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Collective beta cell activity in islets of Langerhans is critical for the supply of insulin within an organism. Even
though individual beta cells are intrinsically heterogeneous, the presence of intercellular coupling mechanisms
ensures coordinated activity and a well-regulated exocytosis of insulin. In order to get a detailed insight into
the functional organization of the syncytium, we applied advanced analytical tools from the realm of complex
network theory to uncover the functional connectivity pattern among cells composing the intact islet. The
procedure is based on the determination of correlations between long temporal traces obtained from confocal
functional multicellular calcium imaging of beta cells stimulated in a stepwise manner with a range of
physiological glucose concentrations. Our results revealed that the extracted connectivity networks are sparse
for low glucose concentrations, whereas for higher stimulatory levels they become more densely connected.
Most importantly, for all ranges of glucose concentration beta cells within the islets form locally clustered
functional sub-compartments, thereby indicating that their collective activity profiles exhibit a modular
nature. Moreover, we show that the observed non-linear functional relationship between different network
metrics and glucose concentration represents a well-balanced setup that parallels physiological insulin release.

B
eta cells secrete insulin in response to stimulation by energy rich molecules in a regulated manner and play a
central role in whole-body energy homeostasis1. In vivo, beta cells are organized into microorgans called
islets of Langerhans. All beta cells of an islet of Langerhans are coupled into a single functional unit by

means of the gap junction protein Connexin 36 (Cx36) that allows for electrical coupling and exchange of small
signaling molecules between physically adjacent cells. One of these small signaling molecules being calcium ions2.
In this way, a coordinated activity in a large number of cells can be established, thereby leading to a regulated
exocytosis of insulin3,4.

The mechanisms that govern insulin secretion at the single-cell level have been studied extensively. An increase
in extracellular glucose concentration leads to an increased entry of glucose into the beta cell, an increased
metabolic production of ATP and a decrease in the open probability of ATP-sensitive potassium ion channels.
Consequently, the beta cell depolarizes and the voltage-sensitive calcium ion channels open to increase the
intracellular calcium concentration ([Ca21]i) that triggers the calcium-sensitive exocytosis of insulin granules.
This calcium-induced exocytosis is believed to be augmented via a less well known amplifying pathway5. The
changes in membrane potential, [Ca21]i as well as exocytosis occur in the form of synchronous oscillations6–10.
Insulin acting on different target cells in the body subsequently reduces glucose concentration to stop the
stimulation of insulin release and prevent hypoglycemia by means of a negative feedback loop.

At the tissue level however, the relationship between the collective activity of cell populations and hormone
release is not completely understood11. This is mainly due to the fact that until recently, our ability to study the
physiology of many cells simultaneously had largely been limited by the existing experimental methods12. The
investigations of the intercellular communication between beta cells had mostly relied on imaging changes in
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[Ca21]i in isolated islets. These measurements, using either CCD
cameras with limited temporal resolution and a height of the focal
plane larger than a single cell8,13 or confocal microscopy with limited
uptake of [Ca21]i-sensitive fluorescent dyes, constrained the number
of simultaneously studied cells to a few cells from the mantle of the
islet14,15. Recently, the drawbacks of the existing experimental tech-
niques were circumvented by applying high spatial and temporal
resolution confocal functional multicellular calcium (fMCI) and
membrane potential imaging to the islets of Langerhans in tissue
slices7,16. Additionally, two-photon confocal microscopy in combina-
tion with extracellular polar fluorescent dyes enables the study of
exocytosis from all beta cells within a focal plane17,18. Therefore, from
a technical point of view, it is now possible to study the collective
behavior of cell populations, such as the islet of Langerhans, and
more specifically the degree of coupling and residual heterogeneity
in such populations.

The heterogeneity of beta cells is most pronounced when cells are
dispersed or uncoupled, thereby completely or partially losing their
social context within the functional syncytium of the islet12,19. Early
studies proposed that such individual beta cells exhibit differences in
glucose metabolism20,21 and insulin secretion22. More recent works
on the dynamics of [Ca21]i in isolated or uncoupled cells further
confirmed heterogeneity of beta cells. In isolated beta cells, [Ca21]i

responses were elicited at very different threshold concentrations of
glucose, with a significant proportion of cells responding only to
unphysiologically high concentrations of glucose or tolbutamide23.
In uncoupled cells, [Ca21]i responses to a given concentration of
glucose were unsynchronized24,25.

In an intact islet, these heterogeneities are largely attenuated and
the islet functions more homogeneously than isolated or uncoupled
cells12. The cells within an islet respond metabolically over a more
confined glucose concentration range21,26 and the membrane poten-
tial and [Ca21]i oscillations of cells within an islet are, in contrast to
single and uncoupled cells, in phase6,10,15. Finally, it has long been
known that intact islets display a higher glucose stimulated insulin
release than isolated and reaggregated, but not coupled beta cells27.

However, the activity of beta cells within an islet is not completely
synchronized and the islet shall not be regarded as a single large cell.
Namely, the membrane potential and [Ca21]i changes spread over
the islet in a wave-like manner7,13,16. Moreover, it was recently shown
that in terms of exocytosis, upon stimulation with glucose, not all
beta cells within an islet respond at the same time but are progres-
sively recruited with increasing levels of stimulation17. Thus, in an
islet there is a considerable degree of heterogeneity between indi-
vidual beta cells.

