitor and regulate inflammation to maintain an
appropriate immune response (Rubins, 2003; Newton et al.,
2016).

During the initial stages of an infection, tissue-resident innate
immune cells recruit circulating neutrophils into the infected
tissue, promoting recruitment of monocytes, and in turn, more
neutrophils, thus potentiating a proinflammatory environment
(Iwasaki et al., 2017). Neutrophil-mediated killing requires the
generation and release of toxic compounds; once the infection is
cleared, neutrophils undergo apoptosis within tissues andmust be
rapidly cleared to limit damage to healthy tissue (Ortega-Gomez
et al., 2013).

AECs secrete antimicrobial peptides and proinflammatory
factors in response to bacterial infection (Li et al., 2012). AMs
present within the alveolar space clear airborne particles and
pathogens as another roadblock to infection by secreting
chemokines to attract neutrophils and monocytes. The
pulmonary immune response is fine-tuned via communication
between AMs and epithelial cells (Westphalen et al., 2014).

3.3 Role of Alveolar Epithelial Cells in
Post-Inflammatory Pulmonary Fibrosis
Damage to the lung’s complex structure is a common
characteristic of a variety of interstitial lung diseases that fall
under the umbrella of pulmonary fibrosis due to an incomplete
wound repair response. Chronic respiratory failure can arise due
to lung function impairment from scar formation and defective
gas exchange (Mulugeta et al., 2015). Infection and the
corresponding inflammatory response and ARDS can result in
pulmonary fibrosis (Spagnolo et al., 2020), more specifically,
post-inflammatory pulmonary fibrosis which also encompasses
post-inhalation, post-drowning, and ventilator-induced injury.

Recent evidence supports the “severity of epithelial injury”
hypothesis originally proposed by Haschek and Witschi in 1979
in which delay of epithelial repair, not inflammation, leads to
fibroblast proliferation and collagen deposition (Haschek and
Witschi, 1979). Lung fibrosis is currently considered a disease of
epithelial-fibroblast imbalance, suggesting a pivotal role for AEC
dysfunction in the development of a fibrotic lung phenotype
(Uhal and Nguyen, 2013). Substantial evidence exists that
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TABLE 1 | Immune response to common viral, bacterial, and fungal pathogens.

Viral Bacterial Fungal

Common
pathogen(s)

Influenza, SARS-CoV-2, RSV, human
metapneumovirus (hMPV)

Pseudomonas aeruginosa, Mycobacterium tuberculosis,
Staphylococcus aureus

Aspergillus fumigatus, Histoplasma
capsulatum

Host
response to
invasion

Influenza
• AECs are primary targets for viral replication

Rosler and Herold (2016)
• Pro-inflammatory mechanisms and

cytopathogenic effect lead to AEC apoptosis
Rosler and Herold (2016)

• Viral clearance occurs through activation of
immune effector cells, and epithelial repair
processes including expansion of epithelial
progenitor cells that reseal the epithelial layer
Rosler and Herold (2016)

• Supraphysiologic GM-CSF induces
macrophage plasticity toward proinflammatory
M1 type and is associated with reduced
interferon signaling Halstead et al. (2018)

P. aeruginosa
• Opportunistic pathogen that tends to infect damaged

epithelial cell layers, including lungs damaged by infection
or mechanical ventilation, or wounds (i.e., burns); likely to
cause recurrent infections (e.g., CF) Singh et al. (2015)

• Innate immune response ineffective at eradicating infection,
leading to host tolerance, dampened activation of host
immunity, and acute pneumonia or sepsis in
immunocompromised hosts Sadikot et al. (2005)

M. tuberculosis
• Frequently establishes stable infection upon inhalation,

creating a primary intracellular niche for growth and survival
Pieters (2008)

• Innate resistance to M. tuberculosis exposure has been
reported Maertzdorf et al. (2018)

S. aureus secondary to COVID-19 infection
• S. aureus is the most common cause of secondary

bacterial infections in previous viral pandemics Tasher et al.
(2011)

• S. aureus bacteremia is associated with high mortality in
patients with COVID-19 (54.8% 14-day mortality and
66.7% 30-day mortality post-positive blood culture)
Cusumano et al. (2020)

• Hospital-onset bacteremia was a significant predictor of
14-day mortality (OR 11.9; p � 0.01) Cusumano et al.
(2020)

• AMs are one of the first lines of
defense Goyal et al. (2018)

• Pattern recognition receptors such
as TLRs, dectin-1, dectin-2, DC-
SIGN, and mannose-binding lectin
identify specific fungal wall
components and produce cytokines
that stimulate neutrophil recruitment
(the main defense mechanism)
Goyal et al. (2018)

Primary COVID-19 infection
• AECII injury is suggested to be the main cause

of COVID-19−related ARDS, while endothelial
cells are less damaged Li and Ma (2020)

• Th1 adaptive immune response should
contribute to clearance via IFN type 1 Pelaia et
al. (2020)

• Some evidence of AEC activation,
macrophage activation syndrome, and release
of proinflammatory cytokines leading to
cytokine storm syndrome and ARDS Polidoro
et al. (2020)

• Coinfections secondary to COVID-19
infections
o COVID-19−associated pulmonary
aspergillosis (CAPA) with incidence
estimates of 3.8–30% Marr et al. (2021)

o COVID-19−associated secondary bacterial
infections associated with worse outcome
severity Vaillancourt and Jorth (2020)

o hMPV and RSV trigger antiviral responses
that mediate clearance; Th1/Th2 skewing
may dampen long term immunity and
reinfection is common Gonzalez et al. (2017)

o DCs become less capable of priming T cells
Gonzalez et al. (2017)

IPA
• May occur in severely

immunocompromised and critically
ill patients, and those with COPD
Kousha et al. (2011)

A. fumigatus
• A. fumigatus causes an acute
pulmonary inflammatory response
that is dominated by neutrophils and
to a lesser extent, macrophages
Goyal et al. (2018)

H. capsulatum
• H. capsulatum is distributed
worldwide and causes pulmonary
and disseminated histoplasmosis,
particularly in immunocompromised
patients Subramanian Vignesh et al.
(2013)

Role of
GM-CSF

Influenza
• AEC-derived GM-CSF is highly protective

against influenza pneumonia, improving innate
immune response of AMs Rosler and Herold
(2016)

• GM-CSF activates lung DCs Rosler and
Herold, (2016)

COVID-19
• Pleiotropic; under investigation Lang et al.

