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GLI1 is a transcriptional effector at the terminal end of the Hedgehog signaling (Hh)
pathway and is tightly regulated during embryonic development and tissue patterning/
differentiation. GLI1 has low-level expression in differentiated tissues, however, in certain
cancers, aberrant activation of GLI1 has been linked to the promotion of numerous
hallmarks of cancer, such as proliferation, survival, angiogenesis, metastasis, metabolic
rewiring, and chemotherapeutic resistance. All of these are driven, in part, by GLI1’s role in
regulating cell cycle, DNA replication and DNA damage repair processes. The
consequences of GLI1 oncogenic activity, specifically the activity surrounding DNA
damage repair proteins, such as NBS1, and cell cycle proteins, such as CDK1, can be
linked to tumorigenesis and chemoresistance. Therefore, understanding the underlying
mechanisms driving GLI1 dysregulation can provide prognostic and diagnostic
biomarkers to identify a patient population that would derive therapeutic benefit from
either direct inhibition of GLI1 or targeted therapy towards proteins downstream of
GLI1 regulation.
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GLI AND THE HEDGEHOG PATHWAY

GLI1 is an effector transcriptional factor distal to both the canonical and non-canonical Hedgehog
(Hh) signaling pathways. The Hh family of proteins contains three subfamilies: sonic hedgehog
(SHh), desert hedgehog (DHh) and Indian hedgehog (IHh) (1). IHh and DHh are reported to be
involved in normal tissue development, such as bone formation (2). SHh, first discovered in
Drosophila, has been found to be highly conserved across many different vertebrate species
including human, mouse, rat, frog, fish, and chicken, and is the most studied member of the
hedgehog family (3). SHh plays a critical role in the embryonic development that is necessary for
certain cell differentiation and maintenance of tissue polarity (4). Due to its conserved nature, and
apparent critical functionality across organisms, SHh and the downstream pathway members have
evolved to serve vastly diverse roles in both embryonic and non-embryonic cellular homeostasis.
Herein, we focus specifically on our current understanding of SHh-GLI pathway and its clinical
significance in human development and the consequences of its dysregulation in disease progression
(5–8).

SHh-mediated transduction is initiated via extracellular SHh ligand binding to the 12-span
transmembrane receptor, PATCHED-1 (PTCH-1) or the redundant receptor PTCH-2, in target
cells (9, 10). In the absence of SHh, PTCH-1 and, redundantly, PTCH-2, catalytically inhibit
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downstream signaling activity with seven-transmembrane G-
protein-coupled receptor, Smoothened (SMO) (11–13). Upon
SHh binding to PTCH, the inhibitory interaction is terminated
through internalization of PTCH, releasing SMO and allowing
for phosphorylation to transduce signal into the cytoplasm (14).
The resultant signal leads to the component dissociation of a
large protein complex comprising of Sufu and GLIs in the
cytoplasm, releasing the GLI transcription factors. Finally, the
released GLI transcription factors translocate into the nucleus to
execute transcriptional activation of specific target genes (15).
Aberrant activation of the hedgehog pathway has been shown to
promote oncogenic activities, such as metastasis, DNA damage
repair, stem-ness, and chemotherapeutic resistance, in a variety
of types of cancer (16–26).

There are two models for the over-activation of the Hh
pathway in cancer: (a) ligand-dependent model: tumors are
able to over-activate SHh-GLI pathway via autocrine signaling
to produce high level of SHh ligands (18, 27–31). This can be
observed in several epithelial originating tumors such as small
cell lung cancer (SCLC), pancreatic, colon, and prostate cancer,
and glioblastomas, and medulloblastomas. (b) Ligand-
independent model: Clinical observations have found
mutations of PTCH-1 and PTCH-2 in basal cell carcinomas
and in medulloblastomas, resulting in dysregulated GLI signaling
due to ineffective sequestration of SMO signaling, regardless of
SHh ligand levels. Mutant PTCH often results in SMO
constitutive activation, subsequently promoting cell
transformation and tumorigenesis (32). Inactivation of PTCH-
1 due to gene mutation has also been reported in
trichoepitheliomas (33), esophageal squamous cell carcinomas
(34), and transitional cell carcinomas of the bladder (35). In both
models, the commonality is a failure to stifle SMO
signal transduction.