It is important to focus on and quantify the level of heterogeneity
among beta cells, since it was demonstrated that a larger-than-nor-
mal degree of heterogeneity, possibly due to disruptions to the nor-
mal intercellular communication, could play a role in type 2 diabetes
mellitus25,28–30. Thus, studying how the activity of a large number of
heterogeneous beta cells is aligned functionally, how the functional
syncytium breaks down, and determining where the increasing het-
erogeneity results in disease, is of great importance.

However, before embarking on this journey, it is important to
reevaluate the parameters on which our predictions about the het-
erogeneity of beta cells are based and assess a possibly present and
physiologically important residual heterogeneity between beta cells
in normal islets in a quantitative manner. We believe that such a
reevaluation would make it possible to draw a line between normal
and pathological function and predict or detect the development of
diabetes mellitus.

From the analytical point of view, one possible way to better
understand interactions between cells and the functioning of com-
plex biological systems relies on the modern theory of complex net-
works31. Network concepts have been successfully applied on various
scales of living organisms ranging from the organization of single

cells32 to that of entire ecosystems33. From the viewpoint of clinical
applications, the greatest progress in this context has been done in
the field of neuroscience34. The modern neuroimaging technologies
allow the acquisition of comprehensive datasets of anatomical or
functional connection patterns in the human brain, thereby provid-
ing new insights into the structure and functionality of healthy
human brain as well as new insights into many brain disorders35.
Impaired and disrupted complex brain networks were reported in
autism36, schizophrenia37, and multiple sclerosis38. Moreover, recent
investigations of functional network analysis exceed the stationary
representation by focusing on dynamical tracking of the changes in
brain activity associated with task performance. It has been shown
that the brain’s network organization reconfigures due to cognitive
efforts39, dynamic changes in the sensory environment40, learning
processes41, and during stroke recovery processes42.

While being well acknowledged in the field of neuroscience, the
application of network concepts has not yet received very much
attention at the tissue level, where individual cells represent the nodes
of a network. Several tissues are often organized as networks, they
evolve in time and their cells can be regarded as dynamic systems,
which interact with each other. But they have not been studied as
such, predominantly due to a lack of experimental techniques that
would enable the necessary assessment of function in a large number
of cells simultaneously, as noninvasively as possible, and over longer
periods of time. First endeavors combining fMCI and graph-theor-
etical approaches were conducted on pituitary endocrine cells43–45.
We and others succeeded in applying these methodologies to study
the activity of beta cell populations11,24,46. In particular, in our pre-
vious study we showed that the functional connectivity extracted on
the basis of [Ca21]i dynamics exhibits small-world topological fea-
tures, which are most pronounced in the regime of high glucose
stimulation46. This finding was later confirmed by Hodson and cow-
orkers11. Recently, these techniques were also successfully applied at
uncovering the functional cellular connectivity in a network of
astrocytes47.

In the present study, we continue our quest to explore functional
heterogeneity in beta cells in islets of Langerhans in situ by applying
advanced analytical tools from the realm of complex network theory.
The tools have been applied on long temporal traces obtained by
confocal fMCI of beta cells stimulated in a stepwise manner with a
range of glucose concentrations from the substimulatory concentra-
tion of 6 mM to the above-physiological, but traditionally often used
12 mM glucose. Employing this experimental approach, we dem-
onstrate a modular nature of mouse islets, revealing a multiunit
organizational principle in a structure with an apparently homogen-
eous microanatomy and even largely synchronous activity in terms
of traditional physiological measures.

Results
Confocal fMCI imaging was used to monitor [Ca21]i signals eman-
ating from Oregon Green 488 BAPTA-1 (OGB-1)-loaded beta cells
in acute tissue slices (see Methods). The temporal evolution of
[Ca21]i in a typical beta cell under progressive stepwise stimulation
with glucose from 6 mM to 12 mM is shown in Fig. 1. As expected,
the frequency of oscillations [Ca21]i as well as the basal [Ca21]i level
increase with increasing concentrations of glucose. The inset shows a
segment of the [Ca21]i trace of the same cell x(t) after subjecting it to
ensemble empirical mode decomposition (EEMD) (see Methods).

We proceeded with the sliding window correlation analysis of beta
cell dynamics in order to examine the temporal evolution of the
average correlation coefficient Ravg. Results shown in Fig. 2 reveal
that the level of correlation progressively increases with increasing
concentrations of glucose. For the calculation of correlations and for
the following network constructions we used, [Ca21]i traces that were
subjected to EEMD in order to exclude baseline trends. These varia-
tions of the baseline activity are the so called slow [Ca21]i oscillations
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and most probably reflect glycolytic oscillations in some cells of the
islet and not the rapid [Ca21]i oscillations that spread from cell to cell
by means of depolarization waves and are the subject of this study48.
In addition, fluctuations in baseline trends could be an experimental
artefact due to drifts in the perifusion chamber. Furthermore, we
verified if a similar behavior can be observed also in other islets,
subjected to similar protocols. Indeed, results shown in Fig. S1 reveal
that a very similar temporal evolution of the average correlation
coefficient Ravg can be observed in three other islets as well, when
the concentration of glucose is progressively increased.

