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Abstract N\
Rationale: A prolonged, prodromal phase before definitive paediatric precursor B acute lymphoblastic leukaemia (BCP ALL) |

diagnosis is rarely observed.

Patients concerns: In the first, the patient presented with an aplastic preleukemic phase, whilst the second presented with a
rheumatic-like preliminary phase.

Diagnoses: The case reports of two patients with BCP ALL with a prodromal phase lasting a few weeks are presented.
Interventions and outcomes: DNA whole genome profile methylation analysis of bone marrow cells obtained at diagnosis revealed
a pattern of methylation that was readily distinguishable from both healthy and standard course BCP ALL bone marrow samples.

Lessons: The biological implication of this observation remains unclear, with many differentially methylated loci involved in many
processes like neurogenesis, cell projection organization and adhesion along with leucocyte activation and apoptosis. The
prevalence and clinical significance of these methylation changes is unknown but this data indicates that the epigenetic basis of BCP
ALL with a prolonged, prodromal phase requires a more detailed assessment.

Abbreviations: ALL = acute lymphoblastic leukemia, BM = bone marrow, CBC = complete blood count, DM = differentially
methylated, ESR = erythrocyte sedimentation rate, PLT = platelet count, PP = prodromal phase, SC = standard course, WBC =
white blood cells.

Keywords: BCP ALL, DNA methylation, pediatric, 2 cases

1. Introduction

Acute lymphoblastic leukaemia (ALL) onset is usually sudden
with a short history. A prolonged, prodromal phase (PP) before
definitive ALL diagnosis is rarely observed. ALL can be
recognized by bone marrow (BM) biopsy/aspirate and/or
peripheral blood smear examination. WHO criteria from
2008 state that to establish a diagnosis of ALL, more than

20% to 25% of the lymphoblasts in bone marrow (BM) must
possess a diagnostic phenotype. In the unusual case, that a patient
presents with fewer than 20% lymphoblasts in the BM and with
no evidence of an extramedullary mass but demonstrates 1 of the
known recurring cytogenetic abnormalities associated with ALL,
the patient may be considered to have lymphoblastic leukaemia.
The observation of fewer than 20% unequivocal lymphoblasts in
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the BM should, however, also prompt a search for lymphoblastic
lymphoma in an extramedullary location.!>?!

Leukaemia initiation requires nucleotide sequence changes to
occur, such as point mutations, amplifications or chromosome
translocations. In concert with these genetic changes, disrupted
epigenetic regulation (via DNA methylation, post-translational
histone modifications, and interaction with non-coding RNA
(miRNA or siRNA)) results in the abnormal expression of key
genes responsible for cell proliferation and differentiation.*!

The most common clinical symptoms of ALL in children are
secondary to peripheral pancytopenia resulting from normal BM
precursor displacement. Sometimes a clinical view is comple-
mented by hepatosplenomegaly, lymphadenopathy, symptoms of
the central nervous system, or testis involvement, persistent fever,
weight-loss and bone pain (particularly limb pain). Usually,
examination of BM aspirates reveals up to 70% to 100%
undifferentiated cells which correspond to the lymphoblast
precursors, making ALL diagnosis proven. Definitive diagnosis of
ALL thus normally takes no more than 2-3 weeks from the time
of the first symptoms presenting.

In our previous work, hierarchical clustering of whole-genome
DNA methylation profiles obtained from BM cells aspirated at
diagnosis of a group of 38 patients with pediatric B-cell precursor
(BCP) ALL revealed 2 cases with noticeably different methylation
profiles.!’! Detailed clinical analysis of these patients showed that
both had preceding clinical symptoms of leukaemia many weeks
before ALL diagnosis was established. This pre-leukemic phase with
incomplete features was misleading and delayed treatment. Herein
we present the case reports of these 2 children. We, therefore, sought
to fully analyze the differences in CpG methylation sites between
BCP ALL patients with the standard course (SC) (BCP ALL SC) and
the 2 with incomplete feature PP (BCP ALL PP).

2. Materials and methods

2.1. Ethical statement

Ethics Committee approval was obtained from the Institutional
Review Board of the Medical University of Lodz (number, RNN/
226/11/KE). Informed consent has been obtained from parents/
legal guardians of all the participating children. Furthermore
informed written consent was obtained from the parents of the 2
patients presented in this case report for publication. The study
protocol conforms to the ethical guidelines of the 1975
Declaration of Helsinki.

