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Abstract: Upon food digestion, the gut microbiota plays a pivotal role in energy metabolism, thus
affecting the development of type 2 diabetes (DM). We aimed to examine the influence of the compo-
sition of selected nutrients consumed on the association between the gut microbiota and DM. This
cross-sectional study of a general population was conducted on 1019 Japanese volunteers. Compared
with non-diabetic subjects, diabetic subjects had larger proportions of the genera Bifidobacterium and
Streptococcus but smaller proportions of the genera Roseburia and Blautia in their gut microbiotas. The
genera Streptococcus and Roseburia were positively correlated with the amounts of energy (p = 0.027)
and carbohydrate and fiber (p = 0.007 and p = 0.010, respectively) consumed, respectively. In contrast,
the genera Bifidobacterium and Blautia were not correlated with any of the selected nutrients consumed.
Cluster analyses of these four genera revealed that the Blautia-dominant cluster was most negatively
associated with DM, whereas the Bifidobacterium-dominant cluster was positively associated with DM
(vs. the Blautia-dominant cluster; odds ratio 3.97, 95% confidence interval 1.68–9.35). These results
indicate the possible involvement of nutrient factors in the association between the gut microbiota and
DM. Furthermore, independent of nutrient factors, having a Bifidobacterium-dominant gut microbiota
may be a risk factor for DM compared to having a Blautia-dominant gut microbiota in a general
Japanese population.

Keywords: type 2 diabetes; gut microbiota; nutrients consumed; cluster analysis; Balutia; Bifidobacterium

1. Introduction

Type 2 diabetes (DM), a heterogeneous disorder of glucose metabolism characterized
by both insulin resistance and pancreatic β-cell dysfunction, is considered to be a multifac-
torial disease [1,2]. Among the factors that influence its development, the gut microbiota
has recently begun to be studied more closely, as its association with the pathophysiology
of most chronic diseases, including DM, has been reported in various studies in humans
as well as in animal models [3–5]. The gut microbiota is the complex community of mi-
croorganisms living in the intestinal tracts. It is essential for various physiologic processes
and is considered to be an environmental factor responsible for energy metabolism and,
consequently, for metabolic disorders [3–5]. Various studies have shown an association
between the gut microbiota and DM; however, the details of such reports vary, as the taxa
associated with DM differ substantially depending on the studies and/or the geographic
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areas in which they were conducted [6–12]. The reasons for such conflicting results may
stem from environmental factors, which may affect glucose metabolism together with
the gut microbiota and are substantially different depending on the study population.
Although the factors responsible for the above such conflicting results have not been well-
elucidated yet, the nutrients consumed seem to be among these factors. Namely, since
intestinal microorganisms metabolize various diet-derived nutrients into a variety of bioac-
tive compounds, which in turn induce various bioactions, not only the proportion of any
specific microorganism, but also the amount of specific nutrients consumed may affect the
amount of nutrient-derived bioactive metabolites. For example, short-chain fatty acids
(SCFAs), metabolites with various antidiabetic biological functions, are produced from
fiber consumed and have been reported to be increased in a diet-dependent fashion [13–16].
Therefore, the amount of nutrients consumed may have metabolic effects that depend
on the proportion of their corresponding intestinal microorganisms. Furthermore, since
various intestinal microorganisms may not affect glucose metabolism alone, but jointly,
analyses of the independent association of each taxon with DM may not always be reliable.

To examine the association between the gut microbiota and DM precisely in a general
Japanese population, we investigated this association considering selected nutrients con-
sumed and interactions between intestinal microorganisms examined using cluster analyses.