Regardless of how SHh-GLI pathway is activated, all
biological function of these upstream proteins such as SHh,
PTCH and SMO depends on the transcriptional effectors at the
distal end of the pathway: the GLI proteins. There are three GLI
transcriptional proteins in this family, two which act as
transcriptional activators (GLI1 and GLI2) and one
transcriptional repressor (GLI3) (36). GLI1 was initially found
to transcriptionally regulate specific target genes involved in
mammalian development, such as patterning in the central
nervous system, proliferation, differentiation, and survival (37).
However, increased expression in terminally differentiated cells
is a known oncogenic biomarker for numbers cancer subtypes
(38–40), making it an ideal drug discovery target.
GLI1 AS A TRANSCRIPTION FACTOR

GLI1 (1106 amino acids; MW 117.9kDa) was originally
identified as an amplified gene product in a malignant glioma
(41) and was the first member described in the human GLI gene
family. GLI1-DNA binding is mediated by five highly conserved
tandem C2-H2 zinc finger (ZF) domains and a consensus
histidine-cysteine linker sequence between zinc fingers (42).
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While ZF1-3 interacts with the phosphate backbone and
contributes to binding stability and recruitment of co-
regulatory factors, ZF4-5 regulates transcription, recognizing
the consensus sequence 5'-GACCACCCA-3' in the promoter
region of target genes. The two cytosine-pairs flanking the
central adenine within the consensus site are critical for GLI
binding, whereas the other positions can tolerate a certain degree
of flexibility (43). In addition to the transcriptional ZF domain,
the GLI proteins contain both nuclear export sequence (NES)
and a nuclear localization signal (NLS), which facilitate the
nucleo-cytoplasmic shuttling of GLI (44). GLI1 also contains a
single SUFU-interacting site located at the N-terminus (SIN)
(45), which is responsible for SUFU-mediated cytoplasmic
retention of GLI1. The positioning of the SIN is unique to
GLI1; GLI2 and GLI3 also have a SUFU-interacting site
though it is located in the C-terminus (SIC) (45, 46). The GLI1
C-terminal region possesses a transactivation domain (TAD)
which remodels chromatin and interacts with histone
acetyltransferase (HAT), histone deacetylase (HDAC); SWI-
SNF5; SWI/SNF-like Brg/Brm-associated factor; and the TFIID
TATA box-binding protein-associated factor, TAFII31 (26). Like
the SIN domain, all GLI proteins also possess a TAD, but GLI2
and GLI3 have an additional N-terminal repressor domain,
which is lacking on GLI1. Therefore, GLI1 performs as a
strong transcriptional activator (47), whereas full-length GLI2
is generally a weak activator since the fully activated form
requires significant truncation of its N-terminus and C-
terminus (48–51), and GLI3 has been reported as a strong
repressor in most settings (52).

Two additional isoforms of GLI1, N-terminal deletion variant
(GLI1DN) and truncated GLI1 (tGLI1), have been identified.
GLI1DN is generation is the result of a 128-amino acid deletion
on its N-terminus (47). This deletion results in loss of the lone
critical suppressive SUFU-binding domain on the GLI1 protein
sequence, while preserving the ZNF domains, NLS and NES, and
the transactivation domain. As would be expected, this isoform
of GLI1 functions as a constitutively active protein, with activity
comparable to full-length GLI1 (GLI1FL) but surprisingly does
not show a preferential expression in cancer tissues (53, 54).
tGLI1 originates from a splicing of exon 3 and part of exon 4 of
the GLI1 gene, resulting in the deletion of 41 amino acids (55).
All functional domains are retained in tGLI1, and this isoform is
observed specifically in tumor expression. It has been shown to
regulate an additional set of target genes involved in EMT,
invasion and metastasis (56). All three GLI1 isoforms (GLI1FL,
GLI1DN, and tGLI1) could be activated by SHh ligand
stimulation, but whether they induce differently transcriptional
targets has not yet been determined.
NON-CANONICAL ACTIVATION OF GLI1