2.2. Whole genome DNA methylation profile analysis

In our previous study’®! material comprised 38 samples of BM
obtained from patients with pediatric precursor-B acute
lymphoblastic leukaemia, at the time of the final ALL diagnosis,
and 4 control non-leukemic samples. The analysis of cytogenetic
ALL subtypes revealed that among BCP ALL SC patients there
were 2 cases of triploidy and 12 cases of hyperploidy which might
serve as a control for the analyzed BCP ALL PP patients. The
previous results also showed, that factors such as gender and age
are not important confounders for the global methylation profile
differentiation of pediatric leukaemia.”’ DNA was purified using
QIAamp DNA Blood Mini Kit (QIAGEN), assessed for
fragmentation by agarose gel electrophoresis and quantified
using Qubit 2.0 fluorimeter (Thermo Fisher Scientific). CpG
methylation analysis was performed using Illumina (San Diego,
CA) MethylationEPIC BeadChip, allowing analysis of 850K sites
per sample.
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2.3. Data quality control and analysis

The raw intensity data were checked for quality using the
BeadArray Controls Reporter software (Illumina) and analyzed
using the ChAMP package pipeline.”) First, probes with
detection of P value <.01 and with fewer than 3 beads in at
least 5% of samples per probe were excluded. Additionally, non-
CpG probes, SNP-related probes, multi-hit probes and probes
located on chromosome X and Y were also removed. Then, the
beta values (the proportion of DNA methylation at a CpG site)
for 753,390 sites were calculated and assessed for quality by
evaluation of beta multidimensional scaling (MDS) and density
plots across the study groups. A beta value of 0 represents a
completely unmethylated CpG site and a beta value approaching
1 represents a fully methylated CpG site. Beta values were
normalized using the BMIQ method."®! Singular value decompo-
sition (SVD)®! was used to identify the most significant
components of variation, including technical variation. Differen-
tial methylation analysis between groups was performed using
the champ.(DMP) function which implements the limma
package!'”! to calculate the P value for differential methylation
using a linear model. The obtained p-values were corrected for
multiple testing using the Benjamini-Hochberg procedure.!'!!

2.4. Functional genes annotation and analysis

The genes associated with specific differentially methylated (DM)
sites were separated depending on CpG site location (promoter,
gene body) and analyzed in terms of molecular functions,
biological presses, cellular components, pathways and phenotypes
using WebGestalt (WEB-based GEne SeT AnaLysis) toolkit, !
exploiting information obtained from GO, KEGG, WikiPathways,
Human Phenotype Ontology and PharmGKB databases. Over-
representation tests were performed with respect to all known
human genes (genome), identifying enriched categories with a
corrected P value (false discovery rate [FDR]) lower than 0.05 and
requiring at least 5 genes per enriched category.

2.5. Methylation assay performance and differential
methylation analysis

The assay performance, as evaluated based on control probes and
BeadArray Controls Reporter software, was satisfactory across
all studied samples. After preliminary filtering, 753,390 probes
beta values were normalized and the batch effect was evaluated
using the SWD method.

The comparison of methylation level of 753,390 sites between
the 2 cases with BCP ALL PP and BCP ALL SC samples allowed the
identification of 11,854 DM CpGs (adj P < .05). Of the sites, 7239
were hypermethylated in cases with PP ALL with an average delta
beta between groups of 0.224 (+0.109). The remaining 46135 sites
were hypomethylated with a slightly lower absolute delta beta
value of 0.170 (£0.071). Both hyper- and hypomethylated CpGs
were distributed on all 22 autosomes and the number of CpG per
chromosome ranged from 1203 on HSA1 to 145 on HSA21.

CpG context analysis showed that 2090 of DM sites were
located in gene promoter regions (TSS200 and TSS1500), 1433 in
genes 5'-UTR or first exon and 4770 within gene bodies. Most of
the detected DM sites (7302; 61.6%) were located outside known
CpG islands and remaining ones were positioned in islands
(18.3%) or islands’ shelves and shores (20.1%). The detailed
analysis of distribution of hyper- and hypomethylated sites showed
that hypermethylation in BCP ALL PP is more common within
promoter regions (22.7% versus 9.7% of all DM CpGs) and
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known CpG islands (27.9% versus 3.2%) whereas hypomethy-
lation occurs more frequently in gene bodies (48.4% versus 35.0)
and regions outside islands (open sea; 78.8 versus 50.6%). DM
sites and their annotations are reported in Supplementary File 1,
http://links.lww.com/MD/C552.