(2020)
• Inhaled sargramostim is protective against

ARDS, suggesting a potential benefit for
COVID-19 Herold et al. (2014)

• Inhaled sargramostim associated with boosted
B-cell responses and SARS-CoV2-specific
CD8+ T-cell responses Bosteels et al. (2021)

RSV
• RSV infection simulates expression of IFN-γ

and IL-12 p40 Guerrero-Plata et al. (2005)
• Overexpression of GM-CSF in the lung

enhances expression of cytokines, further
promoting antigen presentation and driving

P. aeruginosa
• After an intratracheal inoculum with P. aeruginosa, GM-

CSF−/− mice show decreased survival compared with wild-
type mice, associated with impaired AM phagocytosis,
killing, and H2O2 production Ballinger et al. (2006)

• GM-CSF is effective in sensitizing P. aeruginosa persister
cells to multiple antibiotics (persister bacteria are highly
tolerant to antibiotics and cause chronic infections)
Choudhary et al. (2015)

• GM-CSF sensitized P. aeruginosa biofilms to tobramycin in
the presence of biofilm matrix-degrading enzymes
Choudhary et al. (2015)

M. tuberculosis
• GM-CSF−/− mice succumb to pulmonary infection by M.

tuberculosis faster than mice with GM-CSF expression in
the lungs Gonzalez-Juarrero et al. (2005)

• The cell population that promotes GM-CSF−mediated
innate protection against infection remains unclear Mishra
et al. (2020)

• GM-CSF produced by AMs may be critical for resistance
against M. tuberculosis infection Mishra et al. (2020)

A. fumigatus
• Neutralizing anti-TNFα and anti-GM-

CSF antibodies reduced neutrophil
influx into the lung and delayed
clearance of A. fumigatus infection in
a mouse model Steinbach et al.
(2003)

H. capsulatum
• Following H. capsulatum infection,
GM-CSF is essential for survival in
primary infection, but less critical
for secondary infection Deepe et
al. (1999)

(Continued on following page)
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vulnerable and/or dysfunctional AECII are a pivotal player in
aberrant injury/repair responses occurring in pulmonary fibrosis
and other forms of fibrotic lung disease.

3.4. Repairing and Restoring Lung Function
The AECs are critical in normalizing lung function since they are
both a major target for injury, and intrinsically involved in the repair
process. Simple repair could lead to dysfunctional epithelial
repopulation due to the development of scar tissue and fibrosis.
Aberrant remodeling and differentiation of epithelial cells may
culminate in chronic interstitial lung diseases, obstructive diseases,
or the late phases of ALI/ARDS. The preferred outcome is therefore
successful regeneration where fully functioning epithelial-lined
airways and alveolar airspaces are created (Beers andMorrisey, 2011).

AECs respond via appropriate repair or inappropriate
remodeling, which might include excessive apoptosis,
epithelial-mesenchymal transition, or reprogramming to a
dysfunctional state of differentiation, leading to abnormal
repair and development of fibrotic scarring or abnormal
pathology (Beers and Morrisey, 2011). While apoptosis is
important for shaping inflammatory cell populations,
inappropriate AEC apoptosis can lead to deleterious
remodeling and respiratory insufficiency (Beers and Morrisey,
2011) even in the absence of inflammation (Uhal and Nguyen,
2013). AEC apoptosis is sufficient to initiate a process of fibrosis,
leading to progressive scarring of the epithelium (Kim et al., 2018)
mediated by activated myofibroblasts, the major contributors to
fibrotic lung disease (Herzog et al., 2008). Furthermore,
phagocytosis of apoptotic AECs by AMs causes a shift towards
profibrotic gene expression (Kim et al., 2018).

4 PULMONARY RESPONSES TO VIRAL
INFECTION

AMs play a critical role in controlling respiratory viral infections
(RVIs) such as influenza and SARS-CoV-2 to prevent their
spread. Here, we focus on the interaction between AECs and
AMs in responding to these two viruses. A more comprehensive
review of RVIs is denoted in Table 1.

4.1 Influenza Virus Infection
AECs are the primary target for human influenza infection,
characterized by loss of alveolar barrier function and edema,
with persistent inflammation resulting in greater capillary/
alveolar leakage, culminating in severe hypoxemia and ARDS.
Following viral clearance and initiation of AEC repair, local
progenitor cells replicate, and the integrity of the epithelial
layer is restored. Virus elimination and immune-mediated
pulmonary injury are balanced by the immune response to
minimize respiratory tract damage (Rosler and Herold, 2016).

4.2 SARS-CoV-2 Infection and COVID-19
COVID-19 is caused by SARS-CoV-2, resulting in respiratory
illness including pneumonia, ARDS, respiratory failure, shock,
multi-organ failure and death in severe cases (Huang et al., 2020;
Prompetchara et al., 2020).