Over-activation of Hh promotes the tumor microenvironment
through pro-inflammatory mechanisms, angiogenesis, genome
instability, mutation, resistance to cell death, energy imbalance,
and is involved in invasion and metastasis (57, 58). Some studies,
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however, fail to observe a positive correlation between the Hh
signaling pathway and the development/progression of cancer
(59–61). For instance, Li discovered that SMO expression was
not statistically correlated with CRC-specific or overall survival;
the same results were reported by Stefanius, where no correlation
between Hh and colorectal serrated adenocarcinomas was
observed (62, 63). Our lab, like many others, observed a
positive correlation between GLI1 expression and disease
severity (64). We also demonstrated that both GLI1 and one of
its transcriptional targets, NBS1, negatively correlate with CRC
patient 5-year survival, driving chemotherapeutic resistance by
overcoming FOLFOX induced DNA damage (standard of care
treatment). The difference lies in the way GLI1 is activated—
whether it be through canonical activation (PTCH/SMO) or
non-canonical (RAS/RAF, etc) (Figure 1). Elevated levels of
GLI1 in cancer are often driven by non-canonical pathways.
As such, this explains why Vismodegib, the first SMO inhibitor
to be approved by the FDA for the treatment of BCC (65), failed
to demonstrate the effectiveness in clinical trials for the treatment
of metastatic colorectal cancer where GLI expression is driven
non-canonically (66). Therefore, it is important to determine
how GLI1 is upregulated and its function in the initiation,
progression, invasion and metastasis in order to develop a
therapeutic target for new treatment schemes based on the
inhibition, at different levels, of the Hh pathway (67–69).

RAS-RAF-MEK-ERK Pathway
The RAS-RAF-MEK-ERK pathway is the most common non-
canonical mechanism involved both in transcriptional activation
of GLI genes and in post-translational modifications of GLI-
transcribed proteins. In colorectal cancer, constitutively activated
mutant KRAS or altered stimulation of pathway components
Frontiers in Oncology | www.frontiersin.org 3
(mainly RAS, RAF, MEK) results in the hyperactivation of the
mitogen-activated protein kinase (MAPK) extracellular signal-
regulated kinase 1 and 2 (ERK1/2) and positively modulates
tumor proliferation by increasing GLI1 transcriptional activity
and expression of Hh target genes (54, 70, 71). This non-
canonical activation pathway was confirmed in a study where
EGF-induced stimulation of GLI is unaffected by SMO inhibition
but was blocked by MEK1 inhibition (72). Similarly, the RAS-
RAF pathway induces GLI1 and GLI2 transcriptional activity and
increases mRNA and protein levels in a non-canonical manner in
colon cancer cells (73). Pharmacological and genetic inhibition of
GLI function is more effective in reducing tumor proliferation
and inducing apoptosis than the inhibition of the canonical
pathway at SMO level, suggesting that GLI activity is crucial for
RAS/MEK-induced colon cancer proliferation (74, 75).

PI3K-AKT-mTOR Pathway
The PI3K-AKT-mTOR signaling pathway is another crucial
non-canonical activator of GLI1, particularly evident in
pancreatic cancers (76). Activation of PI3K-AKT signaling has
been found to enhance GLI1 protein stability (77) since AKT is
able to extend GLI proteins half-life in the cells by alleviating the
inhibitory effect of PKA and facilitates nuclear translocation.
Another mechanism of PI3K signaling activating GLI1 is via
members of the ribosomal S6 kinase family (S6K/p70-S6K),
which are the downstream effectors of the PI3K-AKT-mTOR
axis. Activated S6K1 promotes GLI1 disassociation from SUFU
by phosphorylating GLI1 at Serine residue at position 84,
increasing GLI1 transcriptional activity (78). Additionally, p70-
S6K2 has been shown to inhibit GSK3 by phosphorylating
GLI1at Ser9, leading to decreases of GSK3b-mediated GLI1
degradation (79).
FIGURE 1 | Canonical and Non-canonical activation of GLI1. Compounds originally designed to inhibit the Hedgehog pathway focused on canonical regulators, like
SMO, but were found to be ineffective in some cancers due to non-canonical activation. Aberrant activation of GLI1 promotes DNA damage repair, invasion/
metastasis, proliferation, and therapeutic resistance through transcriptional regulation of target genes.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Avery et al. GLI1: Therapeutic Target for Cancer
TGFb Pathway
TGFb is a multifunctioning cytokine that has been implicated in
nearly all the key steps of tumorigenesis, tumor maintenance and
advanced metastasis (80). In brief, TGFb is secreted as a latent
complex and sequestered in the extracellular matrix until
activated. Once biologically available to its target cells, TGFb
binds its type 2 receptor (TGFBR2), leading to the recruitment of
its type 1 receptor (TGFBR1) and subsequent downstream
signaling resulting in nuclear localization of the SMAD2/3/4
complex (81). In advanced pancreatic cancer, TGFb signaling
contributes to a metastatic phenotype (82). GLI1 as an effector of
TGFb signaling as it interacts with SMAD proteins to induce a
subset of TGFb-inducible target genes, including BCL2, IL7, and
Cyclin D1 (83). In the mouse model of PDAC, SMO-
independent GLI1 activation promotes transformation and
requires both TGFb and KRAS signaling (84) where inhibition
of TGFb by TbRI antagonist SD208 significantly reduces tumor
burden and increases infiltration of lymphocytes.