Hypothesizing that some of the sites DM between BCP ALL PP
and BCP ALL SC may conform to the methylation profile found in
healthy BM samples, an additional comparison was made with
respect to control samples. This analysis allowed the identification
41,952 DM sites of which 1511 overlapped with sites differing
with respect to BCP ALL SC (Supplementary File 2, http:/links.
lww.com/MD/C553). Most of these sites were hypermethylated
with respect to the control (1094; 72.4%) with an average delta
beta of 0.228. Most of the sites were also hypermethylated with
respect to BCP ALL SC with samples (1008) with average delta
beta of 0.234. The selected DM sites were scattered across all
autosomes with the highest number located on the biggest
chromosomes and in gene bodies (35.8%), intergenic regions
(24.9%), and outside known CpG islands (50.6%).

Unsupervised hierarchical clustering of the samples based on probes
differing between BCP ALL PP and both ALL BCP SC and the control
samples shows a clear separation of the 2 BCP ALL PP methylation
profiles from both remaining groups with higher similarity to BCP
ALL SC cases (Fig. 1). Comparable results were obtained when
principal component analysis (PCA) was applied to the same probes
(Fig. 2). For further gene functions analysis, only CpGs differing in
methylation level between BCP ALL SC and control were used. 0

3. Results
3.1. Patient 1

This patient is a 10-year-old male with a history of the growth
hormone deficiency, at admission he was undergoing growth
hormone supplementation therapy. The patient was initially
referred to hematology due to abnormal complete blood count
(CBC) values (initial values: hemoglobin (Hb) of 9.6g/dL,
leukocytes (WBC) of 0.69 x 10%/L, neutrophils of 0.1 x 10°/L,
and a platelet count (PLT) of 121 x 10°/L.). Examination of
peripheral blood smears revealed no blast cells. For 2 weeks before
admission, the patient presented with a refractory fever of up to
39°C despite receiving 10-days axetil cefuroxime. Atadmission, no
clinical and laboratory signs of infection were presented
(procalcitonin, CRP, erythrocyte sedimentation rate (ESR) were
among normal range) except for a urine culture which revealed
Morganella morganii species 10°/uL. Physical examination,
confirmed by imaging, revealed hepatomegaly (liver AP diameter
up to 12cm) without any other abnormalities. Piperacillin with
tazobactam therapy was introduced with a good clinical response.
There was a resolution of the fever and the urine culture became
sterile. Despite this, CBC values remained abnormal.

With a presumptive diagnosis of leukaemia, after admission, BM
aspirates were obtained for morphology, immunophenotype, and
cytogenetic analysis. Morphologically the BM was hypocellular
with a paucity of megakaryocytes, abnormal granulopoiesis, and
containing up to 20% of blasts. The immunophenotyping revealed 2
populations. The first population of CD34+/CD19+ cells with co-
expression of myeloid antigen CD66+ (80% cells from this
population) representing 2,5% of the total nucleated cells. The
second population of CD34-/CD19+ also with CD66+ (60% cells)
represented up to 20% of the total nucleated cells. The BM biopsies
were repeated 4 times every few days, but the BM smears picture was
constantly hypocellular with lymphoblast percentage within the
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range of 10% to 25%. A similar percentage of lymphoblasts were
observed by trephine biopsy examination, which revealed fields with
different lymphoblast content. More than 3 weeks after admission, a
spontaneous increase of white blood cells (WBC 2.64 x 10°/L) and
platelets (PLT 363 x 10°/L) in the peripheral blood was observed
with domination of lymphocytes (69%) but still without undiffer-
entiated cells in the peripheral blood smears. After a further 2 weeks
(about 5 weeks after admission) BM aspiration revealed the typical
picture of acute leukaemia with hypercellular BM. The total
percentage of blasts was about 35% with phenotype CD34-,
CD19+, CD10+, CD22+, CD52+, CD38+, HLA-DR+ with co-
expression CD66+ (55% cells), and CD15+ (60% cells). Conven-
tional cytogenetic analysis by G-banding revealed the presence of
additional chromosomes 4, 6, 17, 18, 21, and excluded the crucial
aberrations connected with BCR/ABL or MLL loci.

