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The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the third highly pathogenic

coronavirus to emerge in the human population in last two decades. SARS-CoV-2 spread from Wuhan,

China, across the globe, causing an unprecedented public healthcare crisis. The virus showed remark-

able age dependent pathology, with symptoms resembling common cold in most adults and children

while causing more severe respiratory distress and significant mortality in older and frail humans. Even

before the SARS-CoV-2 outbreak infectious diseases represented one of the major causes of death of

older adults. Loss of immune function and reduced protection from infectious agents with age − immu-

nosenescence - is a result of complex mechanisms affecting production and maintenance of immune

cells as well as the initiation, maintenance and termination of properly directed immune responses.

Here we briefly discuss the current knowledge on how this process affects age-dependent outcomes of

SARS-CoV-2 infection.
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SARS-CoV-2 virus and COVID-19 infection

In December 2019, a novel coronavirus was identified as

cause of outbreak of severe respiratory illnesses in the city

of Wuhan, China.1 The virus shared 79.6% sequence iden-

tity to SARS-CoV, which caused a small global outbreak in

2002, and was thus named SARS-CoV-2. Clinical disease

caused by the virus was termed Coronavirus disease-19

(COVID-19). The virus spread globally and in March 2020

World Health Organization declared the outbreak a global

pandemic.2 As of early April, 2021 the virus has infected
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more than 130 million people globally and caused >3 mil-

lion deaths.

Of the four families of Coronaviridae (alpha, beta,

gamma, and delta), all human corona viruses (CoV) belong

to either alpha (229E, NL63) or beta (OC43, HKU1, SARS-

CoV,MERS-CoV, and SARS-CoV-2) family,3 with the lat-

ter containing all three CoV highly pathogenic to humans.

Four seasonal cold human CoVs (229E, NL63, OC43, and

HKU1) account for 10% to 30% of upper respiratory tract

infections4 manifested as common cold, although even

these viruses can cause more severe symptoms in frail older

subjects.5

CoV are single-strand RNA viruses with four struc-

tural proteins - S (spike), E (envelope), M (membrane),

and N (nucleoprotein) - and multiple ORFs encoding

non-structural and accessory proteins.6 Both SARS-

CoV-1 and SARS-CoV-2 enter cells via the interaction

between the viral spike protein and the host cell surface

enzyme angiotensin-converting enzyme 2 (ACE2),1,7

although there is evidence for other cell surface mole-

cules such as CD147 (Basignin)8 and the serine protease

TMPRSS29 as coreceptors and/or entry co-factors.

SARS-CoV-2 binds to ACE2 with 10-20 higher affinity
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than SARS-CoV-1, partially explaining the difference in

infectivity.10 ACE2 catalyzes the hydrolysis of angioten-

sin II and is a critical regulator of renin-angiotensin sys-

tem and downregulation of ACE2 via virus binding

results in disruption of renin−angiotensin system.11

ACE2 has a protective role in lung,12 kidney and heart

injury.13 Therefore at least a part of pathology could be

a direct consequence of virus binding to the host ACE2

receptor. This is consistent with findings that injection

of SARS-CoV-1 spike protein into mice worsens acute

lung failure in vivo.7 ACE2 is expressed in multiple tis-

sues and various epithelial cell types in the respiratory

airway, with highest expression in nasal epithelial

cells,14 pointing to these cells as possible loci of original

infection. SARS-CoV-2 has a direct cytopathic effect on

human airway epithelial cells.15 Viral shedding primarily

occurs from upper respiratory tract but fecal shedding

also occurs16 and is often used for early epidemiological

detection.17

Person to person transmission is thought to occur mostly

by droplets, although evidence supports the possibility of

airborne transmission to a lesser extent.18 Fomite transmis-

sion, although possible, presents low risk in real life situa-

tions.19 The possibility of fecal-oral transmission also

cannot be excluded.20,21 Pharyngeal virus shedding is high-

est before or early after onset of symptoms16,22 and the

majority of transmission is estimated to occur from pre-

symptomatic or asymptomatic subjects,23 explaining why

traditional epidemiological measures were unsuccessful in

stopping SARS-CoV-2 spread.