SARS-CoV-2 binds to the angiotensin-converting-enzyme 2
receptor via the viral spike protein that is cleaved by proteases to
allow fusion of the viral and cellular membranes, and subsequent
internalization and release of the viral RNA (Hoffmann et al.,
2020). Currently, the exact mechanism by which SARS-CoV-2
injures the lung is not fully understood. The evidence points to
direct viral infection of host epithelial and endothelial cells,
triggering release of proinflammatory cytokines as well as
dysregulation of the renin-angiotensin system (Delpino and
Quarleri, 2020; Wang et al., 2020).

After the virus infects the lining of the nose, bronchi, and
bronchioles, it then infects the alveoli in the distal lung, in
particular AECII (Mason, 2020). AEC injury appears to be the
main cause of COVID-19-related ARDS (Li and Ma, 2020). The
alveoli seem to respond to SARS-CoV-2 in a biphasic manner,
with initial alveolar flooding and marked hypoxia followed by an
inflammatory ARDS-like response (Mason, 2020). In some
patients, infection leads to the activation of AMs and the
release of proinflammatory cytokines by AECs and AMs
(Polidoro et al., 2020). In severe cases, tissue-resident AMs can
be depleted, accompanied by an excessive influx of monocyte-
derived macrophages (Liao et al., 2020).

Mounting evidence suggests that severe RVIs, especially
influenza and SARS-CoV-2, can be complicated by fungal or

TABLE 1 | (Continued) Immune response to common viral, bacterial, and fungal pathogens.

Viral Bacterial Fungal

proliferation of antigen-presenting cells to slow
viral replication Guerrero-Plata et al. (2005)

hMPV
• Compared to RSV-infected mice, hMPV

infection induced lower levels of the
inflammatory cytokines IL-1, IL-6, and TNFα
but was a more potent inducer of GM-CSF
Guerrero-Plata et al. (2005)

— —

AEC, alveolar epithelial cell; AECII, alveolar epithelial cell type II; AM, alveolar macrophage; ARDS, acute respiratory distress syndrome; CAPA, COVID-19−associated pulmonary
aspergillosis; CF, cystic fibrosis; COPD, chronic obstructive pulmonary disease; COVID-19, coronavirus disease 2019; DC, dendritic cell; DC-SIGN, dendritic cell-specific intercellular
adhesion molecule-3-grabbing non-integrin; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN-c, interferon gamma; IPA, invasive pulmonary aspergillosis; hMPV, human
metapneumovirus; OR, odds ratio; RSV, respiratory syncytial virus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TB, tuberculosis; TLR, toll-like receptor; TNFα, tumor
necrosis factor alpha.
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bacterial coinfection (Table 1) (Tasher et al., 2011; Smith and
McCullers, 2014; Cusumano et al., 2020; Vaillancourt and Jorth,
2020). Aspergillus airway overgrowth with pulmonary infection is
characterized by mixed airway inflammation and bronchial
invasion known as COVID-19−associated pulmonary
aspergillosis (CAPA) (Marr et al., 2021). The incidence of CAPA
has been reported in published studies to be 20–30% of patients
with severe COVID-19 requiring mechanical ventilation. Three
studies that deployed enhanced prospective screening provided
incidence estimates of 14–20% (Marr et al., 2021).

Many patients with COVID-19 contract a secondary
bacterial infection which frequently leads to worse
outcomes (Vaillancourt and Jorth, 2020). For instance,
Feng et al. reported a multicenter study of 476 patients
with COVID-19 comparing outcome severity with the
absence or presence of a secondary bacterial infection.
Critically ill patients had the highest rate of bacterial
coinfection (34.5%) compared to moderately (3.9%) and
severely (8.3%) ill patients (Feng et al., 2020).

5 GM-CSF REGULATION OF ALVEOLAR
MACROPHAGES AND PULMONARY
RESPONSE TO VIRAL INFECTIONS

5.1 Biology of GM-CSF
GM-CSF was first characterized by Burgess et al. (1977) as a
myelopoietic growth factor capable of differentiating bone
marrow precursor cells into granulocytes and macrophages. It
stimulates proliferation and activation of monocytes,
macrophages, DCs, neutrophils, and eosinophils (Hamilton,
2015; Becher et al., 2016). GM-CSF−deficient mice primarily
lack lung AMs, and mice lacking the GM-CSF receptor have
markedly reduced numbers of macrophages throughout the
body (Guilliams et al., 2020). GM-CSF supports the
development and/or maintenance of bone marrow−derived
CD103+ DCs (Becher et al., 2016; Lang et al., 2020) which, in
mice, have been shown to be critically important for the
initiation of cytotoxic CD8+ T-cell responses in the lung
(Lang et al., 2020). GM-CSF thus serves a crucial role in
normal lung health and is important for orchestrating a broad
range of adaptive immune responses (Lang et al., 2020).

Following its initial discovery, GM-CSF has been identified
to have a much broader role as an immune-modulating
cytokine, specifically playing a critical role in AM
homeostasis, lung inflammation, and immunological disease
(Guillot et al., 2013; Lang et al., 2020). GM-CSF regulates the
catabolism of surfactant proteins and lipids in the lung
(Huffman et al., 1996). The majority of surfactant is
catabolized or reutilized by AECII, and AM catabolize or
phagocytose the remaining surfactant pool (Trapnell and
Whitsett, 2002).

The receptor for GM-CSF is a heterodimer comprised of an α
chain that is specific for GM-CSF and a signal-transducing β
chain that is shared by IL-3 and IL-5 receptors (Becher et al.,
2016). GM-CSF receptor activation triggers activation of JAK2

and STAT5 leading to downstream activation of PI3K signaling,
as well as transcription factors, such as PU.1 and peroxisome
proliferator-activated receptor-γ (PPARγ) (Figure 1B) (Bonfield
et al., 2003; Becher et al., 2016; Zhan et al., 2019).