Functional connectivity maps were constructed on the basis of
pairwise correlations between [Ca21]i signals of individual cells.
Two cells were considered to be connected if their Pearson prod-
uct-moment correlation over a certain time interval Dt exceeded a
predetermined threshold value Rth (see Methods). Fig. 3 features the
beta cell functional network architectures for different concentra-

tions of glucose. We can observe that for low stimulation levels
(#8 mM) only isolated and rarely synchronized activities are
detected. With increasing concentrations of glucose, the network
becomes denser, which reflects the increase of the average correlation
coefficient shown in Fig. 2. Furthermore, it can be observed that the
beta cell functional network is modular. Namely, well pronounced
local communities are identified in which mostly interactions
between nearest neighbors are present. It appears that the beta cell
syncytium is structured in several sub-networks in each of which the
degree of synchronization between the cells is very high. These sub-
compartments are strongly segregated at lower concentrations of
glucose, whereas for high concentrations they become more integral,
yet still well expressed and localized. Thus, it appears that for differ-
ent levels of stimulation the synchronization activity of beta cells is
regulated in segregated local clusters. Furthermore, this localized
organization suggests that physical constraints drive the structure
of the beta cell functional network. A more precise tracking of the
temporal evolution of the beta cell functional network by progres-
sively increasing concentrations of glucose can be observed in the
Supplementary video S1. In order to further corroborate our find-
ings, we show in Fig. S2 beta cell functional networks of three addi-
tional islets (the same as in Fig. S1) subjected to similar protocols,
under 8 mM and 12 mM glucose stimulation. Evidently, in all three
cases the networks are sparse and very segregated in 8 mM glucose,
whereas in 12 mM glucose they are much more dense and intercon-
nected, but with well-expressed localized communities.

It remains of interest to identify the reasons for the segmentation
into functional sub-compartments. For this purpose we calculated
the frequencies in five largest communities in the network, the cor-
responding EEMD-processed [Ca21]i mean-field signals within indi-
vidual communities xcom

i , and the mean-field signal of the whole
network xnet, at 9 mM and 12 mM glucose. The results for the islet
analyzed and shown in Figs. 2 and 3 are presented in Fig. 4. It can be
observed that the average frequencies under both stimulation levels
are not completely unified. These discrepancies in the frequencies are
principally not a consequence of uncoordinated intercellular activity,
but rather a result of unexecuted oscillations in particular groups of
cells, as it can be seen from the courses of individual mean-field

Figure 1 | Experimentally measured temporal evolution of [Ca21]i in a typical beta cell x9(t) in response to different concentrations of glucose expressed
in relative units (r.u., black line). The blue line denotes stepwise increases in glucose concentration with the respective axis located on the right. In the

inset, a segment of the original signal (grey line) and the corresponding EEMD x(t) (red line) are shown.

Figure 2 | The temporal evolution of the average correlation coefficient
(red line with symbols) and the mean-field signal of EEMD processed
[Ca21]i activity of beta cells (black line). The blue line denotes the

concentration of glucose. In the calculation of the sliding window

correlation analysis (see Methods), Dt was set to 300 s and step Dn to

100 s.
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signals. Furthermore, an inspection of the mean-field signals
(Figs. 4(b) and 4(d)) reveals, that the amplitude of xnet is for the most
of the time noticeably lower than the amplitude of signals in individual
communities xcom

i , thereby indicating that the [Ca21]i dynamics
among communities is not completely phase synchronized. To con-
clude, the existence of communities in the beta cell functional network
can be attributed to a more simultaneous activity as well as to a better
phase synchronization within other three individual groups of cells.
The same behavior is observed also in the three other islets.

To further analyze the organization of interconnected modules of
beta cells, we computed the average correlation coefficient between
cell pairs within each of the communities, Rci

avg. The overall average
correlation in communities Rcum

avg was then defined as the average Rci
avg

for all communities. The results presented in Fig. 5 feature the values
of Rcum

avg for different concentrations of glucose. For comparison, we
additionally calculate the average correlation between all cell pairs in
the network, Rnet

avg. The values of Rcum
avg and Rnet

avg represent the averages
of four different functional networks having altogether 722 nodes
(slices shown in Figs. 3 and S2). Evidently, the correlations between
cell pairs in individual communities are much higher than the cor-
relation at the level of the whole slice, which further supports the idea
of segregated synchronization activities in the islet. These findings
are qualitatively independent of the choice of the connectivity
threshold Rth (see Fig. S3).

To describe the temporal evolution of the network characteristics
more quantitatively, we calculated several network measures (see
Methods) at different concentrations of glucose. For a more precise
and reliable quantification, the calculations were performed for four
different islets (the same as shown in Figs. 3 and S2). In Fig. 6 we
present the results showing the network measures for each concen-
tration of glucose. The light grey lines with symbols denote values in
individual islets and the thick red line with symbols signifies the
average over all four functional networks. Quite considerable dis-

crepancies in absolute values of network metrics can be observed,
which reflect the inter-islet variability, whereas most notably, the
functional relationship between different network metrics and glu-
cose concentration is very similar in all four islets.

In Fig. 6(a), the average degree of cells kavg is shown as a function of
glucose concentrations. Its increase at higher concentrations of glu-
cose is related to a greater level of synchronization between beta cells
(see Fig. 2), as the correlation coefficient between more and more cell
pairs exceeded the threshold and consequently the network became
denser. We believe that the higher network degree is a result of a
more pronounced communication via electrical synapses and pos-
sibly also other more long-range-oriented communication mechan-
isms. The average clustering coefficient Cavg is a measure for the
network’s functional segregation and is indicative of small-worldness
of the network49. Results in Fig. 6(b) show that in the beta cell net-
work a prevalence of clustered connectivity around individual cells
was detected, but only for high enough stimulation levels reaching a
plateau value at a glucose concentration of .9 mM. Another mea-
sure of interest is the global efficiency E, which reflects the functional
integration of the tissue such as the traffic capacity of a network in the
form of signal-propagation speed and degree of synchronizability.
Fig. 6(c) features the results for different glucose concentrations. It
can be noticed that for high stimulation levels ($10 mM) an efficient
information exchange throughout the entire network was achieved.