2. Subjects and Methods
2.1. Study Population

Participants were recruited from the Iwaki study, a health promotion study of Japanese
people aged over 20 years that aims to prevent lifestyle-related diseases and prolong
lifespan. The Iwaki study is conducted annually in the Iwaki area of the city of Hirosaki in
Aomori Prefecture, northern Japan [17,18]. The Iwaki study is a population-based study
that involves annual comprehensive health examinations. Participants were recruited from
residents aged over 20 years living in the Iwaki area (number: approximately 9200) through
a public announcement. The Iwaki study itself has no inclusion or exclusion criteria. As
shown in Figure 1, of the 1148 individuals who participated in the Iwaki study in 2016,
74 individuals over 77 years of age were excluded to minimize age-related diversity in
gut microbiota as previously reported [19], as were 55 individuals with incomplete data.
After these exclusions, 1019 individuals (403 men, 616 women) aged 52.4 ± 14.1 years were
included in the present study.
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This study was approved by the Ethics Committee of the Hirosaki University School
of Medicine (No. 2016-028, approved on 27 May 2016), and was conducted in accordance
with the recommendations of the Declaration of Helsinki. Written informed consent was
obtained from all the participants.

2.2. Characteristics Measured

Blood samples were collected in the morning under fasting conditions from a pe-
ripheral vein. Fecal samples were collected within 3 days prior to the study by using a
commercial tube kit (TechnoSuruga Laboratory Co., Ltd., Shizuoka, Japan) and cotton
swabs and were stored at 4 ◦C until the DNA was extracted as previously reported [20–22].
The gut microbiota composition was investigated by applying the quantitative real-time
polymerase chain reaction (q-PCR) method targeting the V3–V4 region of the prokaryotic
16S rRNA genes, as previously described [23]. The proportion of each genus of the gut
microbiota is a composition ratio obtained by dividing the number of read counts of each
genus by the total number of read counts. The measurements of the gut microbiota were
described previously in detail elsewhere [19]. Of the 395 genera detected in our analy-
sis, 15 major genera with a proportion of ≥0.01, which together accounted for 0.857 of
total abundance, were evaluated in the present study. Daily nutritional intake was esti-
mated using the brief self-administered diet history questionnaire (BDHQ), which is a
well-annotated structured self-administered questionnaire invented for Japanese adults to
estimate their daily intakes of energy, and selected nutrients by assessing dietary habits
during the preceding month [20–30]. Although the BDHQ gives values for a large number
of nutrients consumed, only the values of macronutrients and fibers were used here to
simplify this first analysis in order to maximize statistical power and avoid multiple testing
problems. Fiber was used since it is a well-established nutrient associated with DM in
relation with the gut microbiota, as described.

The following clinical characteristics were also measured: height, body weight, body
mass index (BMI), percent body fat (fat (%)), fasting blood glucose (FBG), fasting serum
insulin, glycated hemoglobin (HbA1c), systolic (s) and diastolic (d) blood pressures (BP),
serum levels of low-density lipoprotein (LDL)-cholesterol, triglyceride (TG), high-density
lipoprotein (HDL)-cholesterol, uric acid (SUA), urea nitrogen, creatinine (Cr), and albumin,
and activity levels of aspartate transaminase (AST), alanine transaminase (ALT), and γ-
glutamyl transpeptidase (γGTP) activities. The percent body fat was measured by applying
the bioelectricity impedance method with a Tanita MC-190 body composition analyzer
(Tanita Corp., Tokyo, Japan). HbA1c (%) is expressed as the National Glycohemoglobin
Standardization Program value. All laboratory testing was performed in a commercial
laboratory (LSI Medience Co., Tokyo, Japan) in accordance with vendor protocols. Insulin
secretion was evaluated by performing a homeostasis model assessment of β-cell function
(HOMA-β), based on fasting blood glucose and insulin levels [31]. Insulin resistance was
also assessed based by using homeostasis model assessment (HOMA-R) [31].

DM was defined according to the 2010 Japan Diabetes Society criterion (FBG levels
of ≥126 mg/dL) [32]. In subjects whose FBG levels were not measured, DM was defined
by an HbA1c concentration of ≥6.5%. Those taking medication for DM were also defined
as having DM. Hypertension was defined by a blood pressure of ≥140/90 mmHg or the
use of anti-hypertensive therapy. Hyperlipidemia was defined by an LDL cholesterol level
of ≥140 mg/dL, a triglyceride level of ≥150 mg/dL, or the use of anti-hyperlipidemic
therapy. Alcohol intake status (current drinker or non-drinker) and smoking habits (never,
past, or current) were determined using a questionnaire.