5.2 Sources of Pulmonary GM-CSF
GM-CSF is secreted by a variety of cells, including epithelial cells,
endothelial cells, fibroblasts, and a variety of leukocytes (Shi et al.,
2006; Lang et al., 2020). Production of GM-CSF in non-
hematopoietic cells generally requires a stimulus (Hamilton,
2019). Certain populations of neutrophils, basophils, and
eosinophils have been reported to produce GM-CSF. In
addition, B cells can produce GM-CSF, particularly after
activation, and GM-CSF derived from B cells in the pleural
space may have an autocrine signaling role in response to lung
infections and sepsis (Harris et al., 2000; Weber et al., 2014;
Hamilton, 2019).

T cells, IL-1β, IL-12, and PGE2 in humans have been shown
to induce GM-CSF production (Quill et al., 1989; Duhen and
Campbell, 2014; Shiomi and Usui, 2015). A variety of T-cell
types are important sources of GM-CSF, including Th2, CD4+

T cells, and Th1/17 cells (Shiomi and Usui, 2015). Some studies
suggest T cells respond to CD3 blockade by secretion of GM-
CSF upon stimulation with anti-CD3 (Shi et al., 2006). Th17
cells may secrete GM-CSF in response to IL-23 (Bhattacharya
et al., 2015). CD4+ T helper cells have been identified as a cell
population that primarily produce GM-CSF (Komuczki et al.,
2019; Lang et al., 2020). In certain settings, transcription factors,
such as nuclear factor of activated T cells (NFAT) have been
shown to be required for GM-CSF production (Shang et al.,
1999; Johnson et al., 2004; Shiomi and Usui, 2015). Not
surprisingly, given the complexity of cytokine networks,
cytokines such as IFN-γ, IL-4, IL-10, may inhibit production
of GM-CSF (Shiomi and Usui, 2015). Interplay between
activated T cells and macrophages results in inflammatory
positive feedback loops influencing production of GM-CSF in
macrophages, as well as neighboring resident tissue cells (Shi
et al., 2006; Shiomi and Usui, 2015).

Alveolar epithelial cell production of GM-CSF is the major
source of pulmonary GM-CSF (Gschwend et al., 2021). In lung
endothelial cells and fibroblasts, TNFα and IL-1β have been
shown to induce GM-CSF synthesis and production
facilitating autocrine and paracrine activity in the lung (Burg
et al., 2002; Fitzgerald et al., 2003; Koga et al., 2016; Hamilton,
2019). GM-CSF produced following a stimulus in endothelial
cells and fibroblasts is thought to help guide tissue-invading
leukocytes (Hamilton, 2019).

5.3 GM-CSF and Alveolar Epithelial Cells
Baseline expression of GM-CSF in AECs is low, but GM-CSF
mRNA expression is constitutively present (Mir-Kasimov et al.,
2012; Lang et al., 2020). However, AECII are the major non-
hematopoietic, pulmonary source of GM-CSF (Gschwend et al.,
2021). The inherent plasticity of AECII allows them to rapidly
express GM-CSF in response to viral infection, or via induction
by inflammatory cytokines, such as IL-1β, TNF-α, and in turn,
expression of GM-CSF influences AECII plasticity in an autocrine
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fashion, inducing downstream STAT5 phosphorylation and
subsequent upregulation of cyclin D1 and other cell cycle
genes that regulate differentiation of AECII into AECI
(Cakarova et al., 2009; Mir-Kasimov et al., 2012; Sturrock
et al., 2012).

Overexpression of GM-CSF in transgenic GM-CSF knockout
(GM-CSF−/−) mice induced AECII hyperplasia, increasing lung
size and demonstrating a role for GM-CSF in the regulation of
AECII proliferation and differentiation (Huffman Reed et al.,
1997). Overexpression of GM-CSF also enhanced survival of mice
in hyperoxia; this effect may be explained by preservation of AEC
barrier function and fluid clearance, and at least in part by a
reduction in hyperoxia-induced apoptosis of AECs (Paine et al.,
2003).

In influenza viral infection, the proinflammatory condition
prompts AECII to express GM-CSF and produces high levels of
GM-CSF (Rosler and Herold, 2016). AECII also express GM-CSF
receptors, facilitating both indirect and autocrine signaling that
can spur AECII proliferation and decrease AEC apoptosis
(Sturrock et al., 2012). GM-CSF has been shown to decrease
AECII susceptibility to oxidative stress injury (Sturrock et al.,
2012). GM-CSF increases Mcl-1 expression and subsequent
mitochondrial cytochrome c release and induces Akt
phosphorylation that was shown to protect AECs against
hyperoxia (Sturrock et al., 2012).

AEC-derived GM-CSF can elicit AM activation and
expansion, DC migration to lymph nodes, and T cell
activation and recruitment to alveoli, resulting in viral
clearance and protection from viral infection (Unkel et al.,
2012; Rosler and Herold, 2016). Activated resident AMs
secrete TNFα and induce AECs to express GM-CSF, initiating
AEC proliferation and supporting restoration of alveolar barrier
function (Cakarova et al., 2009).

5.4 Overview of Macrophages and GM-CSF
Macrophages are found in all mammalian tissues and develop
together with the organs they populate. Through various
scavenger, pattern recognition, and phagocytic receptors,
macrophages sense and respond to tissue injury and
invasion by infectious organisms. They play a critical role
in normal tissue homeostasis, ensuring a balanced response to
tissue damage. If this response is not carefully monitored and
fine-tuned, inflammatory disease may result (Lavin et al.,
2015). The tissue microenvironment tightly regulates the
differentiation and homeostasis of macrophage cell types.
Macrophage identity and function is shaped by cytokines
and metabolites produced in the local environment that
drive expression of specific transcription factors (Lavin
et al., 2015). Examples of tissue-specific macrophages
include microglial cells in the brain, splenic macrophages,
Kupffer cells in the liver, and AMs in the lung (Lavin et al.,
2015). Macrophages require the continuous provision of
trophic factors such as IL-34, macrophage colony-
stimulating factor (M-CSF) (also known as colony-
stimulating factor [CSF] 1) and GM-CSF (also known as
CSF2) for their development and maintenance (Lavin et al.,
2015).