Finally, the diagnosis of BCP ALL was established about 7 to 8
weeks after the onset of first symptoms. The treatment according
to ALL IC BFM 2009 protocol!® for an intermediate risk group
without central nervous system involvement was introduced. A
good prednisone response was observed and he achieved
haematological remission on the fifteenth day with minimal
residual disease level 1.8 x 107>, Presently, the maintenance oral
chemotherapy is being continued and the patient has stayed in
complete remission for 22 months.

3.2. Patient 2

This patient is a 6-year-old male was presented to rheumatology
unit with a 5 months history of bone pain in both legs. Irregular
episodes of fever up to 39°C (with frequency once a week) with
spontaneous remission began 1 month after the onset of the bone
pains. A systemic connective tissue disease was suspected.
Comprehensive diagnostics was implemented. Initial CBC includ-
ed Hb of 11.7 g/dL, leukocytes (WBC) of 6.22 x 10°/L, neutrophils
of 1.95x 10%/L, and a PLT of 550 x 10°/L. A peripheral blood
smear revealed a slightly increased percentage of lymphocytes
(66%) and monocytes (10%) with the presence of atypical
lymphoid cells (2%). The levels of CRP protein and ferritin as ESR
were increased reflecting the active inflammatory process.
Unfortunately, BM aspiration during this prodromal symptom
phase was not performed, so BM cellularity and blast cells
percentage before establishing the formal diagnosis is unknown.

Three weeks later, after the exclusion of rheumatic disorders,
the patient was referred to haematology with persistent clinical
symptoms and stable values of CBC, CRP, ferritin, and ESR.
Physical examination revealed no symptoms of infection, no
lymphadenopathy or hepatosplenomegaly, the neurological
status, skin and testes were normal. Manual examination of
peripheral blood smear revealed the presence of undifferentiated
cells (5%) therefore a BM aspiration was performed. Immuno-
phenotypic analysis of the BM aspirates revealed 61% of
precursor B lymphoblasts with the coexpression of the myeloid
line (about 1/3 cells with CD33+). Genetic analysis of blasts
revealed the presence of a complex karyotype with hypotriploidy
(63~66 chromosomes), with rearrangements loci IGH and
TCRAD. Due to traumatic lumbar puncture, the central nervous
system status stayed unknown. Finally, the diagnosis of BCP ALL
was established, and the patient was stratified to the intermediate
risk group according to ALL IC BEM 2009 protocol.l! A good
prednisone response was observed and haematological remission
on the fifteenth day with residual minimal disease 7,1 x 107> was
achieved. Presently the patient has been in complete remission for
38 months after diagnosis without BM transplantation.
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Figure 1. Hierarchical clustering of samples and methylation heatmap according to probes differing in methylation level between BCP ALL PP and both BCP ALL
with the standard course (BCP ALL SC) and control samples.’®) BCP ALL PP =B-cell precursor acute lymphoblastic leukaemia with incomplete feature prodromal

phase, SC=standard course.

4. Discussion

During our study of whole genome methylation changes within
leukaemia methylation pattern across genome showed visible
separation of the 2 samples profiles with clear differences with
respect to control and BCP ALL SC patient groups. Detailed
phenotypic analysis showed that these samples were obtained

from cases of BCP ALL with few weeks duration PP before the
confirmation of a formal diagnosis according to the WHO
criteria. The first patient presented with an aplastic preleukemic
phase, the second one with rheumatic-like preliminary phase. In
both cases, treatment was delayed until the WHO criteria were
fulfilled, so the “watch and wait” strategy was implemented. The
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Figure 2. Principal component analysis based on probes differing in methylation level between B-cell precursor acute lymphoblastic leukaemia with incomplete
feature prodromal phase (BCP ALL PP) and both BCP ALL with the standard course (BCP ALL SC) and control samples.® BCP ALL PP =B-cell precursor acute
lymphoblastic leukaemia with incomplete feature prodromal phase, SC=standard course.

potential acceleration of leukaemia with its serious complications
can be a reason for some concern for both patients and
practitioners.

Aplastic PPs are rare but well recognized in childhood BCP
ALL."37131 This neoplasm usually develops via a minimum of 2
discrete stages. First, the acquisition of chromosomal abnormali-
ties (e.g., ETV6-RUNX1 fusion, high hyperdiploidy) predomi-
nantly (but not exclusively) during fetal hemopoiesis which drives
the expansion of a clinically silent, or covert, but persistent
preleukemic clone. Second, in a relatively small fraction of such
cases, the accrual, postnatally of further, secondary genetic
changes promote or precipitates disclosure of clinical leukae-
mia.'?1¢171 Occasionally, this form of ALL is initiated by
infection, explaining the long-lasting remission due to induced,
significant endogenous corticosteroids production.!! The fre-
quency of BCP ALL with preleukemic phase is low, and up to 2%
of the ALL cases can be included in this group!"*'#-2% while full
symptomatic ALL appears after a sudden recuperation of the
CBC, with 95% of cases progressing to ALL within 6 months of
initial diagnosis.'*!!