2.3. Statistical Analysis

Data are presented as means ± SD. The statistical significance of the differences in
values between two groups (parametric) and case–control associations between groups
(nonparametric) were assessed by using analysis of variance (ANOVA) and the χ2 test,
respectively. Differences in gut microbiota composition and selected nutrients consumed
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between diabetic and nondiabetic subjects were also evaluated with adjustment for possible
confounding factors. Correlations between the gut microbiota composition and selected
nutrients consumed were evaluated using univariate or multivariate (for independent
associations) linear regression analyses. For multivariate analyses, among characteristics
related to each other and different between the DM and non-DM groups, one characteristic
that showed the lowest p-value was selected as an independent variable, i.e., age, gender,
BMI, systolic blood pressure, and serum levels of TG, UA, Cr and ALT were selected
as possible confounding factors. Based on the four genera found to be independently
associated with DM, subjects were grouped by hierarchical clustering into four major
clusters, each of which seemed to represent subjects with each corresponding dominant
genus, and then were plotted using a principal component (PC) analysis. The association
between DM and each cluster was evaluated by multiple logistic regression analyses with
adjustment for the multiple factors described above. For statistical analyses, HOMA indices,
TG, AST, and ALT were log-transformed (ln) to approximate a normal distribution. For the
correlation analyses with HOMA-R and HOMA-β, subjects with FBG levels of >140 mg/dL
(n = 50) and <63 (n = 42), respectively, were excluded to evaluate such index precisely. A
p-value of <0.05 was considered statistically significant. All analyses were performed using
JMP pro version 16.0 (SAS Institute Japan Ltd., Tokyo, Japan).

3. Results
3.1. Clinical Characteristics of the Study Subjects

The clinical characteristics of subjects based on their diabetic status are shown in
Table 1. In addition to those related to glucose metabolism, most characteristics measured
were significantly different between the DM and non-DM groups, i.e., the diabetic subjects
were older (61.45 ± 10.8 vs. 51.4 ± 14.1, p < 0.001), more obese (e.g., BMI: 25.2 ± 4.2
vs. 22.7 ± 3.3, p < 0.001), hypertensive (71.9% vs. 32.9%, p < 0.001), and hyperlipidemic
(62.5% vs. 36.8%, p < 0.001), and showed modestly deteriorated kidney function compared
with the non-diabetic subjects. However, the proportion of lifestyle-related characteristics,
such as habitual alcohol drinking and smoking, was not significantly different between
these groups.

Table 1. Clinical characteristics of the study subjects based on diabetic status.

Characteristics DM (n = 96) Non-DM (n = 923) p

Number (Gender: M/F) 44/52 359/564 0.188
Age (years) 61.47 ± 10.76 51.43 ± 14.12 <0.001 **
Height (cm) 160.30 ± 9.06 161.35 ± 8.90 0.270

Body weight (kg) 64.72 ± 12.36 59.34 ± 11.27 <0.001 **
Body mass index (kg/m2) 25.15 ± 4.15 22.70 ± 3.26 <0.001 **

Percent body fat 29.25 ± 9.70 25.96 ± 7.96 <0.001 **
Fasting plasma glucose (mg/dL) 129 ± 44.43 87.85 ± 9.56 <0.001 **

HbA1c (%) 7.21 ± 1.31 5.71 ± 0.30 <0.001 **
Fasting serum insulin: IRI (mU/mL) 7.30 ± 4.26 5.06 ± 2.62 <0.001 **

HOMA-R 2.31 ± 1.53 1.23 ± 0.63 <0.001 **
HOMA-β 63.75 ± 166.54 81.00 ± 2.13 <0.001 **

Systolic blood pressure (mmHg) 133.5 ± 18.45 123.10 ± 17.45 <0.001 **
Diastolic blood pressure (mmHg) 79.25 ± 10.60 75.09 ± 12.07 0.001 **

LDL cholesterol (mg/dL) 123.41 ± 37.18 117.21 ± 29.15 0.054
Triglyceride (mg/dL) 128.98 ± 105.11 94.98 ± 61.62 <0.001 **

HDL cholesterol (mg/dL) 58.13 ± 17.36 65.52 ± 17.08 <0.001 **
Serum albumin (g/dL) 4.45 ± 0.34 4.51 ± 0.29 0.056

Serum uric acid (mg/dL) 5.44 ± 1.37 5.05 ± 1.35 0.007 **
Serum urea nitrogen (mg/dL) 15.94 ± 6.79 14.00 ± 4.00 <0.001 **

Smoking (never/ past/ current): n 59/18/19 571/183/168 0.917
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Table 1. Cont.

