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A B S T R A C T   

Numerous computational drug repurposing methods have emerged as efficient alternatives to costly and time- 
consuming traditional drug discovery approaches. Some of these methods are based on the assumption that 
the candidate drug should have a reversal effect on disease-associated genes. However, such methods are not 
applicable in the case that there is limited overlap between disease-related genes and drug-perturbed genes. In 
this study, we proposed a novel Drug Repurposing method based on the Inhibition Effect on gene regulatory 
network (DRIE) to identify potential drugs for cancer treatment. DRIE integrated gene expression profile and 
gene regulatory network to calculate inhibition score by using the shortest path in the disease-specific network. 
The results on eleven datasets indicated the superior performance of DRIE when compared to other state-of-the- 
art methods. Case studies showed that our method effectively discovered novel drug-disease associations. Our 
findings demonstrated that the top-ranked drug candidates had been already validated by CTD database. 
Additionally, it clearly identified potential agents for three cancers (colorectal, breast, and lung cancer), which 
was beneficial when annotating drug-disease relationships in the CTD. This study proposed a novel framework 
for drug repurposing, which would be helpful for drug discovery and development.   

1. Introduction 

In recent years, significant progress has been made in computing 
technologies, life sciences, and genomics [1]. However, drug discovery 
and development is not progressing as rapid as expected [2]. According 
to the previous records [3,4], a lot of new drugs failed in clinical trials. 
Meanwhile, it is estimated that it takes 10–15 years and 1 billion dollars 
to develop a new drug [5,6]. Hence, the journey of new drug discovery is 
not only time-consuming but also incurs substantial expenses and carries 
inherent risks. In order to overcome these challenges, drug repurposing 
has emerged as an effective strategy for discovering new indications for 
approved drugs, offering significant advantages to expedite the drug 
discovery process [7]. Recently, numerous computational-based drug 
repurposing approaches have been proposed to improve the efficiency of 
drug discovery [8–11]. These methods can generally be categorized into 
three main groups: signature-based [12], network-based [13], and 
pathway-based [14] methods. 

Signature-based approaches primarily focused on identifying drug- 
disease pairs based on gene expression patterns. For instance, Lamb 
et al. [15,16] developed Connectivity Map (CMAP) database, which 
compared drug and disease expression profiles to discover potential 
drug candidates. Napolitano et al. [17] integrated chemical structures of 
drug, drug targets, and drug-induced gene expression for drug repur-
posing. Chen et al. [18] presented a drug repurposing method by using 
tissue/species-specific transcriptome data and drug-perturbed gene 
expression information from CMAP. Dudley et al. [19] identified po-
tential drug-disease relationships by systematically comparing the gene 
expression characteristics of disease with that of drug compounds from 
CMAP. Drugs and diseases could share common genes on which drugs 
execute their functions. The more common genes, the stronger rela-
tionship between the drug and disease [20]. Several studies have been 
presented to discover drug-disease pairs based on their related gene 
expression information [21,22]. Meanwhile, many approaches have 
been developed according to the protein complexes shared by the drug 
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and disease [23] and their common perturbed genes [24]. However, the 
signature-based approaches cannot be utilized to identify the 
drug-disease relationships without common genes. 

There are other network-based methods than those using cross- 
network message diffusion, e.g. methods based on shortest paths. For 
instance, Zhang et al. [25] adopted a method based on network topo-
logical similarity-based inference to identify unknown drug-disease 
pairs. Liu et al. [26] applied random walk with restart in heteroge-
neous network to find new uses for FDA approved drugs. Zhao et al. [27] 
predicted drug-disease interactions by using graph representation 
learning method on heterogeneous information network. Furthermore, 
Cheng et al. [28] used an already available approach to identify 
candidate drugs for 220 million patients from Guney et al. [29] and it 
was based on network proximity. However, these methods did not 
consider drug-induced gene expression profiles. 