Incubation period is 5.7 days on average24 but SARS-

CoV-2 infection remains completely or largely asymptom-

atic in 20-40% people.25,26 In symptomatic humans, disease

severity ranges from mild flu-like disease to severe respira-

tory syndrome and death. Clinical picture is nonhomoge-

neous with most common symptoms being fever and

cough.27 Disease follows a severe course in up to 20% of

subjects with acute respiratory distress syndrome (ARDS)

as the most frequent complication.28 Other complications

include myocarditis29 and kidney injury.30 The vast major-

ity of severe cases, hospitalizations and deaths (8 out of 10)

occur in people above 65 years of age,31 and even people

50 and older exhibit sharp increases in hospitalization (4x)

and mortality (10x) relative to those 18-29 years of age.

The numbers for those >85 years of age are staggering −
13-fold more hospitalizations, and 630-fold higher likeli-

hood of death than those 18-29 years old (cdc.gov/coronavi-

rus). The elderly often present atypically31 with lower

incidence of fever.32 COVID-19 shows remarkable age-spe-

cific outcomes with log-linear increase in infection fatality

rate by age among individuals older than 30 years.33,34

Other than age, risk factors for severe disease include

hypertension, obesity, smoking, type 2 diabetes and male

sex.35 Of interest, age-related frailty assessed by a clinical

scale was found to be associated with COVID-19 severity

in a prospective cohort study of humans >60 years.36

Another study showed, disease outcomes were better pre-

dicted by frailty than either age or comorbidity.37 Frailty is

a geriatric syndrome characterized by reduced energy
levels, muscle loss and increased vulnerability associated

with a hyperinflammable state and elevated levels of proin-

flammatory cytokines, particularly IL-6.38,39 This preexist-

ing hyperinflammable state could be contributing to

COVID-19 severity which is associated with overactivation

of the innate immune system.40 Prevalence of frailty syn-

drome is markedly increased in persons above 80 years41

but physiological and functional changes are distinct from

the usual age-related changes.42

To effectively protect older adults against SARS-CoV-2,

one must dissect potential contributors to the above age-

related susceptibility to COVID-19. Age related decreases

in respiratory function have the potential to account for

high incidence of respiratory symptoms among the

elderly.43 However, chest computer tomography did not

show increased lung damage in elderly despite increased

disease severity,44 suggesting that lung aging by itself may

not be the determining factor of severe COVID-19. Consis-

tent with that, severity was associated with damage to other

organs, mainly heart, liver and kidneys.35 On the other

hand, hypercoagulopathy likely plays a role in organ dam-

age and anticoagulant therapy has been both shown to

reduce mortality45 and is widely used in suspected severe

COVID-19 cases. SARS-CoV-2 is able to infect vascular

endothelial cells which express high levels of ACE2.46,47

Resulting endothelial injury and inflammation induces a

hypercoagulative state and increased thrombotic events.48

In addition to direct cytopathic effect of the virus, the

downregulation of ACE2 and endothelial damage, there is

abundant evidence that immune system dysregulation plays

a major role in COVID-19 tissue injury.49−53 There is evi-

dence that human leukocyte antigen (HLA) class I mole-

cules play a role, as HLA-A*01:01 allele was associated

with higher risk of severe COVID-19.54 A genome-wide

association study performed on >2000 intensive care

patients found 9 loci associated with severe COVID-19, out

of which 5 were genes linked to the immune system, most

notably low expression of interferon receptor gene IFNAR2

and high expression of chemotactic receptor CCR2.55

Immune correlates of disease severity or protection are

studied intensively. However, even a year into the pan-

demic, we do not understand the precise role and impor-

tance of the immune aging in the pathogenesis and severity

of COVID-19. At least one major obstacle to understanding

how aged immune system alterations translate into higher

risk of COVID-19 in older adults is lack of adequate (aged)

animal models.56 SARS-Cov-2 virus causes upper respira-

tory tract infection in Syrian hamsters and ferrets, with mild

clinical symptoms and transmission to cage mates.56,57

However, in both cases there is no resource for aged ani-

mals. Only mild clinical disease has been reported in non-

human primates58 but more severe pneumonia and

increased viral replication was observed in aged rhesus

macaques59 highlighting the need for aged animals. Viral

spike protein of both SARS-CoV-1 and 2 does not bind to

mouse ACE260 so several transgenic mice expressing

human ACE receptor have been developed61−63 but avail-

ability of aged animals is scarce. A different approach is to

use mutagenesis to develop mouse adapted viral strains. A
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recombinant SARS-Cov-2 virus which can infect BALB/c

mice was developed and showed age related pathogene-

sis.64 While the immune system is necessary for viral clear-

ance and while severe cases show delayed viral clearance,65

immune hyperactivation is associated with pathogenesis.