Other Pathways
C-MYC, which is frequently over-amplified in colorectal cancer,
has been confirmed to be another oncogene that activates GLI1
independently from Hh ligand-mediated signaling (85). C-MYC
is a transcriptional activator of GLI1. C-MYC-GLI1 activated
pathway could be blocked by small molecule inhibitors targeting
either protein, downregulating GLI1 expression and, in turn,
inducing cell apoptosis of colorectal cells. Similarly, aberrant
expression of oncogenic EGFR, which is responsible for the over-
activation of GLI1 through RAS-RAF-MEK pathway, promotes
colorectal cancer metastasis and chemotherapeutic resistance. In
triple negative breast cancer, elevated expression of GLI1 is
driven by VEGF/NRP2 and a6b1 pathway results in an
autocrine feedback loop with GLI1 enhancing the expression of
NRP2 (86). Atypical protein kinase C iota/lambda (aPKC) has
been identified as a novel regulator of GLI, and like the VEGF/
NRP2 pathway, results in a positive feedback loop enhancing
GLI1 overexpression in basal cell carcinoma (87) and has been
also observed in drosophila (88). An interesting connection
between GLI1 and p53 has also been reported because of loss
of p53 results in aberrant GLI1 expression (89). Genetic
mutations of aforementioned pathway genes have been shown
to drive GLI1 expression in multiple types of cancer and cancer
precursor diseases (90–95). An interesting GLI1 genetic
translocation was first noted in 2004 when five pericytomas
had an ACTB-GLI fusion transcript t(7;12) (96), with an
additional three patients reported on 15 years later (97).
Additional fusions were later observed with ACTB1/MALAT1/
PTCH1-GLI1, which were associated with metastasis to the lung/
lymph node in three of the patients (98).
GLI1 IN CANCER

While GLI1 and GLI2 are both transcriptional activators, GLI1
can be thought of as the primary effector of Hh signaling since
GLI1 is a transcriptional target of GLI2, which may amplify Hh-
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induced, GLI2-mediated transcription of GLI1 target genes (99–
102). As previously stated, GLI1 induced by Hh signaling is
important in the regulation of cellular proliferation, stemness,
cell fate determination, and cellular survival in a variety of organs
(36, 103); however, its aberrant activation has been associated
with many human cancers (104). For example, GLI1 is amplified
in glioma (37), osteosarcoma, and rhabdomyosarcoma (105).
Mutations in PTCH or SMO are also prevalent in basal cell
carcinomas, medulloblastomas, and cancers of the esophagus
and bladder (102), and sustained and activated Hh-Gli signaling
has led to the development of medulloblastomas in PTCH
heterozygous mice (106). Melanomas and carcinomas of the
prostate have further demonstrated a need for elevated Hh-Gli
signaling, since inhibition by cyclopamine (a SMO inhibitor) can
result in reduction for these types of cancers (107, 108).

Although GLI1 plays a key role in canonically activated Hh
cancers (103, 109), non-canonical oncogenic activation (CMYC,
RAS/RAF, TGFb, etc) is critical to address as well (110). For
example, in gastrointestinal (GI) cancers, over-activation of GLI1
is driven by KRAS/BRAF mutation (102). It has recently been
suggested that oncogenic GLI1 progresses during colon
carcinogenesis (111, 112) and in metastatic disease (31),
whereas in normal colonic tissue, Hh-GLI is strictly involved
in differentiation (59, 113).

