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Abstract

The widely used K-means clustering is a hard clustering algorithm. Here we propose a Elas-

tic K-means clustering model (EKM) using posterior probability with soft capability where

each data point can belong to multiple clusters fractionally and show the benefit of proposed

Elastic K-means. Furthermore, in many applications, besides vector attributes information,

pairwise relations (graph information) are also available. Thus we integrate EKM with Nor-

malized Cut graph clustering into a single clustering formulation. Finally, we provide several

useful matrix inequalities which are useful for matrix formulations of learning models. Based

on these results, we prove the correctness and the convergence of EKM algorithms. Experi-

mental results on six benchmark datasets demonstrate the effectiveness of proposed EKM

and its integrated model.

Introduction

Data clustering, a method of unsupervised learning and a common technique for statistical

data analysis has currently been widely used in machine learning [1, 2], pattern recognition [3,

4], image analysis [5, 6] and bioinformatics [7–9]. As one of the most popular clustering meth-

ods, K-means has drawn lots of attention and been widely used for data clustering. Recent

work has revealed that K-means can be represented by matrix factorization formulation, and

thus can deduce many kind of K-means variants [10–15]. From the point of view of determi-

nacy, K-means clustering approaches are hard clustering where a data point exactly belongs to

one particular class. However, in many cases, this is not realistic since not all the data point dis-

tinctly belongs to one single class especially for the outliers which may have equivalent similar-

ities to every/some classes.

On the other hand, above K-means inspired methods generally deal with the attribute infor-

mation (feature vectors) of data. In real world applications, besides attribute information, we

have various pairwise relations between data points which are expressed as graph data. There

exist many clustering methods that utilize graph data, such as Ratio Cut based methods [16,

17] and Normalized Cut based methods [18, 19] and Min and Max Cut based methods [20,

21]. In essence, these clustering methods first embed graph nodes in low-dimensional space

using linear embedding method PCA and nonlinear method IsoMAP [22–24], Local linear

Embedding (LLE) [25–27], Local Tangent Space Alignment [26, 28, 29] etc, where feature vec-

tor information is utilized to obtain the final clustering results. However, It’s one-sided to just

take into account of one single information.
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Inspired by recent works on matrix factorization based K-means models, In this paper, we

first propose a Elastic clustering model using posterior probability (named as Elastic K-means,

EKM). The main observation of our Elastic K-means model is that the clustering indicator

from K-means can be interpreted as the posterior cluster probabilities during the factorization

procedure. The key point of the Elastic K-means is that each data point is assigned to the clus-

ters scattered into several possible classes according to its posterior probabilities. Then we

extend our EKM to graph EKM (gEKM), which simultaneously utilizes both feature vectors

and pairwise relations between data points. Specifically, gEKM integrates the proposed Elastic

K-means with Normalized Cut clustering. In order to evaluate the effectiveness of proposed

EKM and gEKM, we implement them on six benchmark datasets. The promising experimental

results demonstrate the benefit of the proposed Elastic K-means models.

Elastic K-means and related works

K-means

Given data matrix X = (x1, � � �, xn) 2 <p×n denoting n data points. The objective of K-means

clustering is to find the cluster centroids ck, k = 1, � � � , K by minimizing the following cost

function:

Jkm ¼
Xn

i¼1

XK

k¼1

kxi � ck k
2 ð1Þ

Our work starts with the observation that the above K-means clustering objective can be

reformulated as below:

Proposition 1. The objective function Eq (1) can be rewritten as:

min
G

J ¼ kX � XGGT k2

s:t: GTG ¼ N � 1
; Gik 2 f0; 1=

ffiffiffiffiffink
p
g:

ð2Þ

N ¼ diagðn1; � � � ; nkÞ where ni, (i = 1, � � � , k) denotes the number of data points in each

cluster. Note that kAk denotes the Frobenius norm of a matrix A. And G 2 <n×K is the normal-
ized cluster indicators, i.e.,

Gi;k ¼
1=

ffiffiffiffiffink
p if xi 2 ck;

0 otherwise:

(

ð3Þ

Proof of Proposition 1.