Surfactant accumulation impairs gas exchange, resulting in
increased susceptibility to microbial infections (Rosler and Herold,
2016). Autoimmune pulmonary alveolar proteinosis (aPAP) is a rare
disease characterized by the excessive accumulation of surfactant
proteins within alveoli, causing progressive respiratory insufficiency.
The pathogenesis associated with aPAP has been attributed to high
levels of neutralizing autoantibodies against GM-CSF in the serum
and bronchoalveolar lavage fluid (BALF). These autoantibodies
neutralize the biologic activity of GM-CSF, impairing the
maturation and phagocytosis of AMs and AM-mediated
pulmonary surfactant clearance (Tazawa et al., 2010; Ohkouchi
et al., 2017).

5.5 GM-CSF and Alveolar Macrophages
In the context of infection, GM-CSF signals growth and
differentiation of myeloid cells (granulocytes and
macrophages) when more of these cells are needed to fight
infection, and governs emergency myelopoiesis, expanding and
mobilizing progenitor myeloid cells when needed (Metcalf, 1986;
Damiani et al., 2020; Lang et al., 2020). GM-CSF is essential for
driving the immune functions of AMs (Figure 1B) (Rosler and
Herold, 2016).

Stillborn infants lack AMs, suggesting that these cells develop
postnatally, similar to observations in mice (Guilliams et al., 2013;
Evren et al., 2020). This is likely because, while GM-CSF is
expressed during early gestation, AM residence in the alveoli
is only established at birth when the lungs are inflated, with
subsequent continued maturation well into childhood (Evren
et al., 2020). Transforming growth factor-beta (TGFβ)
collaborates with GM-CSF to induce the transcription factor
PPARγ to drive early AM differentiation and maintenance
(Lambrecht, 2017; Yu et al., 2017).

GM-CSF regulates AM differentiation and innate immunity in
the lung (Shibata et al., 2001). GM-CSF−/− mice are prone to
respiratory infections, and experimental data show that restoring
GM-CSF expression reverses this susceptibility. GM-CSF−/−mice
have increased susceptibility to bacterial infection due to defective
pulmonary clearance and abnormal cytokine production in
response to infection, demonstrating the role of GM-CSF in
fending off infection mediated partly by AM innate immune
functions (LeVine et al., 1999). Restoring expression of GM-CSF
reversed these abnormalities in AM function and reestablished
expression of PU.1 (Shibata et al., 2001), a master transcription
factor directing macrophage differentiation (Lloberas et al., 1999;
Shibata et al., 2001).

Macrophage transcriptome and metabolomic analyses suggest
that GM-CSF has pleiotropic effects on macrophage
mitochondria that underlie cellular proliferation and
differentiation (Wessendarp et al., 2022). Loss of GM-CSF
signaling impaired amino acid biosynthesis, glycolysis, and the
pentose phosphate pathway suggesting the importance for GM-
CSF in facilitating mitochondrial pathways crucial to AM
differentiation and proliferation (Wessendarp et al., 2022).
These data provide a mitochondrial mechanism and additional
understanding of how pulmonary GM-CSF regulates AM
population size via STAT5 phosphorylation (Figure 1B)
(Suzuki et al., 2014; Wessendarp et al., 2022).
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GM-CSF helps to maintain mitochondrial structural integrity,
function, and glycolytic activity (Wessendarp et al., 2022). GM-
CSF receptor signaling through JAK2 and STAT5 upregulates
inflammatory gene expression and results in enhanced glycolysis
(Liu et al., 2020). Clearance of fatty acids and phospholipids in
surfactant uses mitochondria and requires GM-CSF stimulation
and regulation suggesting that GM-CSF signaling may regulate
surfactant homeostasis via AM (Figure 1B) (Wessendarp et al.,
2022).

5.6 GM-CSF and Alveolar Cell Crosstalk
Expression of GM-CSF by AECII occurs during late gestation
after AECII fate specification and coincides with fate initiation of
AM in the fetal lung (Gschwend et al., 2021). Through direct
interaction with AECs, GM-CSF also improves epithelial repair
processes (Cakarova et al., 2009), with preclinical data suggesting
that GM-CSF may ameliorate lung injury and respiratory failure
through limiting early epithelial injury and maintaining AM
function (Huffman Reed et al., 1997; Paine et al., 2001; Paine
et al., 2003). Recently, new data suggest that AECII-derived GM-
CSF is a critical factor modulating AM development and health of
mature AM (Gschwend et al., 2021).