We also focused on the evolution of the modular structure of the
beta cell network. Figs. 6(d) and (e) show the number Nc and average
size nc of communities that change with increasing concentrations of
glucose. Notably, for glucose concentrations .8 mM the networks
are in average composed of around 7 densely interconnected groups
of cells. The size of these communities increases markedly with
increasing concentrations of glucose, but reaches a plateau at
10 mM. Finally, we examined the average length of functional con-
nections Iavg as a function of glucose concentration. This parameter
reflects either prevalent adjacent cell-to-cell communication in case

Figure 3 | Functional networks of beta cells at different concentrations of glucose: a) 6 mM, b) 7 mM, c) 8 mM, d) 9 mM, e) 10 mM, f) 12 mM. Colors

of circles denote the modularity classes (communities). Grey circles signify unconnected cells. The threshold for functional connectivity Rth was set to 0.7.

The number of cells in the examined slice was 200. The positions of nodes correspond to physical positions of cells within the examined islet of

Langerhans.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7845 | DOI: 10.1038/srep07845 4



of short distances or, alternatively, cell-to-cell communication span-
ning over several cells that is mediated either by postganglionic nerve
axons within islet or diffusible paracrine factors such as NO. Fig. 6(f)
reveals that Iavg, similarly to other network metrics, rises between
7 mM and 10 mM glucose, while for concentrations .10 mM the
average link length remained more or less constant. Notably, at high

levels of stimulation, the average range of interactions between beta
cells is around 45 mm.

Finally, to be able to ascribe the observed effects upon network
metrics to increasing concentrations of glucose, we had to assess
whether there are any time-dependent increases in parameter values
in constant glucose. For this purpose, we analyzed eight additional
islets. Four of them were stimulated with 8 mM and four of them
with 12 mM of glucose for the entire period of stimulation. For all of
them we calculated the temporal evolution of the same network
metrics as presented in Fig. 6. Results in Fig. S4 reveal that the values
obtained during constant stimulation with 8 mM and 12 mM glu-
cose were comparable with the values obtained for the respective
concentrations during stepwise stimulation. Additionally, with the
exception of Nc, on average all parameters displayed lower values in
8 mM glucose than in 12 mM glucose throughout the entire period
of stimulation. Finally, although beyond the scope of this paper, a
clear trend toward decreasing parameter values with time was
detected for constant long-term stimulation with 12 mM glucose.

Discussion
Individual or uncoupled beta cells have been found to be intrinsically
heterogeneous and as such incapable of collectively adjusting their
insulin secretion rates in accordance with blood glucose levels.
Intercellular communication via gap junctions attenuates the hetero-
geneous nature of beta cells by synchronizing their activity and sup-
pressing any subtreshold responses as well as recruiting high glucose
responders of individual beta cells, thereby representing the fun-
damental mechanism ensuring whole body energy homeosta-
sis25,26,50,65. In this study we obtained additional insight into these
issues by analysing how the functional network of beta cells changes

Figure 4 | Frequency distributions within 5 largest communities under 9 mM (a) and 12 mM (c) glucose. Grey dots denote frequencies of individual cells

and the red crosses signify the average frequency in the given community. It can be observed that the frequencies are in average higher under 12 mM

glucose stimulation, and that the average values in different communities are not exactly the same. The corresponding mean-field signals of

individual communities xcom
i (colored lines) and of the whole network xnet (black dotted line) under 9 mM and 12 mM glucose are shown in panels (b)

and (d), respectively. The amplitude of the whole-network mean-field signal xnet is lower than the amplitude in individual communities, thereby

indicating that individual signals are not completely phase synchronized.

Figure 5 | Average correlation between cell pairs in individual
communities Rcom

avg (red squares) and between all connected cells in the
network Rnet

avg (black circles) at different concentrations of glucose. In the

calculation the connectivity threshold Rth was set to 0.7. The results are

based on the average of four different functional networks (slices presented

in Figs. 3 and S2) having altogether 722 nodes.
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during step-wise elevations of stimulatory glucose levels, ranging
from 6 mM (basal) to 12 mM (high). We showed that for basal
glucose levels the collective dynamics is poorly synchronized resulting
in a sparsely connected functional network. With increasingly stimu-
latory glucose levels, the multicellular system gets more synchronized
and evolves into a more densely connected network with increasingly
expressed small-world topological features, characterized by high glo-
bal efficiency (short internodal distances) and a highly clustered
organization49. This is in agreement with our previous study where
we found that the functional network of beta cells, when exposed to
high glucose levels, exhibits small-worldness46. In terms of the real
network of an islet of Langerhans, the degree of small worldness
probably contributes to the robustness of the network in terms of
its secretory response and determines its resilience to metabolic and
immune perturbations occurring during onset of diabetes mellitus.
Furthermore, for glucose values above 10 mM, the network charac-
teristics seem to saturate. This could be caused by spatial constraints
which prohibit the establishment of too long connections and hence
hinder additional improvements of the evolving functional network.
The origin of the spatial constraints could be similar to those dis-
cussed in neuronal networks. In the brain it is believed that its small-
world functional network is the outcome of an optimization mech-
anism based on minimizing wiring cost and maximizing efficiency34.
Since long-range connections are related to higher cost, this causes
spatial constraints. Since in our study, the connectedness of two cells
depends on the similarity of their signals, which in turn conceivably
depends on the degree of their electrophysiological coupling that is
expected to be high at low membrane and high gap junctional con-
ductance, the abovementioned spatial constraint could have its mech-
anistic substrate in the fact that at a certain level of stimulation, in this
case at 10 mM glucose, the membrane conductance reaches its min-
imum or the junctional conductance its maximum.