Let us introduce the standard cluster indicator

~Gi;k ¼
1 if xi 2 ck;

0 otherwise:

(

ð4Þ

Then, Eq (1) can be equivalently written as:

min
C;~G

Jkm ¼ kX � C~GT k2

s:t: ~GT ~G ¼ I; ~Gik 2 f0; 1g

ð5Þ

where C = (c1, c2, � � � , cK) 2 <p×K are cluster centroids. The orthogonality of G is preserved

in a relaxation of class indicator matrix [21]. Now, the cluster centroids can be written as

ck ¼ X~g k=nk, where ~g k is the k-th column of ~G, or equivalently, C ¼ ðc1; � � � ; cKÞ ¼ X ~GN � 1
.

EKM
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Thus:

kX � C~GT k2 ¼ kX � X ~GN � 1 ~GT k2 ¼ kX � XGGT k2 ð6Þ

where G ¼ ~GN � 1=2
absorbs the unknown N .

Elastic K-means

Proposition 1 provides an natural way to form the Elastic K-means. First, the orthogonal con-

straint GT G = I ensures that one data point belongs to only one cluster as in [21, 30]. We relax

this constraint, so that each data point can belong to multiple clusters. Because the formulation

Eq (2) is a matrix decomposition form, the constraint GT G = I will be satisfied approximately.

Second, since the mixed signs of G may deviate the results severely from the true solution of

clustering [21, 30], we relax the discrete constraint Gik 2 f0; 1=
ffiffiffiffiffink
p
g, to a simple nonnegativity

constraint G� 0. Thus, the final model is formulated as:

min
G

Jekm ¼ kX � XGGT k2

s:t: G � 0
ð7Þ

Note that the input data X has mixed signs.

We call this Elastic K-means (EKM). (1) This model is invariant w.r.t. X! βX, β 2 < is any

constant. This is the same as the standard K-means. (2) Similar to K-means, the expected clus-

tering centroids are adopted during the updating iterations. (3) different from the traditional

K-means, the elastic indicator (interpreted as the posterior probability which is a fraction)

performs a smooth convergency during updating. In fact, all the NMF-based methods we

discussed above have K-means clustering interpretations when the factor G is orthogonal

(GT G = I), which in turn means they can be regarded as the relaxations of K-means.

Related works

Our goal is to study the case where a data point is not restricted to belong to a single cluster.

Three related clustering models are (A) Gaussian mixtures [31, 32], (B) Fuzzy C-means [33–

35], (C) Fuzzy K-means [12, 14, 36, 37]. In general, Gaussian mixtures works only for low-

dimensional data, typically d� 10, therefore they are not suitable for high dimensional data.

Fuzzy C-means solves

min
u;ck

Jfcm ¼
Xn

i¼1

XK

k¼1

um
ikkxi � ck k

2 ð8Þ

where uik is the membership of data point xi belonging to cluster k and ∑k uik = 1.

Our model differs from Fuzzy C-means on two aspects: (1) Cluster distribution of single

data point xi is implicit in our model, whereas it is explicit in Fuzzy C-means. (2) The require-

ment that the posterior probability ∑k uik = 1 for any data point xi, but the actual distribution

used in Eq (8) is um
ik , m = 2 in most cases. Thus the normalization of the actual cluster distribu-

tion is zi ¼
P

ku
m
ik < 1 and zi is different for different data point xi. This theoretical/conceptual

drawback for Fuzzy C-means is not present in our Elastic K-means. Fuzzy K-means solves

min
w;ck

Jfkm ¼
Xn

i¼1

XK

k¼1

wikkxi � ck k
2 ð9Þ

where wik is the membership of data point xi belonging to cluster k and ∑k wik = 1. The main

difference between Fuzzy K-means and our method is, the soft/fuzzy capability is achieved by

EKM
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exploring the corresponding weight wik (or uik in Fuzzy C-means) for each data point xi, while

our Elastic K-means achieves this via the soft/fuzzy cluster indicator G, which is more explicit.

Note that, the concept of soft/fuzzy K-means (or C-means)has been mentioned in a group of

literatures [38–42], which also have the fuzzy/soft capability for data clustering. However,

these soft clustering methods are generally derived from Fuzzy C-means or Fuzzy K-means

and their variants, which are essentially different from the proposed Elastic K-means model.

Because in our model, G is nonnegative. In some sense, our model also relates to NMF.

There exists a very broad category of work along NMF direction. We refer to a recent survey

[43].

Computational algorithm and analysis

Algorithm

An effective updating algorithm can be derived to solve Elastic K-means problem. The algo-

rithm iteratively updates the current solution as follows:

Gik  Gik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2AG þ BGGTGþ GGTBGÞik
ð2BGþ AGGTGþ GGTAGÞik

4

s

ð10Þ

The pseudo codes of EKM is illustrated as Algorithm 1.