Musculoskeletal complaints that depend upon lymphoblast
expansion in BM cavities may be the initial dominating
symptoms of newly diagnosed leukaemia as well as rheumatic
diseases, for example, juvenile idiopathic arthritis. It is extremely
rare, however, to diagnose ALL in children with such complaints
who were originally referred to a pediatric rheumatology unit
(<1% of the all cases).”*>’! In these cases, the mean time
between symptom onset and final diagnosis of leukaemia is about
3 months.?!

The DM sites between BCP ALL PP and both BCP ALL SC and
control samples were associated with 816 different genes. The
genes were enriched in many GO biological processes which were
summarized with the software package Revigo!*®! to allow for the
detection of their major categories (Table 1). Among the major
classes of enriched biological processes are those associated, for
example, with neurogenesis, cell projection organization and
adhesion but also leukocyte activation and apoptosis.

The analyzed genes are also enriched in several KEGG
pathways. Notably, these include T or B cell receptor signalling
pathways, endometrial cancer or non-small cell lung cancer
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Major classes of biological processes enriched by genes with differentially methylated probes.

Term ID Description log10 P value
(G0:0022008 Neurogenesis —10.5784
G0:0030030 cell projection organization —8.3665
G0:0006928 movement of cell or subcellular component —7.5498
(0:0040011 Locomotion —6.9318
G0:0043085 positive regulation of catalytic activity —6.4841
(0:0022610 biological adhesion —6.3605
G0:0007155 cell adhesion —6.1739
(0:0046834 lipid phosphorylation —5.7399
G0:0007267 cell-cell signaling —5.7055
G0:0006357 regulation of transcription from RNA polymerase Il promoter —5.3449
G0:0001775 cell activation —5.266
G0:0032970 regulation of actin filament-based process —5.1361
(0:0048870 cell motility —5.1163
G0:0051674 localization of cell —5.1163
(0:0040007 Growth —4.6968
G0:0009611 response to wounding —4.5482
G0:0006915 apoptotic process —4.4461
G0:0030029 actin filament-based process —4.4202
G0:0008283 cell proliferation —4.2161
G0:0018212 peptidyl-tyrosine modification -3.9072
(G0:0045321 leukocyte activation —3.8081
(0:0016192 vesicle-mediated transport —3.4564
G0:0014065 phosphatidylinositol 3-kinase signaling —3.4381
(0:0044708 single-organism behavior —3.2898
G0:0034332 adherens junction organization —3.2697
(G0:0035411 catenin import into nucleus —3.2696
(G0:0006897 Endocytosis —-3.1125

Major classes of biological processes enriched by genes with differentially methylated probes between B-cell precursor acute lymphoblastic leukemia with incomplete feature prodromal phase (BCP ALL PP) and
both BCP ALL with the standard course (BCP ALL SC) and control samples. The numerous enriched biological processes found with WebGestalt were analyzed with Revigo system to summarize them by removing

redundant GO terms.

(Table 2). The disease phenotypes enriched by the genes
include acute myeloid leukaemia and Wiskott-Aldrich syndrome
(Table 3).

Detailed analysis of the genes associated with the probes with
the most significant differences in methylation level between BCP
ALL PP and BCP ALL SC allowed the detection of 3 genes
previously associated with the B cell phenotype, leukaemia or
general tumour suppression and included: ENPP1, TCFLS, and
LRRC3B genes.'?”2? The DM sites associated with ENPP1 gene
were mainly located in the promoter region (TSS200) and were

predominantly hypermethylated. For TCFLS gene, the single DM
sites were situated in TSS1500 (hypomethylated) and 1st exon
(hypermethylated). In the case of the LRRC3B gene, the
hypermethylated sites were distributed across the whole gene
and were annotated to TSS200, 1st exon and 5°UTR.

To gain a better insight into the affected processes, the gene list was
subdivided into 2 categories depending on the location of the probe
within the gene body or promoter region (TSS200, TSS1500) as
methylation in these areas may have opposite effect on the genes’
expression. We identified 336 probes associated with the promoter

KEGG pathways enriched by genes with differentially methylated probes.