Cancer Stem Cells and Colorectal Cancer
Colorectal cancer (CRC) is still one of the most common
gastro intes t ina l cancers wor ldwide and resul t s in
approximately 33% mortality rate, despite several therapeutic
advancements (114). The most important prognostic indicator is
stage at diagnosis. The 5-year relative survival of patients
diagnosed with CRC is 90% for patients with localized disease
(non-metastatic), whereas clinical statistics shows less than 5% 5-
year survival for metastatic CRC (115, 116). Therefore,
oncogenic drivers of metastasis promote a significant problem
to both CRC patients and clinicians (63, 117). The mechanism
for CRC progression toward metastasis is multifactorial, with
age, dietary habits, genetic alteration (mutational activation of
oncogenes and inhibition of several tumor suppressor genes),
intensity of epithelial-to-mesenchymal transformation (EMT),
angiogenesis in tumor growth, and response to the therapeutic
treatment all playing roles in the progression of disease (118,
119). Various gene mutations (KRAS, MYB, and BRAF) and
gene abnormal amplification (CMYC and EGFR) have been
associated with the molecular mechanisms underlying the
development of CRC, all of which can result in non-canonical
activation of GLI1 (120, 121). Another complication for studying
and treating CRC is the heterogeneity of the disease. This
heterogeneity is driven by the by pluripotent, self-renewing
cancer stem cells (CSCs) which have unlimited self-renewal
through symmetric cell division, and have the ability to give
rise to progeny cells through asymmetric division, and an innate
resistance to cytotoxic therapeutics (122). Additionally, may
publications have implicated Wnt, Notch, Hh, and/or TGFb
signaling pathways in proliferation and maintenance of CSCs,
and dysregulation of these pathways might cause the
development of CRC (123–127). All of these pathways drive
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GLI1 expression, defining GLI1 as a cancer stem cell marker in
multiple types of cancer, including colorectal (128–131).

Metastasis and Pancreatic Cancer
Pancreatic ductal adenocarcinoma (PDAC) is one of the
deadliest types of cancer in the United States, with a 5-year
survival rate of less than 3.5% (132, 133). Removal of the tumor is
the only potentially curative treatment to date, but this is not
achievable for over 85% patients due to non-resectable cases like
early-stage metastasis or complicated primary site (80). KRAS
over-activation mutations play a major role in initiating the
transformation from precursor lesions termed “pancreatic
intraepithelial neo-plasias” (PanINs) to PDAC and promote
cancer development and metastasis (134–136). In pancreatic
cancer, KRAS mutations are present in 90% of cases (137).
Multiple mutation types exist, with codon-13 (G13D) or -61
(Q61L or Q61H) occurring less frequently and 95% of KRAS
mutations occurring at codon-12. Single-nucleotide mutations
on codon-12 result in eight different amino acid substitutions,
with G12D the predominant mutation (51%), G12V (30%),
G12R (12%), G12C (2%), G12S (2%), G12A (2%), G12L/F
(1%) (11, 14). These missense mutations enhance the level of
GTP-bound active KRAS due to impairing intrinsic and GTPase-
activating protein-mediated GTP hydrolysis, resulting in over-
activating downstream signaling, increasing cell growth and
survival, leading to neoplastic transformation (138–140). For
patients with locally advanced and/or metastatic PDAC, a G12D
KRAS mutation within the primary tumor is an independent
prognostic factor that results in significantly decreased overall
survival, including those within the subgroup that receive
chemotherapy (141). Pancreatic cancer with activating
mutations in KRAS or BRAF occur frequently, and oncogenic
pathways like RAS/RAF/MEK/ERK, the PI3K-AKT-mTOR, and
TGFb signaling converge on the activation of GLI1, promoting
cellular proliferation, tumor progression, chemotherapeutic
resistance, and early metastasis (142, 143).

Radiosensitivity, Heterogeneity,
and Brain Cancer
Glioblastoma multiforme (GBM) is the most aggressive and most
common type of brain tumor. The standard of care for patients
with GBM is maximum safe surgical resection followed by
concurrent temozolamide (TMZ) and radiation therapy (144).
TMZ is an alkylating agent that results in the transport of methyl
groups to guanine and adenine, resulting in DNA damage and
eventual cell cycle arrest and apoptosis. TMZ also acts as a
radiation-sensitizer to enhance the DNA damage induced by
the ionizing radiation. Individuals receiving this standard
treatment have a median survival time between 12 and 15
months and have an average 5-year survival of 5% in the
United States. Unfortunately, approximately 50% of patients do
not respond to the standard of care regimen (145). Most of these
cases are the result of overexpression of O6-methylguanine-DNA
methyl-transferase (MGMT), a protein that directly counters the
methyl damage caused by TMZ (146). In fact, hypomethylation of
the MGMT promoter is a biomarker for aggressiveness of disease
Frontiers in Oncology | www.frontiersin.org 5
and poor response to therapy (147). GLI1 was recently identified
as positive regulator of MGMT, having several putative binding
sites in the MGMT promoter region (148). Aberrant activation of
GLI family members has been linked to chemotherapeutic
resistance to TMZ (69). Data set analysis from the Chinese
Glioma Genome Atlas (CGGA) indicates that individuals with
lower expression of GLI1 (149) have a statistically greater median
survival when compared to GLI1 high-expressing patients.
Several studies have examined the effect of GLI inhibition in
GBM cells in vitro and found that treatment with GLI inhibitors,
like GANT61, results in decreased expression of MGMT and re-
sensitization to TMZ (148, 150, 151).