Algorithm 1: Elastic K-means Algorithm
Input: data X

1 (1) Initialize G0.
2 Construct the indicator G: Gik = 1 if xi belongs to cluster k. other-
wise, Gik = 0
3 (2) Update G
4 while not converged

5 Gik  Gik �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2AGþBGGTGþGGTBGÞik
ð2BGþAGGTGþGGTAGÞik

4
q

6 where
7 A = (|(XT X)ik| + (XT X)ik)/2
8 B = (|(XT X)ik| − (XT X)ik)/2
9 end

The convergence of the proposed algorithm can be found in the supplementary.

Updating algorithms for quartic models

There are many matrix models involving matrix variables to the 4th power. The simplest is:

min
G
kW � GGT k2

F ð11Þ

where W = WT is symmetric. A number of papers claim that the updating algorithm for this

model is

Gik  Gik
ðWGÞik
ðGGTGÞik

ð12Þ

In fact, this updating algorithm does not guarrentee the monotonic decreasy of the objective

function value. Using the inequality of quartic matrix of Eq (S15) in the supplementary, we

EKM
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can easily prove that the following updating algorithm;

Gik  Gik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWGÞik
ðGGTGÞik

4

s

ð13Þ

which guarrentees decrease of objective, and thus the convergence.

Benefit of Elastic K-means

One main drawback of standard K-means is that each data point is assigned to a single cluster

(hard clustering), but in real data, many data points are somewhere in-between different clus-

ters centers (such as points 1, 2, 3 shown in Fig 1). One clear benefit of the proposed Elastic K-

means is that these ambiguous data points are assigned into several nearby clusters, i.e., their

posterior probabilities of cluster assignment are nearly evenly distributed.

Fig 1 shows the EKM results on one 2D dataset of 3 randomly generated Gaussian clusters.

The EKM cluster results are indicated as red, green and blue stars respectively. Point 4, 5, 6

Fig 1. EKM clustering results on 2 dimensional 3 Gaussian clusters. x and y axes denote the first and the second dimension

respectively.

https://doi.org/10.1371/journal.pone.0188252.g001

EKM
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clearly belong to their assigned clusters. This fact is correctly encoded in the EKM model, as

shown in the posterior probabilities in Fig 2: they are sharply concentrated on a single cluster.

On the other hand, points 1, 2, 3 are ambiguous: they are in-between different cluster cen-

ters. A good ‘elastic’ clustering model should assign these points to nearby clusters with

nearly-equal posterior probabilities. Indeed, this desirable fact is correctly encoded in the

EKM model, as shown in the posterior probabilities in Fig 2: they are nearly evenly distributed

on nearby clusters.

Posterior Probability. In this and following sections, we normalize G to

Gik  Gik

�
X

k

Gik ð14Þ

so that ∑k Gik = 1 for data point xi.

Fig 2. An example of the posterior G of 3 ambiguous data points and 3 sharp data points on above EKM clustering results.

https://doi.org/10.1371/journal.pone.0188252.g002

EKM
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A natural question is: how to identify those ambiguous data points such points 1, 2, 3 in

Fig 2. For this purpose, we need to see how the posterior probability

pi ¼ Gi: ¼ ðGi1;Gi2; � � � ;GikÞ ð15Þ

for data point xi is distributed.

We use a useful quality to indicate approximately how sharply the distribution is peaked

around the highest cluster. This is the gap in the posterior distribution: the difference between

the highest and second highest peaks:

Di ¼ ðGik1
� Gik2

Þ

�

Gik1
ð16Þ

where

k1 ¼ arg max
1�k�K

Gik; k2 ¼ arg max
1�k�K;j6¼k1

Gik ð17Þ

The idea is simple. (A) If a data point is well inside a cluster, such as points 4, 5, 6 in Fig 2, the

highest peak is large and the second highest peak is small. Thus the gap is big. (B) If a data

point is in-between different clusters, such as points 1, 2, 3, the difference between the highest

peak and the second highest peak is small. Thus the gap is small. From these situations, the gap

is useful indication of how sharply the posterior probability is distributed.

Fig 3 shows the distribution of the gap Δi of the 300 data points shown in Fig 1. Noted that,

the lager Δi, the sharper that the data point belongs to a single class. Obviously, there are many

ambiguous data points which can be easily detected using the gap. These studies indicate that

Elastic K-means is able to detect the fuzzy/soft characteristics of data clustering.