Characteristics DM (n = 96) Non-DM (n = 923) p

Serum creatinine (mg/dL) 0.84 ± 0.97 0.71 ± 0.18 <0.001 **
AST 26.41 ± 11.00 22.86 ± 9.12 <0.001 **
ALT 29.06 ± 19.42 21.44 ± 13.68 <0.001 **
γGTP 39.69 ± 27.80 33.33 ± 42.63 0.153

Hypertension: n (%) 69 (71.9) 304 (32.9) <0.001 **
Hyperlipidemia: n (%) 60 (62.5) 340 (36.8) <0.001 **
Drinking alcohol: n (%) 42 (43.8) 452 (49.0) 0.330

Smoking (never/ past/ current): n 59/18/19 571/183/168 0.917
p < <0.01 is indicated by **. Data are presented as the mean ± SD or number of subjects (%).

3.2. Differences in the Selected Nutrients Consumed and Proportions of Gut Microbiota Genera
between the DM and Non-DM Groups

Differences in selected nutrients consumed between the DM and non-DM groups
were then evaluated (Table 2). As shown, no differences between these groups were
observed for any selected nutrients consumed. These observations indicate that the diabetic
subjects did not eat more than the non-diabetic subjects, at least regarding the amounts of
macronutrients and total energy.

Table 2. DM-dependent differences in nutrients consumed and gut microbiota composition.

p (Adjusted)

DM Non-DM Non Age and
Gender

Multiple
Factors

Energy (kcal/kg/day) 31.755 ± 10.93 31.998 ± 10.23 0.826 0.142 0.444
Carbohydrate (g/kg/day) 4.197 ± 1.45 4.277 ± 1.43 0.599 0.095 0.720

Protein (g/kg/day) 1.123 ± 0.48 1.198 ± 0.50 0.571 0.292 0.440
Fat (g/kg/day) 0.903 ± 0.35 0.907 ± 0.37 0.922 0.567 0.167

Fiber (g/kg/day)
Total 0.194 ± 0.08 0.189 ± 0.09 0.601 0.107 0.882

Water soluble 0.048 ± 0.02 0.047 ± 0.02 0.783 0.100 0.954
Water insoluble 0.139 ± 0.05 0.136 ± 0.06 0.587 0.108 0.872
Bifidobacterium 0.098 ± 0.11 0.078 ± 0.08 0.024 * <0.001 * <0.001 *

Collinsella 0.044 ± 0.05 0.040 ± 0.05 0.435 0.1648 0.339
Bacteroides 0.088 ± 0.10 0.111 ± 0.08 0.010 * 0.048* 0.057
Prevotella 0.060 ± 0.12 0.049 ± 0.10 0.315 0.8522 0.794
Alistipes 0.018 ± 0.03 0.016 ± 0.02 0.359 0.4956 0.413

Gemmiger 0.025 ± 0.02 0.025 ± 0.03 0.858 0.8266 0.884
Streptococcus 0.037 ± 0.06 0.019 ± 0.03 <0.001 ** 0.001 ** 0.005 **

Roseburia 0.038 ± 0.04 0.046 ± 0.05 0.131 0.022 * 0.020 *
Anaerostipes 0.042 ± 0.05 0.058 ± 0.06 0.017 * 0.1357 0.096

Fusicatenibacter 0.017 ± 0.02 0.021 ± 0.02 0.096 0.1891 0.202
Blautia 0.057 ± 0.04 0.075 ± 0.04 <0.001 ** 0.012 * 0.016 *