Pathway-based approaches mainly identify drug–pathway relation-
ships, where drugs perturbed gene expression within specific pathways, 
consequently affecting the pathway’s function. Recent studies reported 
that pathway-based drug repurposing method was an effective strategy 
to discover potential candidates for thoracic aneurysms [30]. Li et al. 
[31] established a drug-target-pathway-gene-disease network to find 
new drug-disease pairs. Napolitano et al. [32] proposed a computational 
method for drug repurposing by integrating drug-induced gene expres-
sion and therapeutic target genes in given pathways. Yu et al. [33–36] 
presented computational approaches to discover potential drug-disease 
relationships based on different network models, such as module dis-
tance, random walk, triangularly balanced structure, and tissue-specific 
network [36]. Additionally, numerous studies have reported a close 
association between local region of the pathway and certain diseases 
[37–39]. These studies have successfully identified potential drugs 
whose targets are enriched within these local regions. For example, Li 
et al. [37] found that subpathways were closely associated with cancer 
occurrence and development. Han et al. [38] proposed an effective 
method when searching for subtype-specific drugs at the subpathway 
level. Nam et al. [39] developed a subpathway-based polypharmacology 
drug repurposing approach. However, they treated pathways or sub-
pathways simply as gene sets and ignored their network structure in-
formation to discover potential candidate agents. 

In this paper, we proposed a novel drug repurposing method called 
DRIE, which integrated gene expression profile and gene regulatory 
network to compute inhibition score using the shortest distance in the 
disease-specific network. The results demonstrated our method yielded 
superior performance over state-of-the-art approaches on eleven data-
sets. Furthermore, case studies showed that DRIE helped to find new 
drug-disease relationships that do not exist in Comparative Tox-
icogenomics Databases (CTD) [40], which was a literature-based 
resource containing gene-to-disease, drug-to-gene, and drug-to-disease 
associations. Our findings demonstrated that the top-ranked drug can-
didates have been already validated by CTD. In this regard, utilizing 
gene regulatory network provided us an alternative view to address the 
issue of low overlap gene between disease and drug, which was 
neglected by other methods. Additionally, it can clearly identify po-
tential agents for three cancers (colorectal, breast, and lung cancer), 
which is beneficial when annotating drug-disease relationships in the 
CTD. In conclusion, we confirmed that our study opens up a new avenue 
for drug repurposing with new insights gained from the gene regulatory 
network. 

2. Materials and Methods 

2.1. Gene expression profile 

We downloaded nine datasets from the Gene Expression Omnibus 
(GEO) database. These datasets contained colorectal cancer (GSE8671, 
GSE9348, and GSE23878), breast cancer (GSE31448, GSE42568, and 
GSE29044), lung cancer (GSE18842, GSE19188, and GSE19804), 

rheumatoid arthritis (GSE55235), and Alzheimer’s disease (GSE5281). 
Gene expression profiles were generated with Affymetrix Human 
Genome U133 plus 2.0 array. These datasets were shown in Table 1. 

2.2. Drug-perturbed gene expression profile 

We downloaded drug-exposure gene expression profiles from the 
CMAP database [15], which consisted of 6100 instances and covered 
1309 drugs. These instances were measured on five human cancer cell 
lines, which contained the breast cancer epithelial cell lines (MCF7, 
ssMCF7), the prostate cancer epithelial cell line (PC3), the nonepithelial 
leukemia cell line (HL60), and melanoma cell line (SKMEL5). Due to the 
little number of instances in ssMCF7 and SKMEL5, we only used three 
cell lines (MCF7, PC3, and HL60) for subsequent analysis. 

2.3. Differentially expressed genes 

We defined differentially expressed genes (DEGs) between tumor and 
normal samples as disease-related genes by ‘limma’ package [52]. In the 
CMAP database, we screened DEGs as drug-induced genes by comparing 
treated samples with the corresponding control samples (Fig. 2). The 
statistical significance threshold for our analysis was defined as p-value 
< 0.05. Notably, we did not establish a specific logFC (logarithm of fold 
change) cutoff in this study. 