Integrating Elastic K-means and normalized cut

EKM uses only vector (sometimes called attribute) data X. In many applications, the input

data consists of both vector data X and similarity data W (also called graph data since Wij rep-

resents the similarity between data points i and j). For this situation, we can easily extend EKM

to utilize the similarity data W for more effective elastic clustering.

We incorporate the similarity data through the Normalized Cut [18, 19] formalism. This

extension form a single clustering formulation for input data with both vector and similarity

data.

The Ncut (Normalized Cut) is defined as:

max
Q

TrðQTD� 1
2WD� 1

2QÞ

s:t: QTQ ¼ I;Q 2 f0; 1g
ð18Þ

where D = diag(d1, � � � , dn), di = ∑j Wij.

Proposition 2. Optimization problem Eq (18) is equivalent to

min
Q

kS � QQTk2

s:t: QTQ ¼ I;Q 2 f0; 1g:
ð19Þ

with the same constraints of Eq (18), where S ¼ D� 1
2WD� 1

2

Proof. Because kS − QQTk2 = Tr(S2 − 2QT SQ + QQT QQT), the first term and the last term

are both constant due to QT Q = I. The minimization of −2QT SQ is the same as Eq (18).

EKM
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In the same manner as EKM in Eq (7), we relax the orthogonal constraint QT Q = I to be

nonnegative, then Eq (19) can be rewritten as:

min
Q

kS � QQTk2

s:t: Q � 0
ð20Þ

Since Q is also the cluster indicators as G in EKM, we can integrate EKM and NCut by sim-

plifying/approximating these constraints into G� 0. The above model is now expressed in a

simplified way:

min
G

2kX � XGGT k2 þ a kS � GGTk2

s:t: G � 0
ð21Þ

We call this model as graph EKM (simplified as gEKM in the following parts) since Ncut is

a popular approach for graph data clustering. It naturally incorporates both the feature/attri-

bute data X and pairwise relations W.

Fig 3. The gap in the posterior distribution: The difference between the highest and second highest peaks.

https://doi.org/10.1371/journal.pone.0188252.g003
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Analysis

Because the model is invariant with X! βX, let β = 1/kXk, which implies the input X is nor-

malized: kX k2 ¼ SijX2
ij ¼ 1.

The above objective can be written as:

J ¼ Tr ½2XTX þ aðS2 � IÞ � 2GTðXTX þ aSÞG� ð22Þ

The first 2 terms are independent of G. Thus the above optimization becomes

min
G

Tr GTðXTX þ aSÞG

s:t: G � 0
ð23Þ

where X is normalized.

This expression reveals an important insight that the gEKM model is a discrete combinato-

rial optimization.

Algorithm 2

The optimization problem of Eq (21) can be solved by the following iterative algorithm:

Gik  Gik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2AG þ BGGTGþ GGTBGþ 2a1SGÞik
ð2BGþ AGGTGþ GGTAG þ 2a1GGTGÞik

4

s

ð24Þ

where α1 = α � kXk2, and A, B are defined in Algorithm 1. The proof of convergence can be

similarly established as Algorithm 1.

Experiments

We perform experiments on following six benchmark datasets described as Table 1.

AT & T (http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html) face dataset con-

tains ten different images of each 40 distinct subjects. For some subjects, the images were

taken at different times, varying the lighting, facial expression and facial details (glass/no

glass). All images were taken against a dark homogeneous background with the subjects in an

upright, frontal, position. We stretch each image into a vector.

USPS (http://www.cs.nyu.edu/roweis/data.html) is a handwritten digit (1–10) database and we

select 1000 images (100 images for every digit).

MNIST (http://www.cs.nyu.edu/roweis/data.html) is a handwritten digit database. Each image

is centered (according to the center of mass of the pixel intensities) on a 2828 grid. In our

experiments, we randomly choose 1000 images (i.e., each digit has 100 images). We reshape

each image into one vector.

Table 1. Dataset names, number of data samples, data dimension and number of classes of the 6 benchmark datasets.

Dataset #Sample #Dimension #Class

AT&T 400 1024 40

USPS 9298 256 10

MNIST 1000 784 10

COIL20 1440 1024 20

Isolet1 1560 617 26

BinAlph 1014 320 26

https://doi.org/10.1371/journal.pone.0188252.t001

EKM
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COIL20 (http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php) contains 20

objects. Each image of the same object is taken 5 degrees apart as the object is rotated on a

turntable and each object has 72 images. The size of each image is 3232 pixels, with 256 grey

levels per pixel. Each image is represented by a 1024 dimensional vector.