Ruminococcus 2 0.045 ± 0.04 0.051 ± 0.06 0.341 0.6327 0.392
Ruminococcus 1 0.034 ± 0.04 0.032 ± 0.05 0.684 0.7635 0.961
Faecalibacterium 0.072 ± 0.05 0.079 ± 0.06 0.231 0.1791 0.315

Lachnospiracea_incertae_sedis 0.019 ± 0.01 0.020 ± 0.01 0.707 0.4297 0.586

p < 0.05 and <0.01 are indicated by * and **, respectively. Data are presented as the mean ± SD or number of
subjects (%). Multiple factors: age, gender, BMI, sBP, and levels of TG, SUA, Cr, and ALT. Ruminococcus species
belong to two different families, Ruminococcaceae and Lachnospiraceae, and, thus, were classified into two
corresponding genera, Ruminococcus 1 and 2.

We then examined differences in the gut microbiota composition between the DM and
non-DM groups (Table 2). Among 15 major genera evaluated in this study, the proportions
of Bifidobacterium, Streptococcus, Roseburia, and Blautia were significantly different between
the DM and non-DM groups, even after adjustment with multiple possible confounding
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factors; the proportions of Bifidobacterium and Streptococcus were increased and those of
Roseburia and Blautia were decreased in the DM group compared with the non-DM group.

3.3. Correlation between the Selected Nutrients Consumed and Gut Microbiota Genera

The correlations between selected nutrients consumed by the subjects and their gut
microbiota genera were then examined (Table 3). After adjustment for possible confounding
factors (age, gender, BMI, sBP, and serum levels of TG, UA, Cr and ALT), the genus Strepto-
coccus was significantly positively correlated with energy consumed (β = 0.075, p = 0.027),
and the genus Roseburia was significantly positively correlated with the proportion of car-
bohydrate and fiber consumed (β = 0.091, p = 0.007, and β = 0.092, p = 0.010, respectively).
In contrast, the genera Bifidobacterium and Blautia were not correlated with any selected
nutrients consumed.

Table 3. Correlation between nutrients consumed and gut microbiota genera.

Bifidobacterium Streptococcus Roseburia Blautia

β p β p β p β p

Energy (kcal/kg/day) −0.017 0.627 0.075 0.027 * 0.043 0.213 −0.019 0.583
Carbohydrate (g/kg/day) 0.004 0.902 0.062 0.063 0.091 0.007 ** −0.022 0.522

Protein (g/kg/day) −0.023 0.493 0.047 0.164 0.010 0.765 −0.032 0.353
Fat (g/kg/day) 0.015 0.653 0.041 0.215 −0.008 0.822 −0.020 0.557

Fiber (g/kg/day)
Total −0.028 0.420 0.015 0.674 0.092 0.010 * −0.049 0.167

Water soluble −0.024 0.486 0.004 0.900 0.091 0.010 * −0.035 0.315
Water insoluble −0.028 0.453 0.020 0.579 0.069 0.010 * −0.049 0.171

p < 0.05 and <0.01 are indicated by * and **, respectively. Data are presented as the mean ± SD or number of
subjects (%). Multiple factors: age, gender, BMI, sBP, and levels of TG, SUA, Cr, and ALT.

3.4. Assessment of Gut Microbiota Genera as Risk Factors for DM

Logistic regression analyses were performed to assess the major gut microbiota genera
as risk factors for DM (Table 4). The genus Bifidobacterium was identified as a significant
risk factor for DM (odds ratio (OR): 1.68, 95% confidence interval (CI): 1.33–2.13), whereas
the genera Roseburia and Blautia were identified as factors negatively associated with DM
(OR: 0.54, 95% CI: 0.30-0.96 and OR: 0.45, 95% CI: 0.24-0.86, respectively) even after adjust-
ment for multiple factors as described above. Furthermore, because the genus Roseburia
was significantly correlated with the proportion of carbohydrate and fiber consumed, the
risk posed by the genus Roseburia in the gut microbiota was evaluated with further ad-
justment for such factors; the negative association remained significant even after this
adjustment (OR: 0.53, 95% CI: 0.30-0.95, and OR: 0.54, 95% CI: 0.30-0.96 for adjustments
with carbohydrate and fiber, respectively).