Using single-cell RNA sequencing, 3 main macrophage
populations have been identified in the interstitial space and
BALF from normal lung samples: FABP4high, FCN1high, and
SPP1high (Morse et al., 2019). The FABP4high subset represents
the GM-CSF–dependent resident AMs, which are essential for the
maintenance of lung homeostasis (Hajivalili et al., 2020). The
FCN1high subset is derived from circulating monocytes, while the
origin of the SPP1high subset is still unclear (Mari and Crestani,
2019). The FCN1high subset displays a proinflammatory
phenotype, and the SPP1high subset is increased in pulmonary
fibrosis and is preferentially located in fibrotic areas (Morse et al.,
2019; Reyfman et al., 2019). The gene signature and localization
of SPP1high macrophages within fibroblast foci suggest they are
the primary profibrotic macrophage in pulmonary fibrosis (Mari
and Crestani, 2019; Joshi et al., 2020). Significant skewing of the
pulmonary macrophage–population distribution has been
demonstrated during interstitial pulmonary fibrosis and
coronavirus disease 2019 (COVID-19) (Morse et al., 2019;
Reyfman et al., 2019; Liao et al., 2020). As diffuse alveolar
damage increases, a loss of the FABP4high-, GM-CSF-
dependent subset occurs that may give rise to spatially
restricted profibrotic niches of monocyte-derived alveolar
macrophages that provide signals for fibroblast proliferation
(Hajivalili et al., 2020; Joshi et al., 2020; Liao et al., 2020).
Therefore, in clinical practice, there is a need to preserve as
much of the GM-CSF-dependent resident population as possible
to limit the degree of pulmonary fibrosis following injury to the
alveolus.

GM-CSF–activated myeloid cells can secrete reactive oxygen
species and express cytokines and chemokines which, in turn,
attract monocytes, neutrophils, and lymphocytes (Iwasaki et al.,
2017; Lang et al., 2020). GM-CSF is critically important to
coordinating both innate and adaptive immune responses
(Lang et al., 2020). Monocytes, granulocytes, macrophages,
and dendritic cells can be modulated directly by GM-CSF via

the GM-CSF receptor, thereby enabling autocrine signaling (Shi
et al., 2006; Perugini et al., 2010). GM-CSF modulation of T-cell
responses is thought to be indirect through the interaction of
antigen-presenting cells and T cells (Shi et al., 2006). GM-CSF can
enhance the ability of DCs to prime T cells during antigen-
specific immune responses. A GM-CSF-producing, specific
subset of CD4+ T helper cells has been observed which
activates and recruits myeloid cells to amplify the immune
response (Lang et al., 2020). Becher et al. (2016) proposed that
in inflammatory conditions, lymphoid and myeloid
cells communicate with each other primarily via GM-CSF
(Figure 2).

6 GM-CSF AND RESPIRATORY VIRAL
INFECTIONS

6.1 GM-CSF and Influenza
GM-CSF secreted by AECs can play a key role in protecting
against influenza pneumonia (Rosler and Herold, 2016). The
pathogen clearance of AMs in GM-CSF−/− mice is impaired,
reducing their resistance to influenza, while mice with elevated
alveolar GM-CSF show greater AM proliferation and resistance,
thus protecting against normally lethal influenza infection. Lung
DCs are also critical for mediating GM-CSF−dependent
protective effects. After influenza infection, pulmonary DCs
activate and expand, and GM-CSF mediates their migration
and antigen presentation within the draining mediastinal
lymph nodes. This process is associated with improved viral
clearance and antigen-specific T cell recruitment. Thus, GM-
CSF is critical in mediating epithelial proliferation following lung
injury, supporting repair, reestablishing barrier function, and
restoring homeostasis.

Halstead et al. (2018) demonstrated GM-CSF overexpression
achieved supra-physiologic levels of GM-CSF at the peak of viral
replication after influenza A infection and reduced mortality
and preserved lung functions in a model of GM-CSF inducible
mice (WT C57BL/6 background). Transcriptome data and
adoptive transfer studies suggest supraphysiologic GM-CSF
in the context of active infection pushed macrophages toward
the anti-inflammatory M2 type rather than the
proinflammatory M1 type. Reduced interferon signaling in
airways was also observed in this study, but more work is
needed to elucidate the mechanisms underlying the rescue
from ARDS-like illness and GM-CSF–induced plasticity in
macrophage phenotype.

6.2 GM-CSF and Coronaviruses
Serum GM-CSF is increased in the infected tissues of patients
with conditions similar to late-stage COVID-19, including ARDS
(Matute-Bello et al., 1997) and cytokine release syndrome
(Ahmed, 2019), as well as the SARS-CoV-2 infection itself
(Hue et al., 2020). It has been suggested that SARS-CoV-1
may cause lung fibrosis through the suppression of GM-CSF
(Liao et al., 2011). SARS-CoV-2 would likely impact GM-CSF
expression similarly. The lung inflammation or damage
biomarker Krebs von den Lungen-6 (KL-6) is principally
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FIGURE 2 | Alveolar response to viral infection (left) and severe destruction of AECs (right) (Adapted from Guillot et al., 2013). In response to lung infection, AECs
and AM initiate an immunologic response (Iwasaki et al., 2017). Increased expression of GM-CSF from AECII induces differentiation of monocytes and expands the AM
pool (Morales-Nebreda et al., 2015). In addition bone marrow-derived monocytes can also be summoned by alveolar-derived GM-CSF, but during mild infections
proliferation of resident AM is generally sufficient (Misharin et al., 2017; Guilliams et al., 2020). In addition to viral phagocytosis, AMs also act to efferocytose
apoptosing AECs and immune cells (Trapnell andWhitsett, 2002; Ortega-Gomez et al., 2013; Boada-Romero et al., 2020; Evren et al., 2020). Interaction between AECs
and AMs helps to repair damage to the alveolar epithelium by expansion of AECI via AECII transdifferentiation (Aspal and Zemans, 2020).With severe destruction of AECs
(right) lack of viable or sufficient AECs can compromise the repair process resulting in alveolar-capillary damage, accumulation of fluid and surfactant, increased
production of inflammatory molecules, and influx of inflammatory cells, such as inflammatory monocytes and neutrophils (Pison et al., 1988; Aranda-Valderrama and
Kaynar, 2018; Guillamat-Prats et al., 2018; Liao et al., 2020). Fibroblasts are activated in response to the damage and can lead to fibrotic scarring (Beers and Morrisey,
2011; Spagnolo et al., 2020). Abbreviations: AECI, alveolar epithelial cell type I; AECII, alveolar epithelial cell type II; AM, alveolar macrophage; DC, dendritic cell; GM-CSF,
granulocyte-macrophage colony-stimulating factor.
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produced by damaged or regenerating AECII (d’Alessandro et al.,
2020). Recently KL-6 serum concentrations were demonstrated
to be significantly higher in patients with severe COVID-19 vs.
non-severe COVID-19 and healthy controls, demonstrating
potential prognostic value (d’Alessandro et al., 2020).