Isolet1 (http://archive.ics.uci.edu/ml/datasets/ISOLET) dataset was generated by 150 subjects

spoken the name of each letter of the alphabet twice. The speakers are grouped into sets of 30

speakers each, and are referred to as isolet1, isolet2, isolet3, isolet4, isolet5. The features include

spectral coefficients, contour features, sonorant features, pre-sonorant features, and post-

sonorant features. In our experiment, we utilize subset isolet1 only.

BinAlpha (http://www.cs.nyu.edu/roweis/data.html) contains 26 binary hand-written alpha-

bets and we select 30 images for every alphabet. We stretch each image into one vector.

Clustering accuracy is used to measure the performances. Once the clustering solution is

computed, the confusion matrix is calculated using the Hungarian algorithm [44] is employed

to match obtained clusters with the ground truth classes. The accuracy of this matching is

computed as the clustering accuracy.

Fig 4. Clustering accuracy for gEKM against α on six datasets in full dimension.

https://doi.org/10.1371/journal.pone.0188252.g004
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In all experiments, for each dataset, we first run 20 K-means clustering with random starts.

We pick the best (lowest clustering objective function value) result of these 20 runs, record the

corresponding clustering accuracy as the result of K-means.

Starting from this K-means result, we run NMF [11], FCM [34], MinMaxCut [21], EKM,

gEKM, and record the corresponding results. For Ncut [18], we run K-means in the eigenspace

20 times with random starts, and pick the best (lowest K-means clustering objective function

value) result of these 20 runs.

Choice of parameter α
The clustering accuracy of gEKM depends on parameter α. If α> 1, the similarity part

(2nd term of Eq (21)) is more important. If α< 1, the vector attribute part (first term of Eq

(21)) is more important. For this reason, the proper range of choice for α is [1/10, 1/5, 1/2, 1, 2,

5, 10]. We show the clustering results against α on all six datasets in Fig 4 (here X is in full

dimension).

We observe that (1) The results are not very sensitive to α. (2) α = 1 generally gives best

results, which in turn means the vector attribute and the similarity part have more or less the

balanced contribution. From these observations, we fix α to 1 in the following experiments.

Convergency visualization

Fig 5 visually illustrates the changes of the objective functions of Eqs (7) and (21), which dem-

onstrates the convergency of the objective functions.

Results on clustering

We compare our methods, EKM and gEKM to K-means, NMF [11], FCM [34], Ncut [18] and

MixMaxCut [21] on the six datasets. For EKM, Ncut [18] and MinMaxCut [21], we compute

Fig 5. Changes of the objective function of the EKM and gEKM in 100 iterations.

https://doi.org/10.1371/journal.pone.0188252.g005
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the graph similarity W as:

Wij ¼ exp ð� kxi � xjk
2=cd2Þ ð25Þ

where c = 0.7 and d is the average distances between each xi and its 7 nearest neighbors. We set

Wii = 0 and construct S ¼ D� 1
2WD� 1

2.

Table 2 reports the clustering accuracy on the six datasets using K-means, NMF, FCM,

Ncut, MinMaxCut, EKM and gEKM. One can see that (1) Ncut and MinMaxCut consistently

Table 4. Clustering accuracy of six datasets in PCA subspace when p = 100.

Dataset Kmeans FCM NMF Ncut MinMaxCut EKM gEKM

AT&T 0.711 0.701 0.711 0.737 0.731 0.738 0.749

USPS 0.608 0.625 0.625 0.632 0.622 0.635 0.641

MNIST 0.516 0.521 0.525 0.534 0.535 0.539 0.546

COIL20 0.618 0.625 0.630 0.633 0.634 0.637 0.650

Isolet1 0.628 0.623 0.627 0.637 0.639 0.645 0.656

BinAlph 0.481 0.515 0.518 0.523 0.522 0.528 0.534

https://doi.org/10.1371/journal.pone.0188252.t004

Table 2. Clustering accuracy of six datasets in full dimension.