Table 4. Risk of gut microbiota genera for DM.

Univariate Multiple Factors Adjusted

OR 95%CI p OR 95%CI p

Bifidobacterium (per 0.1) 1.28 1.03–1.59 0.026 * 1.68 1.33–2.13 <0.001 *
Streptococcus (per 0.1) 2.27 1.51–3.40 <0.001 ** 1.47 0.93–2.32 0.107

Roseburia (per 0.1) 0.68 0.41–1.12 0.132 0.54 0.30–0.96 0.027 *
Blautia (per 0.1) 0.31 0.17–0.58 <0.001 ** 0.45 0.24–0.86 0.011*

p < 0.05 and <0.01 are indicated by * and **, respectively. Data are presented as the mean ± SD or number of
subjects (%). Multiple factors: age, gender, BMI, sBP, and levels of TG, SUA, Cr, and ALT.

3.5. A Bifidobacterium-Dominant Gut Microbiota Is a Risk Factor for DM

To further evaluate the association of gut microbiota composition with DM, we
grouped the subjects based on the four abovementioned genera found to be indepen-
dently associated with DM by hierarchical clustering into four major clusters, each of which
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seems to represent subjects in whom the corresponding genus is dominant (Figure 2). The
association between DM and each cluster was evaluated by conducting multiple logistic
regression analyses with adjustment for the factors described above (Table 5). A logistic
regression analysis that used the Blautia-dominant group as the reference, which is the
most negatively associated genus with DM as shown in Table 4, revealed that the Bifidobac-
terium-dominant group was the only one significantly positively associated with DM after
adjustment with multiple factors as described previously (OR 3.97, 95% CI 1.68–9.35).
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Figure 2. Plots of study subjects clustered by the genera Bifidobacterium, Streptococcus, Roseburia,
and Blautia using a principal component (PC) analysis. Subjects are plotted in four different colors
corresponding to each of four evaluated clusters. Eigenvectors are also shown as arrows with their
representing genus names attached.

Table 5. Risk of gut microbiota clustered based on four associated genera for DM.

Univariate Age and Gender
Adjusted

Multiple Factors
Adjusted

OR 95%CI p OR 95%CI p OR 95%CI p

Blautia
dominant Ref - - Ref - - Ref - -

Roseburia
dominant 1.72 0.30–1.11 0.101 1.44 0.74–2.80 0.278 1.54 0.78–3.04 0.218

Streptococcus
dominant 4.01 1.85–8.70 <0.001 ** 2.28 1.02–5.10 0.044 * 2.10 0.90–4.87 0.084

Bifidobacterium
dominant 2.57 1.18–5.62 0.018 ** 3.43 1.52–7.75 0.003 ** 3.97 1.68–9.35 0.002 **

p < 0.05 and <0.01 are indicated by * and **, respectively. Data are presented as the mean ± SD or number of
subjects (%). Multiple factors: age, gender, BMI, sBP, and levels of TG, SUA, Cr, and ALT.

4. Discussion

In this cross-sectional study of a general Japanese population, we found that, after
adjustment with multiple possible confounding factors, the proportion of the genera
Bifidobacterium and Streptococcus in the gut microbiota were positively associated with DM,
and the proportions of the genera Roseburia and Blautia were negatively associated with DM.
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These findings indicate that the genera Bifidobacterium and Streptococcus are risk factors for
DM, whereas the genera Roseburia and Blautia are protective factors against DM. Next, we
evaluated the influences of selected nutrient factors on these associations because the gut
microbiota has been reported to be affected by the nutrients consumed [33,34]. The analyses
revealed positive correlations between the genera Streptococcus and Roseburia in the gut
microbiota with energy consumed and the amounts of carbohydrate and fiber consumed,
respectively, but no correlation between the proportion of the genera Bifidobacterium or
Blautia with any nutrient factors. Together, these findings may indicate that the DM risk
posed by increased energy consumption can be blamed, at least in part, on an increase in
the proportion of the genus Streptococcus in the gut microbiota and that higher carbohydrate
and fiber consumption may decrease the risk of DM by increasing the proportion of the
genus Roseburia in the gut microbiota. In contrast, the associations between the genera
Bifidobacterium and Blautia and DM were independent of selected nutrients consumed,
which suggests that there is no effective diet for changing the proportion of these genera in
the gut microbiota to reduce the risk of DM.