Neuroblastoma accounts for roughly 8% of all childhood
malignancies and up to 15% of all pediatric cancer deaths
(152). It is a heterogeneous solid tumor, and the heterogeneity
is partially driven by the generation of extrachromosomal circular
DNA (eccDNA) (153). eccDNA formation has been linked to the
dysregulation of the double-stranded break (DSB) repair
mechanism, specifically that which drives non-homologous
end-joining (NHEJ) and is produced through R-loop defects or
circularization of gene fragments (154). Oncogenic GLI1 drives
R-loop formation, and treatment with GANT61 has been shown
to decrease the generation of R-loop formation (155), likely
additionally reducing the generation of eccDNAs.
IMPACT OF GLI1 ON BIOLOGICAL
PROCESSES

Metastasis and Epithelial-Mesenchymal
Transition
EMT is considered to be an important feature in cancer
development. This process allows the epithelial cells to
undergo various biological changes, transforming them to a
mesenchymal cell phenotype characterized by enhanced
migration, invasiveness, and resistance to apoptosis. EMT
markers, such as snail family of zinc-finger transcription factor
1 (SNAIL1), vimentin, and E-cadherin, are three of the primary
factors that regulate the EMT transition. GLI1 can initiate cancer
cell EMT by increasing expression of SNAIL1 and vimentin but
decreasing E-cadherin, causing b-catenin to migrate into the
nucleus and act as a transcription factor, inducing cell
transformation (156, 157). Since b-catenin is an important
member of the WNT signaling pathway, this results in cross-
talk between WNT pathway and Hh pathway, resulting in GLI1
activation (158). Overexpression of GLI1 in colorectal cancer
cells induces more invasive growth in organoid 3D cultures as
well as in soft agar colony formation (159).

DNA Damage Repair Response
GLI1 activation has been linked to the DNA damage response
(DDR) and promotes chemotherapeutic resistance. Recent studies
have demonstrated that loss of either non-homologous end joining
(NHEJ) geneDNALigase IV (Lig4), or genes involved inhomologous
recombination (HR) like X-ray cross complementation 2 (XRCC2),
May 2021 | Volume 11 | Article 673154
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and breast cancer growth suppressor protein 2 (BRCA2), or
(Lig4/XRCC2) in combination with p53 deficiency results in
PTCH-1 downregulation and GLI1 activation (69, 160). DNA
damaging agents, such as doxorubicin and cisplatin, induced
concomitant expression of p53 and downregulation of GLI1 and
its target genes (161). In response to damage, p53-induced cell
cycle checkpoints prevents proliferation of damaged cells and
provides sufficient time for repair, which is the opposite response
that GLI1 promotes (69).

Specific inhibition of GLI1 induces extensive cell death while
the inhibition of Hh signaling at the level of SMO did not in
colorectal cancers (161). In HT29 cells, inhibition of GLI1 by
siRNAs or GANT61 (a small molecule inhibitor) showed
increased DNA damage and cell cycle arrest at G1–S and in
early S-phase, resultant of down-regulation of cell cycle genes, such
as E2F2, cyclin E2, Cdc25a, Cdk2 and cyclin A2, Cdc25c, cyclinB2,
Cdc20, Cdc2. Inhibition of GLI1 induces serious DNA damage
because it pauses DNA synthesis by impairing the ensemble of
DNA licensing pre-complex and accumulates conflicts by head-to-
head jam made by DNA and RNA synthesis machinery due to cell
cycle arrest (155). Additionally, inhibition of GLI1 not only
promotes cell cycle arrest it also impairs cell innate DNA
damage response procedure. The DDR machinery is comprised
of multiple sensors and repair enzymes that are deployed at
various stages of the cell cycle to ensure the maintenance of
chromosomal integrity and replicative fidelity. Numerous reports
of overexpression of critical DDR component proteins in
oncogenic environments indicate that chemo-resistance can arise
due to over-activation of the MRE11, Rad50, NBS1 (MRN)
complex. A critical component of the MRN complex is the
Nijmegen breakage syndrome-1 (NBS1; p95, nibrin) protein,
produced by NBS gene. Complexing with MRE11 and RAD50,
NBS1 is the first factor to detect and bind to histone H2AX at the
site of a DNA lesion which subsequently forms the multimeric
MRN complex, initiating the process of DSBs repair (162–164).
Overexpression of individual components of the MRN complex
has been significantly associated with adverse clinical outcomes
due to chemotherapeutic resistance. Therefore, induced novel
therapeutic avenue would be to inhibit the DDR mechanism,
allowing chemotherapeutic mechanisms that target DNA damage
to work more effectively. The challenge, however, is to specifically
eliminate DDR in cancer cells without affecting the normal and
necessary functions of DDR in non-cancerous cells.