2.4. The construction of the disease-specific network 

We downloaded 137 signaling pathways from the Kyoto Encyclo-
pedia of Gene Genomics (KEGG). A signaling pathway was modeled by a 
graph in which nodes represented genes, and edges represented in-
teractions between them, such as activation, inhibition, etc. There were 

Table 1 
The gene expression datasets.  

Dataset GEO Case/control Ref 

Colorectal Cancer GSE8671 32/32 [41] 
GSE9348 70/12 [42] 
GSE23878 19/19 [43] 

Breast Cancer GSE31448 29/4 [44] 
GSE42568 104/17 [45] 
GSE29044 73/36 [46] 

Lung Cancer GSE18842 46/45 [47] 
GSE19188 91/65 [48] 
GSE19804 60/60 [49] 

Rheumatoid Arthritis GSE55235 10/10 [50] 
Alzheimer’s Disease GSE5281 12/9 [51]  

Fig. 1. Venn diagram of three cancer-related pathways.  
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10, 9, and 8 pathways associated with colorectal, breast, and lung cancer 
in the KEGG database (Fig. 1). We established three disease-specific 
networks for colorectal, breast, and lung cancer based on these 
signaling pathways, respectively. In addition, rheumatoid arthritis and 
Alzheimer’s disease contain 7 and 10 pathways, respectively. 

We established a disease-specific network by conducting the union of 
all nodes and edges of disease-related signaling pathways. We applied 

the ‘DrugDiseaseNet’ package [24] to integrate disease-related signaling 
pathways that were represented by the adjacency matrices and derived a 
unified adjacency matrix. 

Then, given disease-related pathways, disease-associated genes, and 
drug-perturbed genes, we computed the shortest paths connecting these 
genes in a disease-specific network. It meant that a drug-perturbed gene 
can be a source and a disease-related gene can be the destination of the 

Fig. 2. The workflow of the DRIE method to predict candidate drugs for cancer treatment.  
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shortest path extracted from the disease-specific network (Fig. 2). The 
graph named disease-specific network represented all the interactions 
between drug-perturbed genes and disease-related genes, through all the 
interactions described in disease-related signaling pathways. 

2.5. Calculating the inhibition score 

We hypothesized that if the perturbation caused by a drug in the 
system was opposite to that of a disease, the drug may have the potential 
to treat the disease. Thus, we calculated inhibition scores for all drug- 
disease pairs in the disease-specific network, as shown in Fig. 2. First, 
we obtained the coefficient βij that represented the accumulation of the 
interaction type between drug-perturbed genes and disease-related 
genes. 

βij =
∏Lij

k=1
βk (1)  

Whereβkrepresented interaction types among genes, including 1 (acti-
vation) and − 1 (inhibition). Lij represented the shortest distance from 
gene i to gene j. A drug affected disease-related genej, effect score E as 
follow: 

E(j) = sign(
∑m

i=1

βij ∗ log2(Fi)

Lij + 1
) (2)  

Where m represented the number of drug-perturbed genes. Fi repre-
sented the fold change of drug-perturbed gene i. Then, an inhibition 
score for each drug,S, was calculated by using the impact from drug- 
perturbed genes to disease-related genes through the shortest path in 
the tissue-specific network, as follows: 

S =
∑n

j=1
− E(j) ∗ sign(log2(Fj)) (3)  

Where n represented the number of disease-related genes. Fj represented 
fold change of disease-related genej. 

Finally, we obtained the inhibition score for a drug-disease associa-
tion by calculating the sum between drug-perturbed genes and disease- 
related genes n (Formula 3). 

3. Performance evaluation 

Drug-disease relationships were retrieved from Comparative Tox-
icogenomics Database (CTD, [40]). CTD was a database that provided 
curated data describing cross-species chemical-gene/protein in-
teractions and gene-disease associations. Here, if there were associations 
between drug-disease in CTD database, we defined these drug-disease 
pairs as positive samples. The drug-disease associations not exist in 
CTD were regarded as negative samples. 