Through the process of stimulus-secretion coupling in beta cells,
membrane potential changes in the form of bursts of depolarizations
are translated to oscillations of [Ca21]i and finally to pulses of insulin
secretion. To assess beta cell activity, all three parameters can be used.
Thus, we need to justify the choice of [Ca21]i as a proxy for beta cell
function in our study and comment briefly on the generalizability of
our findings. First, from the technical point of view, due to the
commercial availability of [Ca21]i sensitive fluorescent dyes, their
ease of use and high signal-to-noise ratio, especially as compared
to currently available voltage sensitive fluorescent dyes, [Ca21]i

seems a logical choice. Second, [Ca21]i is a trigger for exocytosis also
in other tissues, where an increase in [Ca21]i is not brought about by
electrical activity and influx of [Ca21]i, but by secretagogue induced
release of Ca21 from internal stores. Some of these tissues are access-
ible to fMCI and the use of [Ca21]i in our case facilitates comparison
between different tissues. Finally and most importantly, in previous
studies by us and other groups employing a wide array of experi-
mental approaches, it was demonstrated that in islets of Langerhans,
the relationship between the changes in membrane potential and
changes in [Ca21]i

7,8,10 as well as between changes in [Ca21]i and
pulses of insulin secretion6,9,17,18 are straightforward. Thus, we are
confident that changes in [Ca21]i are a representative measure of
beta cell activity.

In addition, the binding of Ca21 to [Ca21]i sensitive dyes with
different affinities could influence the nature of the observed changes
in [Ca21]i to depart from the ones occurring in vivo or even lead to
cell death. Employing an armamentarium of [Ca21]i sensitive fluor-
escent dyes with different affinities, we and others have shown largely
comparable [Ca21]i changes, even after prolonged periods of
recording6–10,15,16,46.

In general, in all four analyzed islets, all the network measures
obeyed a similar response with respect to increasing concentrations

Figure 6 | Different network measures at different concentrations of glucose for four islets (the same as shown in Figs. 3 and S2). a) average degree,

b) average clustering coefficient, c) global efficiency, d) average number of communities, e) average size of communities, f) average length of functional

connections. Light grey line with symbols denote the values in individual islets, whereas the thick red lines with crosses indicates the average. In all

calculations the connectivity threshold Rth was set to 0.7.
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of glucose; a steep increase occurred between 8 mM and 10 mM,
whereas above these values a saturation of the network properties
was detected. It seems that within these physiological ranges of glu-
cose, the beta cell network exhibits a high level of plasticity, reflected
by gradual adjustments of the global efficiency and local organization
with respect to the external stimulus. This is in an agreement with the
role of beta cells as primary glucose sensors matching their dynamic
range with normal physiological fluctuations of plasma glucose. For
high concentrations of glucose (10 mM and above), on the other
hand, a saturation of the network characteristics occurs, thereby
indicating the realization of the maximal operating ability. A similar
non-linear behavior within the same physiological range of stimula-
tory glucose concentrations was experimentally observed from
dynamic glucose stimulated insulin release perifusion studies with
isolated islets51. In our experimental setup, it is currently impossible
to study insulin secretion simultaneously with [Ca21]i signals due to
the exceedingly small amount of insulin released by an islet within
tissue slice in the physiological glucose range.

One of our most important findings is the modular nature of the
extracted functional networks, which indicates that beta cells inside
the islet of Langerhans form functional sub-compartments. Cells
within sub-compartments are clustered and their activity is much
more correlated in comparison to the islet as a whole. For low levels
of glucose, only completely segregated local areas occasionally
responded to stimulation. With increasing levels of the stimuli, a
higher number of communities were recruited which got more and
more interconnected, thereby making the whole functional network
more efficient. The modular behavior of the beta cell functional
syncytium was predicted by previous experimental data46.
Stepwise glucose stimulation progressively recruited cells that were
organized in multicellular groups. Recruitment was shown on the
level of glucose metabolism52, insulin synthesis53 and insulin secre-
tion17. Since the global efficiency indicates shorter path lengths
among nodes, it is also referred to as a measure of functional integ-
ration35. This suggests that the islet of Langerhans is capable to
continuously improve from a highly segregated into a more inte-
grated functional network. Since cell-to-cell communication coor-
dinates the activities of individual cells, the modular nature of the
islets could represent an additional spatially regulated insulin secre-
tion mechanism.

Our control experiments with constant stimulation confirmed
that the effects upon network metrics observed during stepwise
stimulation can indeed be ascribed to increasing concentrations of
glucose. In 8 mM glucose, the parameter values continued to
increase after the initial 500 seconds (this was the time period used
for each concentration of glucose during stepwise stimulation), but
this additional increase was clearly insufficient to raise the parameter
values to levels attained in 12 mM glucose. The trend toward a
decrease in parameter values in 12 mM glucose warrants further
investigation, since it might be a network correlate of glucotoxicity,
previously observed in concentrations of glucose higher than
10 mM54. Exploring the effects of constant stimulation with high
concentrations of glucose upon network metrics seems especially
compelling in the light of a recent study demonstrating that lipotoxi-
city can target beta cell connectivity24.