FDR Involved genes

T cell receptor signaling pathway 0.000855 AKT3; MAP3K8; FYN; GRB2; LCK; NFATCT, NFATC2; PIK3CG; PIK3R2; PPP3R1; MAP2K1, VAV1; ZAP70; NCK2;
CD28; GRAP2

Phospholipase D signaling pathway 0.006788 AKT3; RAPGEF4; DGKG, DGKH, DGKQ; DNM1; DNM2; FYN; GAB1; GRB2; CXCRZ2; PIK3CG; PIK3R2; MAP2K1;
DGKZ; DGKD; CYTH1

Cholinergic synapse) 0.010435 AKT3; CHRMZ2; CHRNB4, FYN; GNGTZ2; KCNQ2; ACHE, PIK3CG, PIK3R2; PRKCG; MAP2K1; CREB3L2; CACNA1C;
CAMK4

Endometrial cancer 0.012396 AKT3; ERBB2; GRB2; PIK3CG; PIK3R2; MAP2K1,; TCF7; TCF7L1; CDH1

Non-small cell lung cancer 0.017792 AKT3; ERBB2; GRB2; PIK3CG; PIK3R2; PRKCG; MAP2K1; RXRA, TGFA

Phosphatidylinositol signaling system 0.020693 DGKG; DGKH; DGKQ; INPP1; INPP4A; INPP5A; PIK3CG; PIK3R2, PLCD1; PRKCG; DGKZ; DGKD

B cell receptor signaling pathway 0.020693 AKT3; GRB2; BLNK; NFATC1; NFATC2; PIK3CG; PIK3R2; PPP3R1; MAP2K1, VAV1

Adherens junction 0.020693 ERBB2; FER; FYN; SMAD3; NLK; TCF7; VCL; TCF7L1; ACTN1; CDH1

ErbB signaling pathway 0.020693 AKT3; ERBB2; GAB1, GRB2; PIK3CG; PIK3R2; PRKCG; MAP2K1,; TGFA; NCK2; NRG2

Top 10 KEGG pathways enriched by genes with differentially methylated probes between B-cell precursor acute lymphoblastic leukemia with incomplete feature prodromal phase (BCP ALL PP) and both BCP ALL

with the standard course (BCP ALL SC) and control.
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Disease phenotypes enriched by genes with differentially methylated probes.

FDR Involved genes

Adhesion 0.002432 CDH4; CD96; EFNAS; SDK1, FER; ITGAT1, ARHGAP26, FYN; CADM2; RGMB; GRBZ2; ICAM3; ITGA6; ITGAE; ITGAL;
ITGB1; LAMBT; LIMS1; MGAT5, MYH9; NEO1; NRCAM; OLR1; PIK3CG; APBB1IP; STAB2; RADIL; PRKCE;
PCDHGA4; PCDHAG6, PCDHA2; RDX; RAPH1; SLC3A2; SVIL; TGFBI; TRIO; VCL; DDR1; NCK2; ACTN1, ARHGEF7;
STARD13; CLDN10; CYTH1; NRXNZ2; CYTIP; PCDHGA8; CDH1

Drug interaction with drug 0.002432 PDIA5;, ADD1; HSPB6, ADORA2A; ERBB2; F3; FYN; GAB1; SIN3A; GRB2; APP; ITGAL, ITGB1; KCNA4; KCNMAT,
LCK; SMAD3; MAPTA; ACHE, PIK3CG; PIK3R2; PRKCE; PRKCZ; MAP2K1; RDX; RXRA; RYR2; ST100A8; VAV1;
ACTN1,; ARHGEF7; ABCG2; BAG3; NCOR2

Leukemia, Myeloid, Acute 0.009786 CDI6; MSI2; CSF3R; CUX1; DNMT3A; ETV6; ARHGAP26,; SIN3A; GATAZ; IRF8; MIR155, MPO; PBX1; MKL1;
PRDM16; SECTM1,; ZBTB16; ZNF496, ABCG2; BRE; NCOR2; CDA

Ventricular Fibrillation 0.028874 DPP6; KCNET, KCNK3; RYR2; CACNA1C; CACNA2D1; EFCAB1; TANC1; KCNH7; NOS1AP

Wiskott-Aldrich Syndrome 0.044225 ABI2; WHAMM; DNM1; DNM2; FYN; GRB2; ITSN2; AMBRAT, ITSN1; NCK2; ARHGEF7; MTSS1L; MTSS1

Developmental disorder NOS 0.049191 DNMT1; DYRK1A, AUTS2; FOXP1, HADHB; APP; KCNQ2; MAPT; MARK1; CHD7; MAP2K1; ARID1B; DCDC2C; NUAK1

Disease phenotypes enriched by genes with differentially methylated probes between B-cell precursor acute lymphoblastic leukemia with incomplete feature prodromal phase (BCP ALL PP) and both BCP ALL with

the standard course (BCP ALL SC) and control samples.