To guarantee a reliable performance evaluation, we devised CMAP, 
Hyper, and Network proximity as benchmarks. We evaluated the effi-
cacy of the methods in the aspect of AUPR, AUROC, Recall, ACC, and F1. 

recall =
TP

TP + FN
(4)  

ACC =
TP + TN

TP + TN + FP + FN
(5)  

F1 =
2TP

2TP + FP + FN
(6)  

Where TP, FP, TN and FN denoted the numbers of true positive, false 
positive, true negative and false negative associations, respectively. 
AUROC was the area under the receiver operating characteristic (ROC) 
curve, which can be plotted by true positive rate and false positive rate. 

AUPR was the area under the precision-recall curve, which can be 
plotted by precision and recall. 

4. Baseline methods 

To evaluate the performance of our proposed method, we compared 
DRIE with three state-of-the-art drug repurposing approaches listed 
below: 

CMAP: Identify drugs that reverse cancer-associated gene expression 
signatures using Kolmogorov-Smirnov (KS) statistical method [53] be-
tween drug-perturbed genes and disease-related genes (ignore pathway 
and network) [15]. 

Hyper: It ranks drugs by using a hypergeometric test between drug- 
perturbed genes and disease-related genes [54]. 

Network proximity: It screens drugs by calculating the average 
shortest distance between drug-perturbed genes and disease-related 

Fig. 3. The percentage of overlap genes between CRC-related DEGs (GSE8671, 
GSE9348, GSE23878) and drugs-perturbed genes in three cell lines. 

Table 2 
Performance comparison in three cell lines based on nine datasets.  

Cell line Dataset AUPR AUROC Recall ACC F1 

MCF7 GSE8671  0.752  0.669  0.638  0.650  0.695 
GSE9348  0.748  0.665  0.659  0.660  0.715 
GSE23878  0.807  0.702  0.729  0.690  0.750 
GSE29044  0.724  0.622  0.804  0.660  0.755 
GSE31448  0.680  0.642  0.585  0.630  0.635 
GSE42568  0.673  0.649  0.607  0.640  0.655 
GSE18842  0.823  0.714  0.642  0.660  0.710 
GSE19188  0.850  0.727  0.676  0.680  0.735 
GSE19804  0.849  0.732  0.670  0.660  0.720 

HL60 GSE8671  0.627  0.585  0.512  0.580  0.570 
GSE9348  0.667  0.616  0.523  0.590  0.585 
GSE23878  0.623  0.589  0.512  0.580  0.570 
GSE29044  0.654  0.594  0.423  0.526  0.500 
GSE31448  0.651  0.620  0.556  0.580  0.595 
GSE42568  0.606  0.595  0.568  0.535  0.600 
GSE18842  0.542  0.561  0.448  0.553  0.510 
GSE19188  0.539  0.561  0.538  0.586  0.575 
GSE19804  0.564  0.559  0.481  0.573  0.540 

PC3 GSE8671  0.677  0.589  0.348  0.553  0.472 
GSE9348  0.709  0.603  0.363  0.533  0.477 
GSE23878  0.685  0.601  0.329  0.540  0.456 
GSE29044  0.553  0.554  0.302  0.500  0.380 
GSE31448  0.542  0.557  0.338  0.560  0.431 
GSE42568  0.582  0.575  0.337  0.533  0.435 
GSE18842  0.642  0.572  0.386  0.533  0.492 
GSE19188  0.680  0.591  0.390  0.553  0.500 
GSE19804  0.690  0.590  0.400  0.540  0.510 

ACC: accuracy 
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genes in the PPI network [28]. 