Dataset Kmeans FCM NMF Ncut MinMaxCut EKM gEKM

AT&T 0.715 0.701 0.721 0.731 0.730 0.733 0.746

USPS 0.618 0.626 0.624 0.644 0.646 0.621 0.656

MNIST 0.494 0.501 0.518 0.531 0.532 0.534 0.545

COIL20 0.625 0.615 0.631 0.638 0.635 0.634 0.643

Isolet1 0.626 0.624 0.628 0.651 0.645 0.654 0.663

BinAlph 0.495 0.511 0.502 0.511 0.514 0.512 0.532

https://doi.org/10.1371/journal.pone.0188252.t002

Table 3. Clustering accuracy of six datasets in PCA subspace when p = 50.

Dataset Kmeans FCM NMF Ncut MinMaxCut EKM gEKM

AT&T 0.713 0.713 0.715 0.736 0.731 0.734 0.748

USPS 0.604 0.619 0.621 0.627 0.632 0.636 0.637

MNIST 0.521 0.523 0.524 0.545 0.537 0.536 0.551

COIL20 0.620 0.631 0.627 0.633 0.640 0.652 0.658

Isolet1 0.626 0.627 0.626 0.641 0.635 0.646 0.653

BinAlph 0.498 0.510 0.518 0.534 0.533 0.541 0.553

https://doi.org/10.1371/journal.pone.0188252.t003

Table 5. Clustering accuracy of six datasets in PCA subspace when p = 150.

Dataset Kmeans FCM NMF Ncut MinMaxCut EKM gEKM

AT&T 0.717 0.702 0.702 0.735 0.720 0.722 0.741

USPS 0.605 0.612 0.627 0.631 0.623 0.637 0.638

MNIST 0.519 0.511 0.528 0.537 0.539 0.541 0.551

COIL20 0.607 0.622 0.629 0.631 0.633 0.638 0.644

Isolet1 0.627 0.622 0.631 0.642 0.640 0.645 0.658

BinAlph 0.485 0.512 0.519 0.526 0.531 0.536 0.538

https://doi.org/10.1371/journal.pone.0188252.t005
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outperform the existing NMF, FCM and Kmeans methods. (2) The proposed EKM beats Ncut

and MinMaxCut in most of the cases. (3) MinMaxCut and Ncut perform nearly to proposed

EKM and slightly better in some cases. (4) The integrated gEKM consistently outperforms the

other six methods including MinMaxCut and Ncut which verifies the effectiveness of the

Table 6. Clustering accuracy of six datasets in PCA subspace when p = 200.

Dataset Kmeans FCM NMF Ncut MinMaxCut EKM gEKM

AT&T 0.712 0.708 0.702 0.731 0.725 0.723 0.736

USPS 0.610 0.616 0.625 0.629 0.631 0.641 0.643

MNIST 0.512 0.503 0.518 0.525 0.532 0.539 0.545

COIL20 0.623 0.611 0.621 0.626 0.630 0.636 0.643

Isolet1 0.619 0.624 0.625 0.631 0.629 0.633 0.644

BinAlph 0.477 0.512 0.515 0.522 0.525 0.528 0.537

https://doi.org/10.1371/journal.pone.0188252.t006

Fig 6. Clustering accuracy of gEKM against the number of dimension of PCA subspace on six datasets. where “full” on the x-axis

denotes the full dimension of the datasets as indicated on Table 1.

https://doi.org/10.1371/journal.pone.0188252.g006
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integration. In order to elaborate the performance of proposed methods, we evaluate the clus-

tering experiments in different PCA subspace with the dimension of p = 50, 100, 150, 200 on

the six datasets. The obtained clustering accuracies are given in Tables 3 to 6. First of all, the

results on different PCA subspaces are consistent as the full space as we discussed above. Fur-

thermore, as shown in Fig 6, the clustering results on PCA subspace can achieve competitive

or even slight better than the full space, which implies the effectiveness of subspace discovery.

Conclusion

In this paper, we firstly propose a Elastic K-means(EKM) framework which provides a elastic

clustering solution and prove that the correctness and the convergency of the updating algo-

rithm. Secondly, an integrated framework specified by the combination of EKM and Normal-

ized Cut (gEKM) is proposed to take into account of both attribute data and pairwise relations

and the choice of combination parameter is particularly analysed. The experimental results on

six benchmark datasets demonstrate the proposed EKM leads to the better clustering accuracy

than K-means as well as previous NMF-based algorithms and the popular Fuzzy C-means and

Fuzzy K-means. The gEKM has been also been tested to have satisfied performance on data

clustering.
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