Recent studies analyzing mouse and human islets with a complex
network approach, that have produced largely compatible results
regarding the general connectivity patterns in mouse islets, have
not explicitly detected any communities11,16,24. First, this might be
due the fact that these studies have not specifically looked for the
presence of communities analytically in a way we did in our present
study. One of the reasons that communities have not been detected
before might be that glucose concentration of 11 mM11,24 or 12 mM16

has been used to evoke [Ca21]i responses. As demonstrated in the
present study, at this high concentrations of glucose, the activity of
cells belonging to different communities is most aligned, i.e. the

networks are quite dense, and this might have caused that the func-
tional compartmentalization has escaped our attention.

It was shown that rodent islets are of polyclonal origin and that the
cells stemming from the same progenitor remain spatially clus-
tered55. Thus, it is tempting to speculate that the functional subunits
of an islet of Langerhans might overlap with the embryological sub-
units defined by a common progenitor. This awaits further elucida-
tion, possibly involving human tissue, since recently, a polyclonal
origin of beta cells was also demonstrated for human islets of
Langerhans56.

It was pointed out that a balanced combination of segregated and
integrated information processing, established via efficient small-
word topological features, ensures normal brain functioning57.
Disruptions to this balance can lead for instance to autism, in case
of predominantly segregated information processing58, or schizo-
phrenia in case of predominantly integrated information proces-
sing37. It is reasonable to speculate that anomalies in the functional
connectivity could results in pathological conditions of islets, leading
to diabetes mellitus. Hence, additional experimental and theoretical
studies are needed in order to gain knowledge about how this multi-
cellular system regulates its functioning through cell-to-cell com-
munication in disease states.

Finally, in our study beta cells exhibited greatest responsiveness at
a range of glucose concentrations commonly experienced by animals
in vivo and significantly below the ones traditionally used in electro-
physiological, [Ca21]i imaging and insulin secretion experiments,
where in our hands, the network parameters typically reached their
maxima and stabilized. Perhaps, the supraphysiological concentra-
tions were classically used due to lower inter-specimen variability
and greater reproducibility of results. This study suggests, however,
that in order to learn more about the physiology of beta cells and their
heterogeneity, in future work, lower, more physiological stimulatory
concentrations of glucose should be used.

Methods
Ethics statement. All methods and animal protocols were performed in strict
accordance with all national regulations and ethical guidelines approved by the
Ministry of Agriculture and Environment, Republic of Slovenia (Permit Number:
34401-61-2009/2).

Experimental protocol. Experimental protocols for preparation of acute pancreas
tissue slices and confocal [Ca21]i imaging were described in detail previously16. In
brief, tissue slices were cut from pancreata of 10–20 week old NMRI mice of either sex.
After sacrificing the animals by cervical dislocation, low-melting point 1.9% agarose
in extracellular solution (ECS, consisting of (in mM) 125 NaCl, 26 NaHCO3, 6
glucose, 6 lactic acid, 3 myoinositol, 2.5 KCl, 2 Na pyruvate, 2 CaCl2, 1.25 NaH2PO4, 1
MgCl2, 0.5 ascorbic acid) at 40uC was injected into the proximal common bile duct
clamped at the papilla of Vater. Small blocks of tissue from the agarose-injected
pancreas were cut with vibratome (Leica vt1000) into 140 mm-thick slices in an ice-
cold ECS continuously bubbled with a gas mixture (95% O2 and 5% CO2, pH of 7.4).
Slices were incubated in a calcium dye loading solution composed of 6 mM Oregon
Green 488 BAPTA-1 AM, 0.03% Pluronic F-127 (w/v) and 0.12%
dimethylsulphoxide (DMSO, v/v) in HEPES-buffered saline (HBS, consisting of (in
mM) 150 NaCl, 10 HEPES, 6 glucose, 5 KCl, 2 CaCl2, 1 MgCl2; titrated to pH 5 7.4
using 1 M NaOH) for 50 minutes at room temperature and protected from light.

Confocal [Ca21]i imaging using OGB-1 was performed on a Leica TCS SP5 AOBS
Tandem II upright confocal system using a Leica HCX APO L 203 water immersion
objective (NA 5 1.0). The dye was excited by an argon 488 nm laser. The emitted
fluorescence in the range of 500–700 nm was collected by Leica HyD detector.
Individual slices were imaged in a temperature-controlled bath chamber at 37uC
(TC05, Luigs & Neumann) mounted on the microscope and continuously perifused
with ECS. Sampling rate was 0.5–1 Hz at 512 3 512 pixels. The [Ca21]i oscillations
were analyzed off-line employing custom-made scripts.