Major classes of biological processes enriched by genes with differentially methylated probes located within gene bodies.

Description log10 P value

G0:0043087 regulation of GTPase activity —7.5784
G0:0010647 positive regulation of cell communication —6.0232
G0:0046834 lipid phosphorylation —4.9747
(G0:0030032 lamellipodium assembly —4.7773
(G0:0034330 cell junction organization —4.7696
G0:0016192 vesicle-mediated transport —4.382

(G0:0032970 regulation of actin filament-based process —4.2581
(G0:0045216 cell-cell junction organization —4.251

(G0:0022603 regulation of anatomical structure morphogenesis —4.2248
(G0:0040011 Locomotion —3.7327
G0:0007009 plasma membrane organization -3.7188
(0:0006915 apoptotic process —3.7024

Major classes of biological processes enriched by genes with differentially methylated probes located within gene bodies between B-cell precursor acute lymphoblastic leukemia with incomplete feature prodromal
phase (BCP ALL PP) and both BCP ALL with the standard course (BCP ALL SC) and control samples. The numerous enriched biological processes found with WebGestalt were analyzed with Revigo to summarize

them by removing redundant GO terms.

regions of 214 different genes. These genes did not enrich any of the
GO biological processes, phenotypes or pathways. Analysis of the
445 genes associated with probes located in gene bodies was found
to be enriched in a wide range of biological processes that could be
reduced to major categories and are related to processes such as
regulation of GTPase activity, positive regulation of cell communi-
cation or apoptotic processes (Table 4).

The genes with observed methylation differences within the
gene bodies also enriched KEGG pathways associated with inter
alia: non-small cell lung cancer, B cell receptor signalling
pathway, endometrial cancer, renal cell carcinoma, and prostate
cancer (Table 5). The diseases enriched by the genes included 3
phenotypes, namely: neoplastic cell transformation, adhesion
aberration and Wiskott—Aldrich syndrome.

Kulis et al postulate that changes shared during neoplastic
transformation and normal differentiation of lymphocytes B may
represent epigenetic passengers whereas those exclusively taking
place in tumour cells should contain epigenetic drivers with a
potential functional impact in the disease.**! The prevalence and
clinical significance of the observed methylation changes,
however, cannot be discerned from 2 patients alone. It is
possible, however, to distinguish some differences in the DNA
methylation profile between patients with BCP ALL PP and BCP

ALL SC or individuals from the control group. No methylation
changes were identifiable that could be obvious epigenetic drivers
in these cases.

The frequency and implications of these methylation changes
cannot be answered herein. Our data indicates, however, that the
epigenetic basis of BCP ALL with an incomplete, prolonged, PP
requires a more detailed assessment with a larger number of patients.
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KEGG pathways enriched by genes with differentially methylated probes within gene bodies.