Innate immune responses are initiated after viral compo-

nents, mostly ss and dsRNA, are recognized by pattern rec-

ognition receptors (PRR). Their activation induces type I

interferon (IFN-I) responses that engender inflammatory

cytokine cascades important for limiting viral spread. Initia-

tion of these inflammatory signals leads to recruitment of

immune cells to sites of infection starting with neutrophils.

Antigen presenting cells, most notably dendritic cells, pres-

ent viral peptides on MHC molecules to initiate T cell

responses, whereas parallel activation of B cells by soluble

virus epitopes initiate humoral (antibody) responses. Here,

we will briefly outline age-related changes to these pro-

cesses and how they might directly contribute to poor

COVID-19 prognosis.
Age related changes of the immune system

Aging results in multiple measurable alterations in the

innate and adaptive arms of immunity. Termed immunosce-

nescence, this process leads to a variable but often marked

reduction of immune protection against infections that is

deleterious to the health and wellbeing of a substantial frac-

tion of older adults.66

Age-related defects in innate immunity can broadly be

attributed to decreased phagocytic capacity and impaired/

delayed migration, differentiation, and cytokine production

by innate immune cells. Neutrophils display reduced cyto-

kine signaling and effector molecule production in older

adults. Defects in specific pattern recognition receptor

(PRR) expression and signaling have been shown to par-

tially account for the hampered responsiveness of old neu-

trophils to pathogens. These changes have been correlated

with poor prognosis in bacterial infections including sep-

sis.67−69 Old macrophages also exhibit reduced migration

and phagocytosis, that interestingly leads to reduced

removal of dying inflammatory neutrophils in the lung of

old mice during influenza infection, suggesting that similar

mechanisms could feed into severe COVID-19 pathol-

ogy.70,71 Old NK cells exhibit a more mature phenotype

and have depressed cytokine secretion and cytotoxic poten-

tial. This could be due, in part, to alterations in the expres-

sion of activating and inhibitory receptors. In the

ectromelia (mouse pox) model, these defects have been

shown to explain increased viral susceptibility in old

mice.72,73 Finally, old dendritic cells are less efficient at

capturing and processing antigen, which leads to their

reduced activation and consequent suboptimal activation of

naı̈ve T cells.74,75 All innate cells subsets exhibit more or

less pronounced defects in migration, although it remains to

be shown whether these defects occur due to underproduc-

tion or dysregulated production of chemokines directing

their migration, or to the inability of cells themselves to

appropriately respond to chemokine cues.76 Another
possibility is increased production of negative regulators of

chemotaxis such as prostaglandin D2.77

There are both quantitative and qualitative changes in B

cell function with age. The absolute quantity of both bone-

marrow resident B cell progenitors and their naı̈ve daughter

cells is reduced with age, leading to underproduction of

new naı̈ve B cells. Functionally, the formation and output

of germinal center (GC) reactions in primary and secondary

responses are both impaired in old age.78 Defects in the GC

reaction is the result of age-related decline in function of

both follicular dendritic cells (FDCs) and T cells, along

with intrinsic defects within B cells themselves. Decreased

FDC functionality is in part due to lower expression of Fc

receptors, leading to impaired antigen capture and presenta-

tion, while defects in CD4 help may stem from decreased

expression of CD40L, an important costimulatory molecule

in GC reactions.79,80

Antibodies produced in old mice following B cell

activation are of lower quality compared to those pro-

duced in adult mice. One apparent cause of this defect

is the impaired production of the E2A gene-encoded

E47 transcription factor.81 With age, dysregulation of

the expression of the mRNA-degradation promoting pro-

tein ZFP36 increases with age leads to a higher turnover

rate of E47 mRNA in older animals. This instability

leads to under-induction of activation-induced cytidine

deaminase (AID). Because AID plays a crucial role in

both class-switch recombination and somatic hypermuta-

tion in activated B-cells, the culmination of these

defects is the production of antibodies of inferior avidity

and function in old mice.81,82

Multiple age-associated defects appear in the T cell com-

partment in advanced age. The earliest hallmark of T cell

aging is thymic involution, marked by degeneration and

atrophy of thymic stroma and a concordant and progressive

reduction in naı̈ve T cell output.83 While the homeostatic

maintenance of naı̈ve T cells in peripheral lymphoid organs

becomes the dominant means of retaining the naı̈ve T cell

pool, this process also gradually weakens with aging.84

Eventually, in the last third of life this leads to reduced

diversity of the T cell receptor (TCR) repertoire, and a rela-

tive (and in the presence of cytomegalovirus, absolute)