However, lung macrophages in COVID-19 murine models are
characterized by the loss of GM-CSF–mediated instruction that
drives AM development, resulting in enrichment of lymphocytes,
monocytes and neutrophils and depletion of macrophages in the
lung (Bosteels et al., 2021). In COVID-19, instead of lung
monocytes developing into AMs with sufficient GM-CSF
signal, they develop into proinflammatory CD163+

hemophagocytic macrophages. This parallels findings from
murine models demonstrating accumulation of
proinflammatory monocytic or macrophagic cell populations
that occur in GM-CSF–deficient conditions. Translational
studies in mice suggest inhaled GM-CSF may suppress
alveolar inflammation by supporting the differentiation of
locally recruited monocytes to homeostatic, tissue-resident AMs.

Strategies that target the GM-CSF/GM-CSF–receptor axis
have been proposed for patients with COVID-19 with and
without ARDS. While GM-CSF may be beneficial for
maintaining AM function during the early disease phase,
neutralizing GM-CSF may reduce the primary pathology of
the cytokine storm and myeloid cell-induced lung destruction
in later disease stages (Lang et al., 2020). The role of inhibiting
GM-CSF/GM-CSF–receptor interaction in treating patients with
COVID-19 is currently under investigation in several clinical
studies (ClinicalTrials.Gov, 2020a; ClinicalTrials.Gov, 2020b;
ClinicalTrials.Gov, 2020e; ClinicalTrials.Gov, 2020g;
ClinicalTrials.Gov, 2020h; De Luca et al., 2020; Temesgen
et al., 2020). Notably, anti-GM–CSF monoclonal antibodies
used to treat autoimmune disease do not appear to enter the
lung, so their usefulness for treating RVI remains to be seen
(Campbell et al., 2016).

6.3 Rationale for Sargramostim (rhu
GM-CSF) for Respiratory Viral Infections
Overexpression of lung-specific GM-CSF in transgenic mice
provides notable protection against various seasonal influenza
strains and secondary bacterial infection through GM-
CSF–dependent expansion of AMs as reviewed in
Subramaniam et al. (2015). High levels of airway GM-CSF
during active influenza A virus (IAV) infection confers
protection from mortality from IAV and prevents the
degeneration of multiple lung mechanical properties (Halstead
et al., 2018). Administration of inhaled recombinant mouse GM-
CSF also protected against secondary bacterial infection during
influenza infection. Inhaled recombinant GM-CSF also conferred
a significant survival benefit as compared to control (p < 0.05),
whereas intraperitoneal injection did not impact survival (Huang
et al., 2010; Umstead et al., 2020).

In a small clinical study, inhaled sargramostim (yeast-derived
rhu GM-CSF) significantly improved oxygenation (p � 0.0035)
without side effects in patients with severe ARDS (Herold et al.,
2014), demonstrating GM-CSF is well-tolerated in the alveolar

space. Given the beneficial role of inhaled recombinant GM-CSF
in reducing mortality in preclinical pneumonia studies, inhaled
sargramostim is under investigation to treat patients with
COVID-19 (Table 2) (Huang et al., 2010; Huang et al., 2011;
Bosteels et al., 2021; ClinicalTrials.Gov, 2020c;
ClinicalTrials.Gov, 2020d; ClinicalTrials.Gov, 2020f;
ClinicalTrials.Gov, 2021).

6.4 Clinical Data for Sargramostim
A key feature of sepsis-associated immunosuppression is
impaired innate and adaptive immune responses, including
monocyte deactivation. A study enrolling patients with severe
sepsis (N � 38) demonstrated that subcutaneous sargramostim
restored immune function and significantly reduced mechanical
ventilation time compared with placebo (148 ± 103 h vs. 207 ±
58 h; p � 0.0037) (Meisel et al., 2009).

Six patients with pneumonia-associated ARDS received
inhaled sargramostim (Herold et al., 2014). Sargramostim
significantly improved oxygenation and simplified acute
physiology scores (SAPS) compared with untreated
patients. This is the first evidence that sargramostim may
be an effective strategy to stimulate pulmonary host defense
and improve oxygenation and clinical outcomes in
pneumonia-associated ARDS.

In the multi-center, open-label, randomized, controlled
SARPAC trial, 81 non-ventilated hospitalized COVID-19
patients with acute hypoxemic respiratory failure (oxygen
saturation below 93% on ≥ 2 L oxygen per minute or a ratio
of the partial pressure of oxygen [PaO2] to the fraction of inspired
oxygen [FiO2; P/F ratio] below 350 mmHg) the efficacy and safety
of 5 days of inhaled sargramostim (125 μg/m2 twice daily) with
standard of care (SOC) vs. SOC alone were assessed at day 6
(Bosteels et al., 2021). More patients in the sargramostim group
experienced at least 25% improvement in oxygenation from
baseline by day 6 compared with the standard of care group
(62.9 vs 39.5%, p � 0.0459). Treatment adverse events, including
signs of cytokine storm, were not different between groups.
Serum concentrations of pro-inflammatory cytokines in trial
patients at day 6 were not increased over baseline levels.
Analysis of immune cells suggests inhaled sargramostim
impacted B-cell responses and SARS-CoV2–specific
CD8 T-cell responses as evidenced by significant increases in
circulating switched memory B-cells and CD38+ HLA-DR +
effector memory CD8 T-cells after 5 days of sargramostim
inhalation vs SOC alone.