Analysis of time series. Ensemble empirical mode decomposition. The recorded time
series were subject to Huang-Hilbert type empirical model decomposition59 in order
to retrieve baseline trends. In this manner, we were able to extract undistorted [Ca21]i

dynamics of individual cells. In particular, we used the upgraded ensemble empirical
mode decomposition (EEMD) proposed by Torres et al.60. The recorded time series
x
0
(t) were decomposed into the so called intrinsic mode functions (IMFs). Initially,

white noise wi(t) in the range wi(t) g [20.1,0.1] is added to the original time series:
x
0

i(t)~x
0
(t)zwi(t), where i refers to the i-th realization of white noise at time t. Then,

local maxima and minima are detected in the signal x
0

i(t). We separately interpolated
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cubic spline lines through the detected maxima and minima and created an upper and
lower envelope through them. Their mean value m1(t) and the difference h1(t)
between the time series x

0

i(t) and the mean m1(t) was calculated. The process was
repeated to ensure more symmetric wave profiles58. In the next repetition h1(t) was
treated as the input. Again the upper and lower envelopes were constructed on the
basis of the detected minima and maxima, and the difference h11(t) was calculated
between the mean of the envelopes m11(t) and h1(t). In general, the process was
defined as follows:

h1k~m1k{h1(k{1), ð1Þ

where k stands for the k-th repetition of the procedure described above. The process
was repeated until the standard deviation (SD) in the difference between h1k and
h1(k21) was above a predefined threshold (in our case 0.0001). Afterwards, h1k became
the first intrinsic mode during the i-th generation of white noise IMFi

1. This mode
contained the fastest time scale. In order to calculate other intrinsic modes of the
signal, we took the signal x

0

i(t) and calculated the residue ri(t)~x
0

i(t){IMFi
1. Since

IMFi
1 was excluded from ri(t) we repeated the process described above on the signal

ri(t) and generated the second mode IMFi
2. One can continue the process of

decomposition until the residual becomes a monotonic function ri,n(t). Hence the
signal x

0

i(t) can be expressed as:

x
0

i(t)~
Xn

j~1

IMFi
j zrj,n(t) ð2Þ

The true IMFs of the signal x
0
(t) were than calculated as the average over all m

realizations of white noise as:

IMFj(t)~
1
m

X
t

Xm

i~1

IMFi
j (t): ð3Þ

The true monotonic characteristics rn(t) of the signal x
0
(t) were calculated in the same

manner:

rn(t)~
1
m

X
t

Xm

i~1

ri,n(t): ð4Þ

Once all the true IMFs and monotonic characteristics of the original signal were
determined, we excluded all the modes except the modes that possessed relevant
dynamical features. Thus, the time series used for subsequent analysis x(t) was
calculated as:

x(t)~x
0
(t){rn(t){

X
iv8

IMFi(t): ð5Þ

Analysis of time series correlations. For the characterization of dynamical correlations
between beta cells we calculated the correlation coefficient between the signals of the
i-th and j-th cell, defined as follows:

Rij~

P
½�xi{xi(t)�½�xj{xj(t)�

sxi sxj

, ð6Þ

where xi and xj are the mean values of the time series xi(t) and xj(t), and sxi and sxj the
corresponding standard deviations. The correlation coefficient Rij indicates the linear
relationship between the dynamics of the i-th and the j-th cell. Values of Rij are
bounded within [21,1], whereby 21, 0 and 1 signify anti-correlation, no-correlation
and complete correlation, respectively. In order to describe the level of global cor-
relation in the whole slice, we calculated the average correlation coefficient:

Ravg~
1

N(N{1)

XN

i=j

Rij ð7Þ

For the visualization of the temporal evolution of the average correlation coefficient,
we made use of the sliding window correlation analysis. In particular, we calculated
the average correlation coefficient between all pairs of cells in the interval Dt and
shifted it throughout the time series with a step Dn.

Construction and characterization of functional beta cell networks. Extraction of
functional networks from Ca21 signals. The adjacency matrix d(t) of the evolving
functional network was constructed according to the correlation coefficients Rij(t)
between cells pairs. Two cells i and j were regarded as connected in a given time
interval Dt if the correlation coefficient Rij(t) exceeded or equaled a threshold value
Rth. The value of Rth was selected in accordance to the corresponding R2, in such a way,
that at least 50% of the variation in system, can be explained with a linear relationship
among a cell pair (we use Rth 5 0.7 in the most of the calculations). These
thresholding of the correlation matrix leads to a time-dependent connectivity matrix,
whose ij-th element dij(t) equals 1 if the nodes i and j are connected in the interval Dt
and 0 otherwise. A similar methodology was used for extraction of the functional
connectivity patterns elsewhere34,46.

Node degree and average degree. In an undirected network the degree of a node ki

equals the number of direct edges connecting it to its neighbors. By knowing the
individual node degrees we computed the overall degree kavg of the network as the
average over all ki.

kavg~
1
N

XN

i~1

ki: ð8Þ

Edges among individual nodal pairs reflect well synchronized mutual dynamical
behavior. Therefore, the degree of a cell ki corresponds to the number of cells with
similar time courses. Higher average degree signifies a more synchronized collective
behavior of the system.

Clustering coefficient. Functional segregation occurs within highly interconnected
groups of nodes. A common way to find such groups is to compute the local clustering
coefficient Ci of individual nodes. We implemented the method introduced by Watts
and Strogatz61. The local clustering coefficient Ci of the i-th node is defined as:

Ci~
2ne

ki(ki{1)
, ð9Þ

whereby ne stands for the number of existing edges between the neighbors of the i-th
node and the term ki(ki 2 1)/2 reflects the maximal number of possible edges between
all its neighbors. The average clustering coefficient Cavg was then computed as the
mean value of all Ci.