accumulation of memory T cells, potentially producing

holes in the T cell repertoire mobilized against a given epi-

tope or pathogen.85,86

This general collapse of naı̈ve T cell homeostasis is

accompanied by decreased primary (new) T cell responses

in magnitude and differentiation. This is likely a combina-

tion of reduced naı̈ve T cell numbers (and perhaps diver-

sity) and of cell-extrinsic defects in peripheral lymphoid

organ structure,87,88 that fail to orchestrate coordinated and

efficient movements and cell-cell communication in the

course of primary responses.89 Studies of human blood

have shown that CD8 T cell responses may be either more

or differently impacted by aging relative to CD4 T

cells.90,91 However, in both aged mice and humans, it has

been demonstrated that naı̈ve T cells are less functional fol-

lowing priming as measured by cytotoxic function, cyto-

kine production, and proliferative capacity.92,93
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Immunological features of COVID-19 in aged
subjects

SARS-CoV-2 virus control seems to be directly related to

COVID-19 severity, as virus load in severe cases was found

to be higher and clearance delayed compared to mild

cases.65 Even after adjusting for age and comorbidities

higher viral load was predictive of mortality.94 Peak viral

load was increased in aged humans suggesting that immune

system in elderly is less able to counteract viral replication

and spread.95 The initial step in counteracting viral spread

is induction of anti-viral defenses in different cells by type I

interferons. SARS-Cov-2 evades IFN-I response more effi-

ciently than MERS and SARS-CoV-1 via its nsp1 and nsp6

proteins which suppress IFN-I signaling.96 Impaired IFN-I

responses in white blood cells of severe COVID-19 patients

were found to be associated with a persistent viremia and

exacerbated inflammatory response.97 In contrast, bron-

choalveolar lavage fluid of severe COVID-19 patients

showed increased expression of IFN stimulated genes.98

Contradictory findings regarding IFN-I responses and

COVID-19 severity might be explained by differences in

sampling time and tissue sampled, and resolving them

would be highly significant as recombinant IFN-I is cur-

rently investigated as potential COVID-19 treatment.99 Pro-

gression to severe clinical picture is associated with

hyperactivation of the immune system manifested by

increased levels of inflammatory cytokines in circulation,

also called “cytokine storm”.40 Levels of C-reactive protein

(CRP) and interleukin-6 (IL-6) were particularly strongly

associated with increased mortality.100 Other cytokines ele-

vated in severe cases included IL2, IL7, IL10, GSCF, IP10,

MCP1, MIP1A, and TNFa.101 Basal IL-6 and TNF-a levels

in circulation increase with age, a condition sometimes

termed inflammaging,102 and increased IL-6 is in particular

associated with age-related frailty and all cause mortal-

ity.38,103 Given that IL-6 levels predicted COVID-19 mor-

tality, blocking IL-6 signaling was considered a promising

therapeutic target; however, clinical trials of tocilizumab

and sarilumab, monoclonal antibody directed against IL-6

receptor, have yielded mixed results on survival in hospital-

ized COVID-19 patients104,105 for reasons not understood

at this time.

In addition to increased cytokine levels, multiple cellular

immunity defects are associated with COVID-19 severity.

Severe cases show decreased lymphocyte blood counts and

increased neutrophil counts, such that the neutrophil to lym-

phocyte ratio emerged as an independent predictor of mor-

tality.106 Autopsy samples from the lungs displayed

neutrophil infiltration in pulmonary capillaries,107 raising

the possibility that reduced removal of neutrophils by alve-

olar macrophages with aging, which contributes to severity

of influenza in old mice, could be at play here too. Micro-

vascular thrombi, containing neutrophil extracellular traps

associated with platelets and fibrin were found in the lung,

kidney, and heart post mortem.108 Activated neutrophils are

known to contribute to large-vessel thrombosis109 and

excessive reactive oxygen species production is also sus-

pected to contribute to tissue damage in severe COVID-
19.50 Previous research in rodent viral71 and bacterial110