Ataxia-telangiectasia mutated (ATM) is a kinase that regulates
a number of substrates, including the phosphorylation of NBS1,
which is required to initiate and enhance NBS1’s DDR activity. As
such, several programs have attempted to develop various ATM
inhibitors aimed to inhibit DDR (165). Unfortunately, ATM itself
is not a specific therapeutic target because of its multiple
domained nature, critical kinase function in normal cellular
processes, and essential role in the maintenance of chromosome
integrity at all phases of the cell cycle (166). Some studies reported
that the level of phosphorylated NBS1 (Ser343), which is
regulated by its upstream kinase ATM/ATR, is a critical
phosphorylation status thought to increases DNA damage
response and promotes cell survival. To test this theory, our lab
Frontiers in Oncology | www.frontiersin.org 6
overexpressed wild type NBS1, domain-negative NBS1 (S343A),
or phospho-mimic NBS1 (S343E) in HT29 cells. Overexpression
of any NBS1 vector rescued ~25% of cells from apoptosis
mediated by GLI inhibition. Surprisingly, the overexpression of
S343E, S343A, or total NBS1 was not statistically different from
one another, indicating that total levels of NBS1, elevated by GLI1
transcription, rather than the phosphorylation status, were
responsible for protection from GLI inhibition-induced
apoptosis (64). Since GLI1 is not typically expressed by
differentiated cells, targeting oncogenic expression of GLI1
would result in fewer off-target effects and provide a specific
therapeutic strategy.
GLI1 INHIBITORS

Most of the efforts to-date have typically focused on targeting
GLI inhibition through the canonical Hh pathway, targeting
upstream regulators like SMO, and subsequently sequestering
GLI1 in the cytoplasm. Five SMO inhibitors have been approved
by the FDA for clinical trials: vismodegib (GDC-0449), sonidegib
(NPV-LDE-225), saridegib (IPI-926), BMS-833923, glasdegib
(PF-04449913), and taladegib (LY2940680) (167). Variable
success using SMO inhibitors has been demonstrated across a
variety of different cancer types in preclinical models (30, 31, 107,
168–171) and clinical models (172–177). This is due to the
predominant dependence of certain types of human cancers on
canonical Hh signaling, such as basal cell carcinoma (173, 177),
and medulloblastoma (172). However, clinical trials in most solid
tumors have failed, likely because of aforementioned non-
canonical activation pathways (i.e., RAS-ERK, PI3K-AKT-
mTORS6K1 signaling, p53 loss, epigenetic alterations, etc.).
Therefore, direct targeting of GLI might represent a better
choice to improve the antitumor activity of these drugs in
such cases.