5. Results and Discussion 

5.1. Overlap between drug-perturbed genes and disease-related genes 

To analyze the overlap between drug-perturbed genes and disease- 
related DEGs, we applied these DEGs to validate common genes in 
three cell lines. Fig. 3 showed that the percentage of overlap genes was 
mostly less than 1% between colorectal cancer (CRC)-related DEGs 
(GSE8671, GSE9348, and GSE23878) and drugs-perturbed genes in 
three cell lines, and the overlap was largely consistent across the three 
cell lines (HL60, MCF7, and PC3). The results showed that the overlap 
percentage was very low. In addition, the overlap genes were also little 
in breast and lung cancer (Supplementary Figs. S1 and S2). Thus, it was 
intractable to directly evaluate the effect that drugs have an influence on 
disease. To solve the issue, we utilized gene regulatory network to 
measure the impact of drug on disease. 

5.2. Performance evaluation in different cell lines 

To validate the performance of our approach in different cell lines, 
we applied nine cancer datasets to identify top-rank drugs in three cell 
lines (MCF7, HL60, and PC3). According to Table 2, the results indicated 
that the average recall of DRIE in MCF7 were 67%, 64%, and 67% in 
colorectal, breast, and lung cancer, respectively. Our method in MCF7 
significantly outperformed HL60 (58%, 55%, and 57%) and PC3 (54%, 
53%, and 54%) cell lines. We obtained the recall for other cutoffs based 
on different datasets (Fig. 4). The results showed that the performance of 
MCF7 was the best in three cell lines. Thus, DRIE achieved the best 
performance for recall on the MCF7 cell line. Therefore, the following 
analysis were based on MCF7 cell lines to screen drug candidates. 

5.3. Inhibition score from drug-perturbed genes to disease-related genes 

To investigate the inhibition impact between drug-responsive genes 
and disease-related genes, we applied inhibition score to measure the 
strength of the relationship between drug and disease based on a 
disease-specific network. The drug with high inhibition score was more 
likely to be a potential treatment for CRC. Fig. 5 showed the heat map of 
the correlation between the top 10 drug perturbation genes and disease- 
related genes in the MCF7 cell line on three CRC-related datasets. The 
results showed that 65% metformin-perturbed genes upregulate the 
down-regulated genes of disease, and 22% metformin-perturbed genes 
downregulate the up-regulated genes of disease, but 50% metformin- 
perturbed genes upregulate the up-regulated genes. The results indi-
cated that most drug-perturbed genes of the top 10 drugs are negatively 
correlated with disease-related genes in three datasets. 

To verify the robustness of the model, we utilized the DRIE approach 
to predict the top 10 drugs and compare the results in three datasets. To 
provide a general comparison, the top 10 drugs for each ranked drug list 
in the GSE8671, GSE9348, and GSE23878 datasets were leveraged. As 
shown in Fig. 6, 50% (5/10) of drugs all exist in the three datasets, which 
demonstrated the great robustness and stability of our method in the 
different datasets. For example, there were five drugs, including tri-
chostation.A, anisomycin, metformin, etoposide, and pyrvinium simul-
taneously exist in the top 10 drugs of GSE23878, GSE8671, and 
GSE9348 datasets. 

5.4. Case study 

To test the ability to predict novel drug-disease associations, we 
utilized our method to identify potential drugs in datasets of three well- 
known malignant cancers: colorectal, breast, and lung cancer. There 
were 330, 511, and 537 drugs were associated with colorectal, breast, 
and lung cancer in CTD database, respectively. We obtained the top 10 
DRIE-predicted drugs for potentially treating the three cancers based on 
the MCF7 cell line (Supplementary Table S1, S2, S3), respectively. The 

Fig. 4. Recalls of three cell lines at different top k cutoffs.  
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results showed that 90% of drugs had been validated by the CTD in 
colorectal, breast, and lung cancer, respectively. The associations be-
tween these top 10 potential drugs and three cancers were shown in  
Fig. 7. It showed that trichostatin.A, anisomycin, metformin, and 

pyrvinium are associated with three cancers by the CTD database. 
Furthermore, we identified several potential drugs that have new in-
dications in Table 3. For example, Trichostatin.A (TSA) was a histone 
deacetylase inhibitor that could treat three cancers. Dai et al. [55] found 

Fig. 5. The heatmap of the top 10 drugs for CRC in MCF7 cell line on three datasets, (A) GSE8671, (B) GSE9348, (C) GSE23878.  