Global efficiency. A commonly used measure to characterize a network’s integration
of individual nodes is the network’s global efficiency Eavg. In order to compute Eavg,
one shall compute all the shortest paths lengths lij between all pairs of nodes in the
network. Afterwards, Eavg is computed as follows49:

Eavg~
1

N(N{1)

XN

i=j

1
lij
: ð10Þ

Community structure. A community is a partition of a network or a sub-graph in
which the nodes are more densely interconnected as in the rest of the network. We
will refer to the i-th community of the network as ci. We implemented the algorithm
introduced in ref. 62 to arrange nodes into partitions that maximized a measure called
modularity Q. Modularity Q is commonly used as a measure that quantifies how
successful the partitioning of a network was refs. 63, 64 and is defined as:

Q~
1

2m

X
i,j

dij(t){
ki(t)kj(t)

2m

� �
d ci,cj
� �

, ð11Þ

where m~
1
2

X
ij

dij(t), d(ci,cj) is 1 if ci 5 cj and 0 otherwise and ki(t) is the i-th node

degree at time t. The aim of the algorithm is to maximize the modularity by con-
tinuously reshaping the community structure of the network. A new configuration is
accepted if the gain in modularity DQ is positive. The process is repeated until no
further improvement in DQ is achieved and the most likely community structure of
the network is found.
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46. Stožer, A. et al. Functional Connectivity in Islets of Langerhans from Mouse
Pancreas Tissue Slices. PLoS Comput. Biol. 9, e1002923 (2013).

47. Pires, M. et al. Modeling the functional network of primary intercellular Ca21

wave Propagation in astrocytes and its application to study drug effects. J. Theor.
Biol. 356, 201–212 (2014).

48. Bertram, R., Sherman, A. & Satin, L. S. Metabolic and electrical oscillations:
partners in controlling pulsatile insulin secretion. Am. J. Physiol. Endocrinol.
Metab. 293, E890–E900 (2007).

49. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. U. Complex
networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006).

50. Benninger, R. K. P., Head, W. S., Zhang, M., Satin, L. S. & Piston, D. W. Gap
junctions and other mechanisms of cell–cell communication regulate basal
insulin secretion in the pancreatic islet. J. Physiol. 22, 5453–5466 (2011).

51. Buchwald, P. A local glucose-and oxygen concentration-based insulin secretion
model for pancreatic islets. Theor. Biol. Med. Model 8, 20 (2011).

52. Kiekens, R. et al. Differences in glucose recognition by individual rat pancreatic b-
cells are associated with intercellular differences in glucose-induced biosynthetic
activity. J. Clin. Invest. 89, 117–25 (1992).

53. Schuit, F. C., In’t Veld, P. A. & Pipeleers, D. G. Glucose stimulates proinsulin
biosynthesis by a dose-dependent recruitment of pancreatic beta cells. Proc. Natl.
Acad. Sci. U S A 85, 3865–9 (1988).

54. Bensellam, M., Laybutt, D. R. & Jonas, J. C. The molecular mechanisms of
pancreatic b-cell glucotoxicity: recent findings and future research directions.
Mol. Cell Endocrinol. 364, 1–27 (2012).

55. Deltour, L. et al. Polyclonal origin of pancreatic islets in aggregation mouse
chimaeras. Development 112, 1115–1121 (1991).

56. Scharfmann, R., Xiao, X., Heimberg, H., Mallet, J. & Ravassard, P. Beta Cells within
Single Human Islets Originate from Multiple Progenitors. PLoS ONE 3, e3559 (2008)

57. Russo, R., Herrmann, H. J. & de Arcangelis, L. Brain modularity controls the
critical behavior of spontaneous activity. Sci. Rep. 4, 4312 (2014).

58. Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K. & Minshew, N. J.
Functional and Anatomical Cortical Underconnectivity in Autism: Evidence
from an fMRI Study of an Executive Function Task and Corpus Callosum
Morphometry. Cereb. Cortex. 12, 951–961 (2007).

59. Huang, N. E. et al. The empirical mode decomposition and the Hilbert spectrum
for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. Lond. A Mat.
454, 903–995 (1998).

60. Torres, M. E., Colominas, M. A., Schlotthauer, G. & Flandrin, P. A complete
ensemble empirical mode decomposition with adaptive noise. Paper presented at
Acoustics, Speech and Signal Processing (ICASSP): 2011 IEEE International
Conference on, (Czech Republic) Prague (2011, May 22–27). doi: 10.1109/
ICASSP.2011.5947265.

61. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks.
Nature 393, 440–442 (1998).

62. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of
communities in large networks. J. Stat. Mech. 2008, P10008 (2008).

63. Girvan, M. & Newman, M. E. Community structure in social and biological
networks. Proc. Natl. Acad. Sci. U S A 99, 7821–7826 (2002).

64. Newman, M. E. J. Finding community structure in networks using the
eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006).

65. Hraha et al. Phase transition in the multi-cellular regulatory behavior of
pancreatic islet excitability. PLoS Comput. Biol. 10, e1003819 (2014).

Acknowledgments
This work was produced within the framework of the operation entitled Centre of Open
Innovation and Research UM. The operation is co-funded by the European Regional
Development Fund and conducted within the framework of the Operational Programme
for Strengthening Regional Development Potentials for the period 2007–2013,
Development priority 1: Competitiveness of companies and research excellence, Priority
axis 1.1: Encouraging competitive potential of enterprises and research excellence.

Author contributions
A.S., J.D. and M.S.R. conceived and designed the experiments. A.S. and J.D. performed the
experiments. R.M., M.G. and M.M. designed analysis tools and performed the calculations.
R.M., A.S. and M.G. wrote the main manuscript text and prepared the figures. All authors
reviewed the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7845 | DOI: 10.1038/srep07845 9

http://www.nature.com/scientificreports
http://www.nature.com/scientificreports


Competing financial interests: The authors declare no competing financial interests.
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