models showed that aged animals displayed increased infil-

tration of neutrophils in lungs which contributed to pneu-

monia severity. This excessive neutrophil infiltration was

associated with increased chemokine production by senes-

cent epithelial cells71 and impaired toll like receptor activa-

tion.110 Lymphopenia in severe cases affected primarily T

lymphocytes, particularly CD4+ and CD8+ T cells.111 Mul-

tiple reports showed a decrease in naı̈ve CD4+ T cells in

bloodstream of severe cases and increased expression of

activation markers such as CD38 and HLA-DR.111−113

Although decreased naı̈ve T cells in the blood were associ-

ated with severity most of these studies lacked older partici-

pants with moderate disease so some of the observed

phenotypes might be features of aging by itself. Moderate

cases were characterized by the presence of highly clonally

expanded CD8+ in bronchoalveolar lavage fluid suggesting

a strong T cell response is protective.114 Antigen specific

CD4+ T cell responses correlated with SARS-CoV-2 spe-

cific IgG and IgA antibody titers.115 However, SARS-Cov-

2 specific T cells responses have been detected in up to

40% healthy controls116−118 leading to hypotheses that

cross reactive memory T cells from previous common cold

CoV infection might be protective.119 Ex vivo peptide stim-

ulation revealed a range of preexisting memory T cells that

are cross-reactive between SARS-CoV-2 and the common

cold coronaviruses. Cross-reactivity was associated with

epitopes derived from SARS-CoV-2 spike, N, nsp8, nsp12,

and nsp13 proteins.120 At the moment, it is unclear whether

and how the presence and the exact specificity of these

cross-reactive T cells affects disease severity.

While lymphopenia affected B cells to a lesser extent,121

there were pronounced oligoclonal expansions of plasma-

blasts in severe cases.122 Overall antibody titers were

increased in severe cases and were not affected by

age.123,124 However, in elderly subjects neutralizing anti-

body titers were less correlated with antigen specific CD4+

and CD8+ T cell responses, suggesting that potential lack

of coordination in adaptive immune responses may contrib-

utes to disease severity.125

The protective ability of early adaptive immune

responses is highlighted by development of multiple suc-

cessful SARS-CoV-2 vaccines (Figure 1). While several

vaccine candidates are still in clinical trials, two mRNA

vaccines have been approved and are in mass use in the US

as of December 2020.126 Both of these vaccines were

shown to induce neutralizing antibodies and Th1 cell

response127,128 and reduce the incidence of symptomatic

and severe COVID-19 with high efficacy even in partici-

pants 65 years of age or older.129 It remains to be seen how

broadly protective and durable these responses will be in

older adults.

In lieu of a conclusion. . .

We have learned an extraordinary amount of information

about the virology, pathogenesis and immunology of

SARS-COV-2 over the past year, with >100,000 papers

containing COVID-19 and/or SARS-CoV-2 listed in



Figure 1 Severe cases of COVID-19 are characterized by prolonged hyperactivation of innate immunity manifested by increased levels

of inflammatory cytokines in circulation, also called “cytokine storm” as well as increased neutrophil count. This primarily occurs in aged

and frail subjects. Development of successful vaccine shows that early adaptive immune response from T cells and neutralizing antibodies

is protective and prevents the severe course of COVID-19.
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PubMed and preprint servers in 2020 alone. However, we

still very much lack a comprehensive picture of the disease

and of virus pathogenesis, as well as of the interactions of

SARS-CoV-2 with its (human) host. It is evident that

COVID-19 severity is associated with delayed viral clear-

ance, hyperactivtion of the innate immune system,

increased antibody titers and T cell lymphopenia (Figure 1).

At the moment, it is unclear how frailty and aging predis-

pose for these phenotypes and increased severity. Below,

we outline some of the most burning immunological ques-

tions, and hope that these and related questions will be

answered with utmost urgency:
& Are innate sensors specifically disabled in older adults

to make them more vulnerable to COVID-19?

& Are there aging-related cytokine dysfunctions similar

to recently discovered type I IFN genetic defects that

underlie severe COVID-19 in older adults? Do they

kick in only when the older adaptive immune system

cannot terminate infection on time?

& Do low numbers of naı̈ve T and B cells with aging pre-

dispose towards poor immunity and poor outcomes?

& Is the reduced diversity of the T and B cell response

with age linked to impaired immune responses?

& Can the older immune system target all the key anti-

gens of the virus, or is the virus more likely to slip by

it?

& Do the remaining CD4 and CD8 cells respond with

correct and strong effector function?

& Is the sum of immune defects sufficient to permit vari-

ant selection in in older adults?

& Do prior coronavirus infections differentially shape the

ability of the older immune system to respond to

SARS-CoV-2?

& Do older adults generate long-lived and protective

memory responses?
& Do T memory responses in older population target the

same array of virus epitopes as in adults?

& Are virus escape variants more likely to slip by older T

memory (Tm) responses?

& How well will older T cells respond to SARS-CoV-2

vaccination?
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