Fig. 6. Venn diagram of the top 10 drugs identified in the GSE8671, GSE9348, and GSE23878 datasets. (A) DRIE, (B) Hyper.  
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that TSA may induce endoplasmic reticulum stress via a p53-dependent 
mechanism in colon cancer cells. These findings offered valuable in-
sights that can facilitate the development of therapeutic approaches 
aiming to harness the anticancer properties of TSA. Liu et al. [56] 
revealed that TSA exhibited effective inhibition of Grg1-induced lung 
tumorigenesis by down-regulating the expression of ErbB1 and ErbB2. 
Song et al. [57] presented that TSA inhibited the proliferation of 
triple-negative breast cancer cells through the induction of cell cycle 
arrest and apoptosis. 

Anisomycin was a potent protein synthesis inhibitor, which pre-
vented protein and DNA synthesis by inhibiting the peptidyl transferase 
80 ribosome system. Ushijima et al. [58] found that the induction of 
GATA-6 dysfunction by anisomycin may hold promise as a potential 
chemotherapy strategy for colorectal cancer. Yang et al. [59] reported 
that anisomycin inhibited the cell growth of breast cancer via AMPK 
activation and subsequent downstream inhibition of the mTOR. Tan 
et al. [60] demonstrated that anisomycin had been shown to enhance 
the sensitivity of non-small-cell lung cancer cells to both chemothera-
peutic agents and epidermal growth factor receptor (EGFR) inhibitors by 
suppressing the PI3K/Akt/mTOR signaling pathway. 

Metformin, an oral biguanide, and hypoglycemic drug was the initial 
treatment for T2DM [61]. Several studies presented that metformin 
might be a candidate agent for the chemoprevention of colorectal cancer 
[62,63]. Kasznicki et al. [64] reported that metformin significantly 
reduced the morbidity of breast cancer in diabetic patients. The Warburg 
effect was well known and cancer cells exhibit very strong glucose up-
take and metabolism and thereby prefer glycolysis. The primary feature 
of metformin was to reduce the level of glucose in the blood, thus 
reducing the source of energy for cancer cells. Moreover, metformin also 
affects the survival of cancer cells by downregulating the expression of 

the FAS gene, which was an essential gene for the fatty acid synthesis 
pathway. 

Pyrvinium pamoate was a quinoline-derived anthranilic dye and an 
FDA-approved oral anthelmintic agent for the treatment of pinworm 
[65]. Furthermore, some studies had revealed that pyrvinium could 
inhibit tumor growth in some human cancers, including colon cancer 
[66], breast cancer [67], lung cancer [68], prostate cancer [69], and 
some hematological malignancies [70]. 

Furthermore, our method predicted that hycanthone, quinostatin, 
and rifabutin were associated with colorectal, breast, and lung cancer, 
respectively (Fig. 7). Although these drugs were not confirmed by CTD, 
some studies reported that these drugs were closely associated with 
other cancers [71–73]. 

Hycanthone was a medication that was used to treat parasitic worms, 
such as roundworms, hookworms, and tapeworms. Schutt et al. [71] 
found that a phase II study of hycanthone helps advanced colorectal 
carcinoma patients. Naidu et al. [72] reported that lucanthone and its 
derivative hycanthone inhibit APE1 to treat cancer. 

Quinostatin was an antibiotic drug used to treat bacterial infections. 
Quinostatin was also regarded as an inhibitor of cellular S6 phosphor-
ylation [73]. Kong et al. found that quinostatin had been predicted as a 
potential supplementary agent for the treatment of pediatric acute 
lymphoblastic leukemia [74]. Yang et al. [75] presented that quinostatin 
potently inhibited the mTOR signaling pathway by directly targeting the 
lipid-kinase activity of the catalytic subunits of class Ia PI3K. Dysregu-
lation of the PI3K signaling pathway was associated with human cancer 
[76]. Thus, Quinostatin had been regarded as a potential cancer therapy 
by directly or indirectly modulating the PI3K signaling pathway. 