7 DISCUSSION AND FUTURE DIRECTIONS

The pleiotropic functional roles of GM-CSF in maintaining
homeostasis and host defense against RVI include acting as an
immunomodulator, by signaling growth and differentiation of
myeloid cells when needed to fight infection, and governing
myelopoiesis when macrophage niches within the lung are
depleted (Damiani et al., 2020; Lang et al., 2020). GM-CSF is
essential for driving the maturation and immune functions of
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AMs including surfactant and pathogen clearance and regulating
cytokine responses to lung infection (Trapnell and Whitsett,
2002; Rosler and Herold, 2016). GM-CSF protects the host in
the early phase of acute lung infection and during regeneration of
the injured lung epithelium (Rosler and Herold, 2016). In the
distal airways, GM-CSF promotes pathogen clearance by
expanding AM or DCs, or by stimulating their host defense
capacity (Rosler and Herold, 2016). GM-CSF supports the
development and/or maintenance of CD103+ DCs, serving a
crucial role in normal lung health and immune responses
(Unkel et al., 2012; Rosler and Herold, 2016). Through direct
interaction with AECs, GM-CSF also improves epithelial repair
processes, supporting restoration of barrier function and
facilitating restored homeostasis (Cakarova et al., 2009).

Given the multifaceted immunoregulatory roles of GM-CSF in
lung health and host defense, careful examination and study
should be taken with respect to dose, route, and timing of
administration for each therapeutic approach. It is unlikely
there will be a one-size-fits-all approach to therapies for
patients with RVI, including COVID-19 and influenza (Hall
et al., 2020; Lang et al., 2020). With the current preclinical,
animal, and small clinical evidence that early administration of
inhaled GM-CSF may maintain or restore surfactant levels in
ARDS triggered by pulmonary infection (Matute-Bello et al.,
2000; Herold et al., 2014), sargramostim may prove beneficial
in monocyte-mediated trapping of the inoculum andmaintaining
adequate alveolar surface tension, thus preventing progression to
severe forms of ARDS.

Immunomodulatory therapies that are likely to be successful
in patients with COVID-19 are those tailored to the patient’s
immunophenotype in real time. Clinical trials of immune
modulators for the treatment of COVID-19 should include
prospective immunophenotyping and/or subject stratification
based on cell counts, immune function assays, cytokine levels,
or other markers of inflammation (Hall et al., 2020). Clinical trials
are currently underway to evaluate sargramostim in patients with
COVID-19 (Table 2) (Bosteels et al., 2021; ClinicalTrials.Gov,
2020c; ClinicalTrials.Gov, 2020d; ClinicalTrials.Gov, 2020f;
ClinicalTrials.Gov, 2020i; ClinicalTrials.Gov, 2021). Preclinical
studies suggest that sargramostim administration may improve

lung function by strengthening the alveolar wall and enhancing
viral clearance. Studies of sargramostim administration in SARS-
CoV-2 infection, influenza, and other RVIs, and in inhaled fungal
or secondary bacterial infections provide further rationale for
clinical investigation of sargramostim (Subramaniam et al., 2015).

GM-CSF may provide benefit in the earlier phases of alveolar
injury/damage (e.g., influenza infection, SARS-CoV-2 infection,
mechanical ventilation, and smoke inhalation) by supporting the
tissue-resident AM population and maintaining the best
physiologic ratio of resident AMs (Huffman Reed et al., 1997;
Paine et al., 2001; Paine et al., 2003; Herold et al., 2014; Rosler and
Herold, 2016; Subramaniam et al., 2016). Productive avenues for
future research include the possibility of altering the ratios of
FCN1+ and SPP1+/FABP4+ AMs to promote pathogen clearance
and epithelial repair while limiting exacerbated inflammatory
response and pulmonary fibrosis. The issue of appropriate timing
for therapeutic modulation of viral pulmonary inflammatory
responses is a matter of debate. It may be possible that
altering the FCN1+, SPP1+/FABP4+ AM ratio in favor of
maintaining a high level of FABP4+ cells may prevent the
overwhelming proinflammatory response encountered at the
later stages of COVID-19 and other RVIs (Vega et al., 2020).
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TABLE 2 | Sargramostim clinical studies in COVID-19.

Name Primary route NCT number

Sargramostim use in COVID-19 to recover patient health (SCOPE)a ClinicalTrials.Gov (2021) Inhalation NCT04707664
Study of sargramostim in patients with COVID-19 (iLeukPulm)a ClinicalTrials.Gov (2020f) Inhalation NCT04411680
A phase II/III study of sargramostim in patients with Coronavirus Disease-2019 ClinicalTrials.Gov (2020c) Inhalation NCT04642950
Sargramostim in patients with acute hypoxic respiratory failure due to COVID-19 (SARPAC) ClinicalTrials.Gov (2020d),
Bosteels et al. (2021)

Inhalation NCT04326920

Using GM-CSF as a host directed therapeutic against COVID-19—a phase 2 investigator initiated trial ClinicalTrials.Gov
(2020i)

Intravenous NCT04400929

aStudy is supported by the U.S. Department of Defense’s (DoD) Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), as part of a
contract for the advanced development and emergency use of Leukine for COVID-19 treatment (Agreement No. MCDC 2006-0120).
COVID-19, coronavirus disease 2019; GM-CSF, granulocyte-macrophage colony-stimulating factor.
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