FDR Involved genes
Non-small cell lung cancer 0.00074 AKT3; ERBB2; GRB2; PIK3CG, PIK3R2; PRKCG; MAP2K1, RXRA, TGFA
ErbB signaling pathway 0.00074 AKT3; ERBB2; GAB1,; GRBZ; PIK3CG; PIK3R2; PRKCG, MAP2K1; TGFA; NCK2; NRG2
B cell receptor signalling pathway 0.00074 AKT3; GRB2; BLNK; NFATC1; NFATC2; PIK3CG; PIK3R2; PPP3R1, MAP2K1,; VAV1
EGFR tyrosine kinase inhibitor resistance 0.001425 AKT3; ERBB2; GAB1, GRBZ; PIK3CG; PIK3R2; PRKCG; MAP2K1; TGFA; NRG2
Endometrial cancer 0.001579 AKT3; ERBB2, GRB2; PIK3CG, PIK3R2; MAP2K1, TCF7; CDH1
T cell receptor signaling pathway 0.001748 AKT3; GRB2; NFATC1; NFATC2; PIK3CG; PIK3R2; PPP3R1; MAP2K1, VAV, NCK2; CD28
Phospholipase D signaling pathway 0.006316 AKT3; RAPGEF4; DGKH; DNM1; DNM2; GAB1, GRB2; PIK3CG; PIK3R2, MAP2K1, DGKZ; DGKD
Renal cell carcinoma 0.006325 AKT3; EPAS1; GAB1; GRB2; PIK3CG; PIK3R2; MAP2K1; TGFA
Prostate cancer 0.008014 AKT3; ERBB2; GRB2; PIK3CG; PIK3R2; MAP2K1; CREB3L2; TCF7; TGFA
Adherens junction 0.009944 ERBB2; FER; SMAD3; NLK; TCF7; VCL; ACTN1; CDH1
Acute myeloid leukemia 0.009944 AKT3; GRB2; PIK3CG; PIK3R2; MAP2K1, TCF7; ZBTB16
Bacterial invasion of epithelial cells 0.012155 DNM1; DNM2; GAB1; PIK3CG; PIK3R2; VCL; ARHGAP10; CDH1
VEGF signalling pathway 0.012395 AKT3; NFATC2; PIK3CG; PIK3R2; PPP3R1; PRKCG; MAP2K1
Regulation of actin cytoskeleton 0.012395 1QGAP2; FGF6; ITGAT1, ITGAG; ITGAE; ITGAL; PIK3CG; PIK3R2, MAP2K1,; RDX; VAV1; VCL; ACTN1; ARHGEF7
Choline metabolism in cancer 0.012395 AKT3; DGKH; GRB2; PIK3CG; PIK3R2; PRKCG, MAP2K1, DGKZ; DGKD
Pancreatic cancer 0.015854 AKT3; ERBB2; SMAD3; PIK3CG; PIK3R2; MAP2K1; TGFA
Glioma 0.015854 AKT3; GRB2; PIK3CG; PIK3R2; PRKCG; MAP2K1; TGFA
Natural killer cell mediated cytotoxicity 0.022128 GRB2; ITGAL; NFATC1; NFATC2; PIK3CG; PIK3R2; PPP3R1; PRKCG; MAP2K1; VAV1
Fc gamma R-mediated phagocytosis 0.024693 AKT3; DNM2; PIK3CG; PIK3R2; PRKCE; PRKCG; MAP2K1, VAV1
CGMP-PKG signaling pathway 0.03022 AKT3; KCNMAT; NFATC1; NFATC2; PIK3CG; PIK3R2; PPP3R1; PRKCE, MAP2K1, CREB3L2; CACNA1C
Sphingolipid signaling pathway 0.03022 AKT3; CERS6; PIK3CG; PIK3R2; PPP2R5C; PRKCE; PRKCG; MAP2K1; NSMAF
Phosphatidylinositol signaling system 0.031137 DGKH; INPP5A; PIK3CG; PIK3R2; PLCD1; PRKCG, DGKZ; DGKD
Hepatitis B 0.031137 AKT3; GRB2; SMAD3, NFATC1,; NFATC2; PIK3CG; PIK3R2; PRKCG; MAP2K1, CREB3L2
AGE-RAGE signaling pathway in diabetic 0.033064 AKT3; F3; SMAD3; NFATC1; PIK3CG; PIK3R2; PLCD1, PRKCE
complications
Focal adhesion 0.037454 AKT3; ERBB2; ITGAT1, GRB2; ITGA6; PIK3CG; PIK3R2; PRKCG; MAP2K1, VAV1, VCL, ACTN1
Colorectal cancer 0.038715 AKT3; SMAD3, PIK3CG; PIK3R2;, MAP2K1, TCF7
Osteoclast differentiation 0.04322 AKT3; GRB2; BLNK; NFATC1; NFATC2; PIK3CG; PIK3R2; PPP3R1;, MAP2K1
Dorso-ventral axis formation 0.04322 ETV6; GRB2; ETV7; MAP2K1
Thyroid cancer 0.047349 MAP2K1; RXRA; TCF7; CDH1
Cholinergic synapse 0.047349 AKT3; CHRNB4, PIK3CG; PIK3R2; PRKCG; MAP2K1, CREB3L2; CACNA1C

KEGG pathways enriched by genes with differentially methylated probes within gene bodies between B-cell precursor acute lymphoblastic leukemia with incomplete feature prodromal phase (BCP ALL PP) and

both BCP ALL with the standard course (BCP ALL SC) and control samples.
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