Rifabutin was an antibiotic that inhibits DNA-dependent RNA poly-
merase activity in susceptible cells. It was confirmed to treat breast 

Fig. 7. The association network of the top 10 potential drugs for colorectal, breast, and lung cancer.  

Table 3 
Prioritization of drug repurposing candidates for cancer treatment based on DRIE.  

Drug Original Use MOA Targets NI Ref 

Trichostati  HDAC inhibitor HDAC1 CRC, BC, LC [55,57,78] 
Anisomycin bacterial infections DNA synthesis inhibitor NHP2L1, RPL10L CRC, BC, LC [59] 
Metformin diabetes mellitus insulin sensitizer ACACB, PRKAB1,INS CRC, BC, LC [62,63] 
Pyrvinium pinworm (infectious disease) androgen receptor antagonist AR CRC, BC, LC [66] 
Hycanthone schistosomiasis (infectious disease) RNA synthesis inhibitor (intercalate DNA)  Cancers [71,72] 
Quinostatin bacterial infections cellular S6 phosphorylation inhibitor  LC [75] 
Rifabutin human immunodeficiency virus (HIV-1) (infectious disease) protein synthesis inhibitor CYP3A4 BC, LC [77] 

CRC: colorectal cancer, BC: breast cancer, LC: lung cancer, NI: new indication, MOA: Mode of Action 
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cancer patients by CTD. Li et al. [77] showed that rifabutin inhibited the 
eIF4E-β-catenin axis in human lung cancer cells. This agent against lung 
cancer cells was effective in vitro cultured cells and in vivo xenograft 
mouse models by inhibiting proliferation and inducing apoptosis. 

5.5. Comparison of DRIE with other drug repurposing methods 

We compared the predictability of our DRIE method with other 
methods for drug repurposing: CMAP [15], Hyper [54], and Network 
proximity [28] on 11 datasets. 

To evaluate the performance of DRIE, we conducted an extensive set 
of experiments on 11 datasets and compared DRIE with three existing 
approaches by AUPR, AUROC, Recall, ACC, and F1. According to  
Table 4, the results showed that DRIE was the best score based on AUPR, 

AUROC, Recall, ACC, and F1 in 10/11 datasets. Hence, our approach 
was more effective than other approaches. The results indicated that 
DRIE improved the prediction performance due to integrating gene 
expression profile and gene regulatory network. 

6. Conclusion 

Computational drug repurposing can identify new uses for approved 
drugs. It has a series of advantages such as cost-effectiveness and 
shortened timeline. In this paper, we proposed a method based on the 
inhibition score on the gene regulatory network. The key innovation of 
DRIE was applying gene regulatory network in the disease-related 
pathways to address the low overlap between drug-induced genes and 
disease-related genes. 

First, to solve the issue of low overlap between drug-perturbed genes 
and disease-related genes, we constructed a disease-specific network 
based on disease-related pathways, which is an excellent complement to 
complete drug repurposing. Through integrating the pathway informa-
tion, drug and disease’s gene expression into a unified framework to 
improve the performance of DRIE. Then, we examined the performance 
of our model in different cell lines on eleven datasets. DRIE has the best 
capacity for prediction on the MCF7 cell line. To demonstrate the sta-
bility of our method, we predicted the top 10 drugs whose overlap 
percentage is greater than 50% in different datasets based on the CRC 
dataset. There were 9 of the top-10 DRIE-predicted agents were vali-
dated by the CTD in colorectal, breast, and lung cancer, respectively. It 
demonstrated that DRIE had a high practical predicting ability. Finally, 
to assess the performance of DRIE, we conducted an extensive set of 
experiments on 11 datasets, comparing with state-of-the-art approaches. 
DRIE achieved the best values by five evaluation metrics over 10/11 
datasets. The results confirmed the efficacy of our approach. 