As described, intestinal microorganisms metabolize various diet-derived nutrients to
bioactive compounds, which appear to induce not only positive but also negative metabolic
states. For example, indoles produced from tryptophan induce interleukin-22 production,
trimethylamine produced from choline is further converted into trimethylamine-oxide,
which acts pro-inflammatory, secondary bile acids converted from primary bile acids
act anti-inflammatory, and SCFAs produced from dietary fibers are involved in various
beneficial metabolic pathways [13,35–38]. However, although the biological effects of these
metabolites have been widely evaluated, the changes in these metabolites in response
to nutrients consumed, particularly in relation with the gut microbiota, remain poorly
understood. Namely, SCFAs have been reported to be increased in a diet-dependent
fashion [13–16], but they are produced not only by proposed metabolically beneficial
microorganisms but also by potentially pathogenic microorganisms [39,40]. Therefore,
the observed associations between DM and the gut microbiota depending on nutrients
consumed seem to warrant further analyses with more subjects and/or at the level of
species or subspecies.

Because the intestinal microorganisms that compose the gut microbiota seem to affect
glucose metabolism jointly rather than independently, we then grouped the subjects accord-
ing to the four genera observed to be independently associated with DM by cluster analysis,
which revealed four clusters each corresponding to a dominant genus, to examine such
joint effects. The analyses showed that subjects with a Bifidobacterium-dominant gut micro-
biota were highly associated with having DM, whereas subjects with a Blautia-dominant
gut microbiota were substantially negatively associated with having DM. Interestingly, as
shown in Figure 1, when the subjects were plotted using a PC analysis, subjects with genera
Bifidobacterium- and Blautia-dominant gut microbiota were not plotted fully on opposite
sides, which indicates that each genus does not become a risk factor for DM on its own, but
rather jointly, thus supporting the importance of analyses with mutual influences among
microorganisms in the gut microbiota.

Although the associations of the genera Streptococcus, Roseburia, and Blautia with DM
seem to be mostly concordant with the findings of prior studies [3–5], the observed positive
association between genus Bifidobacterium and DM does not agree with most previous
reports [6–11]. This conflicting result may stem from differences in the methodology
used and/or study population. Notably, the proportion of genus Bifidobacterium in the
gut microbiota appears to be substantially different depending on the study population.
Study populations that showed a negative association between genus Bifidobacterium and
DM generally had a relatively low proportion of genus Bifidobacterium (0.019~0.072) [6–8],
while one unique study with opposite results used a Japanese population with a relatively
high proportion of genus Bifidobacterium in the gut microbiota (~0.16) [12]. These findings
suggest the possibility of a U-shaped association between genus Bifidobacterium and DM, i.e.,
a negative association when the proportion of genus Bifidobacterium in the gut microbiotas
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of the study population is low, but a positive association when the proportion of genus
Bifidobacterium in the gut microbiotas of the study population is high. Our study population
belongs to the same ethnicity as the study population described above that showed a
positive association between genus Bifidobacterium and DM and had a similarly relatively
high proportion of genus Bifidobacterium, 0.080. Furthermore, correlation analyses of genus
Bifidobacterium with indices representing glucose metabolism, such as FBG and HOMA-R,
indicated such U-shaped associations with inflection points at 0.149 and 0.133, respectively
(Figure 3). Together, an increased proportion of genus Bifidobacterium in the gut microbiota
seems to be a risk factor for DM, at least in populations with a high proportion of this
genus, or Japanese populations.
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The effect of dietary intervention on glucose metabolism is often explained as being
partly caused by changes in the gut microbiota, although the reported results are con-
flicting [7,11,12,41,42]. A recent systematic review assessing such effects in subjects with
DM reported no significant changes in the proportions of bacteria in genera including
Bifidobacterium and Roseburia upon the dietary intervention [43]. Similarly in our study,
the proportion of genus Bifidobacterium in the gut microbiota did not correlate with any
nutrient factors, which may suggest that improvement in glucose metabolism by a dietary
intervention cannot be simply explained as its effects on increasing the genus Bifidobac-
terium in the gut microbiota. In contrast, the genus Roseburia was found to be positively
correlated in our study with the proportion of carbohydrate and fiber consumed. Roseburia
produce short-chain fatty acids (SCFAs) from non-digestible carbohydrates, and SCFAs
activate G-protein-coupled receptors (GPCRs), through which SCFAs exert various biologi-
cal functions that are beneficial for the development of DM such as increasing the levels
of glucagon like peptide-1 (GLP-1) and peptide tyrosine-tyrosine (PYY) [44,45]. Therefore,
this correlation indicates that dietary intervention to increase the carbohydrate or fiber
consumed may improve glucose metabolism at least, in part, by increasing the proportion
of the genus Roseburia in gut microbiota and, thus, increasing the amounts of SCFAs.