The library of GLI1 antagonists is not as extensive as that for
SMO. The most commonly used small molecules are GANT58
and GANT61, which were identified in a cell-based GLI-
dependent luciferase screening system (178). These two
compounds belong to different chemical classes, with GANT61
being a hexahydropyrimidine derivative and GANT58 possessing
a thiophene core with four pyridine rings. Compared to GANT58,
GANT61 is more specific toward GLI proteins and effectively
reduces GLI1 and GLI2 DNA-binding ability, inhibiting the Hh
pathway with a half maximal effective concentration (EC50) of 5
mM in GLI1-expressing HEK293T cells (26). GANT61 binds to
the GLI1 protein between ZF2 and ZF3, by interacting with
Glu119 and Glu167, as demonstrated by in silico docking on the
crystal structure of the ZF domain of GLI1 bound to DNA (119).
Experimental analysis shows that mutation of the predicted
binding sites significantly reduces GANT61-GLI binding
affinity. The GANT61 binding site is different from the GLI
DNA-binding region, and the inhibitor is not able to bind to
other ZF transcription factors such as KLF4 or TFIIb (26,
119). Unfortunately, GANT61 is not usable as a translational
therapeutic as it is unstable and has poor PK properties (179).
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Using GANT61 as an initial scaffold, Southern Research has
recently developed a novel GLI1 inhibitor (SRI-38832) that has
better PK properties and has shown efficacy in vivo (64).
Additionally, there are several promising compounds showing
the biological activity of GLI inhibition (180), arsenic trioxide
(ATO), originally approved by the FDA for the treatment of acute
promyelocytic leulemia, has been shown to inhibit GLI proteins
by binding to GLI proteins and enhancing degradation (181).
ATO is currently being tested in multiple clinical trials ranging
from phase I to phase IV for either solid tumors and hematologic
malignancies. However, recent reports indicate lack of efficacy
against small cell lung cancer (182). Polyunsaturated fatty acids
(PUFAs) have also been reported to repress GLI1 expression by
stimulating GLI1 suppressor, nuclear factor of activated T cells 1
(NFATc1) expression (183). Glabrescione B (GlaB), an isoflavone
naturally found in the seeds of Derris glabrescens, is able to bind
the GLI1 ZF domain, thereby diminishing GLI1/DNA interaction
(184). Leadiant Biosciences used Glabrescione B as their scaffold
for generating a pool of compounds for GLI1 inhibition
(185, 186). Computational modeling of the DNA/GLI1 protein
interaction has also been used to develop an 8-hydroxyquinolines
as a GLI1 inhibitors, with similar scaffolds as Lediant Bioscience’s
compounds (187). Finally, the Hedgehog pathway inhibitors
(HPIs) including HPI-1, HPI-2, HPI-3, and HPI-4, were
identified with a high-throughput screening for compounds
capable of abolishing the Hh target gene expression induced
by the SMO agonist SAG (188). HPI-1 can suppress Hh
pathway activation, likely through targeting a posttranslational
modification of the GLI proteins and/or an interaction between
the transcription factor and a co-factor (189). The detailed
mechanisms of action have not yet been completely unraveled.

One specific problem often encountered is the non-specificity of
developed compounds claiming to be specific for GLI1 (i.e., also
inhibit GLI2 and decrease GLI2 protein/messenger expression).
The homology of GLI1 and GLI2, along with the similarities in the
promotor recognition sequence makes it difficult to design an
inhibitor of one without inadvertently targeting the other.
Computational modeling and structural biology (NMR;
crystallography) can help to resolve the challenge of non-specificity.
CONCLUSIONS

GLI1 exists at the conjunction of multiple oncogenic pathways
outside of the canonically understood hedgehog pathway. In the
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scope of oncogenesis, GLI1 activation is particularly dominant in
subsets of a number of cancer types because parallel non-
canonical pathways outside of hedgehog signaling influence
GLI1 function. Additionally, the list of GLI1 transcriptional
targets continues to expand, encompassing cell cycle regulators
(Cdt1), DNA damage repair proteins (NBS1), and proliferation
(FOXM1). In certain cancers, it promotes a dedifferentiation to a
more stem-like phenotype. Because of GLI1’s regulatory fluidity,
targeting upstream pathway members is often an exercise in
futility, as seen by the failure of SMO inhibitors, for example. For
this reason, GLI1 is a significant therapeutic target for the
treatment of multiple cancer types.

Whether overexpressed due to canonical, non-canonical, or
genetic mutation, elevated GLI1 expression drives several of the
hallmarks of cancer including DNA damage repair, cell
proliferation, and metastasis. Rather than target upstream
regulators of GLI, targeting the distal effector provides the
greatest potential for therapeutic benefit. Since GLI1 is
canonically active in embryonic development, with minimal
basal expression in differentiated cells, it 1) serves as a biomarker
for de-differentiation in cancer cells, particularly those refractory to
treatment and 2) provides a prominent target not readily expressed
in most non-cancerous tissue. As such, by targeting the
downstream effector (GLI1) rather than upstream activators, we
can effectively inhibit the oncogenesis driven by aberrant GLI1
activation, and promote cancer-specific DNA damage. While
many promising drug discovery campaigns are developing and
looking for novel GLI1 inhibitors, more work needs to be done to
develop a potent, specific inhibitory compound.
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