Our study had several limitations. First, gene expression data MFC7 
cell line may not fully represent the complexity of the tumor microen-
vironment or patient heterogeneity. Second, Computational drug 
repurposing method lack experimental validation of the identified drug 
candidates. Experimental studies, such as in vitro or in vivo assays, are 
necessary to validate efficacy of the predicted drug. 
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Table 4 
Performance comparison of all methods in the 11 datasets.  

Dataset Metrics DRIE CMAP NP Hyper 

GSE8671 AUPR  0.752  0.508  0.6931  0.438 
AUROC  0.669  0.456  0.510  0.515 
Recall  0.638  0.225  0.266  0.634 
ACC  0.650  0.526  0.400  0.426 
F1  0.695  0.336  0.383  0.482 

GSE9348 AUPR  0.748  0.498  0.695  0.412 
AUROC  0.665  0.392  0.486  0.476 
Recall  0.659  0.380  0.295  0.442 
ACC  0.660  0.580  0.413  0.580 
F1  0.715  0.503  0.413  0.461 

GSE23878 AUPR  0.807  0.526  0.686  0.394 
AUROC  0.702  0.447  0.507  0.485 
Recall  0.729  0.192  0.295  0.483 
ACC  0.690  0.513  0.420  0.546 
F1  0.750  0.304  0.416  0.468 

GSE29044 AUPR  0.724  0.479  0.614  0.362 
AUROC  0.622  0.410  0.500  0.422 
Recall  0.804  0.253  0.156  0.758 
ACC  0.660  0.573  0.380  0.500 
F1  0.755  0.384  0.243  0.555 

GSE31448 AUPR  0.680  0.486  0.649  0.504 
AUROC  0.642  0.473  0.489  0.445 
Recall  0.585  0.093  0.195  0.662 
ACC  0.630  0.526  0.386  0.553 
F1  0.635  0.164  0.292  0.610 

GSE42568 AUPR  0.673  0.475  0.648  0.404 
AUROC  0.649  0.452  0.487  0.454 
Recall  0.607  0.133  0.163  0.463 
ACC  0.640  0.546  0.380  0.533 
F1  0.655  0.227  0.256  0.469 

GSE18842 AUPR  0.823  0.485  0.640  0.361 
AUROC  0.714  0.464  0.489  0.527 
Recall  0.642  0.223  0.148  0.600 
ACC  0.660  0.540  0.373  0.460 
F1  0.710  0.330  0.229  0.448 

GSE19188 AUPR  0.850  0.471  0.640  0.499 
AUROC  0.727  0.424  0.490  0.585 
Recall  0.676  0.259  0.148  0.507 
ACC  0.680  0.573  0.373  0.426 
F1  0.735  0.384  0.229  0.448 

GSE19804 AUPR  0.849  0.493  0.603  0.426 
AUROC  0.732  0.437  0.504  0.561 
Recall  0.670  0.202  0.139  0.550 
ACC  0.660  0.546  0.373  0.413 
F1  0.720  0.320  0.216  0.428 

GSE55235 AUPR  0.534  0.409  0.569  0.460 
AUROC  0.565  0.641  0.495  0.596 
Recall  0.780  0.530  0.603  0.750 
ACC  0.580  0.580  0.550  0.570 
F1  0.650  0.597  0.608  0.644 

GSE5281 AUPR  0.611  0.507  0.591  0.450 
AUROC  0.573  0.567  0.560  0.533 
Recall  0.920  0.771  0.603  0.883 
ACC  0.560  0.630  0.410  0.430 
F1  0.676  0.704  0.573  0.571 

NP: Network proximity 
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influencing the position presented in, or the review of, the manuscript 
entitled, “A drug repurposing method based on inhibition effect on gene 
regulatory network”. 

Data Availability 

The implementation of DRIE is available at: https://github.com/ 
eshinesimida/DRIE. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.csbj.2023.09.007. 
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