Like the genus Roseburia, the genus Blautia is also known to produce SCFAs and to
be inversely associated with various diseases including DM [19,46,47]. However, no cor-
relations between genus Blautia and any selected nutrients consumed were observed in
this study. Thus, although an increased proportion of the genus Blautia in the gut micro-
biota exerts substantial effects on the pathophysiology leading to DM, selected nutrients
consumed may not have a substantial influence on the proportion of the genus Blautia
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in the gut microbiota, i.e., the genus Blautia seems to be a protective factor against DM
independent of the amounts of selected nutrients consumed.

The present study has both strengths and limitations. Its strengths include the statis-
tical adjustments made for multiple factors that could have confounded the results and
its analysis of a general population-based sample. It also had the following limitations.
The participants were selected from a health promotion study, not from a population un-
dergoing ordinary health check-ups, and thus may not accurately represent the general
population. Additionally, we examined associations between DM and microorganisms in
the gut at the genus level because such associations at the phylum level have been exten-
sively reported. Extended analyses at other levels of taxonomy, such as the species level,
may provide even more detailed information on this issue. Furthermore, the influence of
the macronutrients consumed on the associations with DM was evaluated to simplify the
analyses and avoid the issue of multiple testing. However, the micronutrients consumed
may also have some influence on the gut microbiota and its association with DM, and thus
analyses of micronutrients consumed should be examined in future work. This study was
observational, i.e., no nutrient factor-based interventions were conducted. Therefore, the
effects of an intervention using any nutrient factors could not be evaluated precisely. Drugs
used by the study participants were also not evaluated, even though some drugs used to
treat DM, such as metformin, have been repeatedly reported to alter gut microbiota [11,48].
As the subjects of this study were participants of a health care check-up, more than half of
the diabetic subjects (56 out of 96) did not take any drugs to treat DM, and the prevalence of
metformin usage has been reported to be much lower in Japan compared with that in other
countries such as Taiwan, Hong Kong, and the United States [49] Therefore, the influence of
drugs taken by the study participants on the results reported here may not be so substantial.
Finally, because our study was cross-sectional and not a cohort study, we could not assess
the cause–consequence relationship between the gut microbiota and DM; therefore, cohort
analyses are warranted to reveal the relationship between the gut microbiota composition
and the incidence of DM.

5. Conclusions

The proportion of the genera Streptococcus and Bifidobacterium in the gut microbiota was
positively associated with DM, and those of the genera Roseburia and Blautia were negatively
associated with DM. The observed positive correlation between the proportions of the
genera Streptococcus and Roseburia with energy consumed, and amounts of carbohydrate
and fiber consumed, respectively, indicate the possible involvements of nutrient factors in
the association between the gut microbiota and DM. Furthermore, independent of nutrient
factors, subjects in a general Japanese population with a Bifidobacterium-dominant gut
microbiota seem to be at higher risk for DM, while those with a Blautia-dominant gut
microbiota seem to be more protected against DM. The results reported here seem to
reinforce the importance of considering nutritional factors in examining the association
between gut microbiota and DM and the joint effects of gut microbiota on that association,
and may lead to the discovery of which nutritional interventions are appropriate for which
individuals in the future.
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