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Vector Form of Symmetry Degree
G. H. Dong2, Z. W. Zhang1, C. P. Sun2 & Z. R. Gong1,2

Symmetry degree is utilized to characterize the asymmetry of a physical system with respect to a 
symmetry group. The scalar form of symmetry degree (SSD) based on Frobenius-norm has been 
introduced recently to present a quantitative description of symmetry. Here we present the vector 
form of the symmetry degree (VSD) which possesses more advantages than the SSD. Mathematically, 
the dimension of VSD is defined as the conjugacy class number of the symmetry group, the square 
length of the VSD gives rise to the SSD and the direction of VSD is determined by the orders of the 
conjugacy classes. The merits of applying VSD both for finite and infinite symmetry groups include the 
additional information of broken symmetry operators with single symmetry breaking perturbation, 
and the capability of distinguishing distinct symmetry breaking perturbations which exactly give rise 
to degenerate SSD. Additionally, the VSD for physical systems under symmetry breaking perturbations 
can be regarded as a projection of the initial VSD without any symmetry breaking perturbations, which 
can be described by an evolution equation. There are the same advantages by applying VSD for the 
accidental degeneracy and spontaneous symmetry breaking.

Symmetry is always an intriguing topic of modern physics, which plays a crucial role in understanding the funda-
mental interactions and the structures of physical systems ranging from micro to macro levels1,2. The application 
of the symmetry especially the spontaneous symmetry breaking has inspired many fields of physics, such as par-
ticle physics3–8, condensed matter physics9–12, physical chemistry13–16, biological physics17,18 and quantum infor-
mation19,20. Mathematically, symmetry refers to that a system is invariant under some specific transformations. 
This dichotomous definition indicates a system either possesses or lacks of a symmetry. However, for a physical 
symmetric system with slightly symmetry breaking, it still can be approximately treated under the original sym-
metry. For instance, the crystal structure of bilayer transition metal chalcogenide possesses D3h symmetry and an 
out-of-plane electric field is usually applied which breaks the symmetry into its subgroup C3V. However, in most 
of cases the stark effect resulting from the electric field is sufficiently weak, D3h symmetry is still applied to obtain 
the energy spectrum and the electronic dynamics in such system. In this sense, the symmetry needs a continuous 
quantitative description for physical systems.

A scalar form of continuous symmetry degree (SSD) has already been proposed in ref.21. Since for a physical 
system all the symmetric transformations form a symmetry group, a symmetry breaking perturbation gives rise 
to a reduction of the symmetry group into its corresponding subgroup. Based on the irreducible representa-
tion of the symmetry group and the Frobenius norm22, the SSD ranging from zero to unity is more capable 
to identify various nature of symmetries such as symmetry breaking, accidental degeneracy and spontaneous 
symmetry breaking23, in contrast to the previous explorations based on the abstract concepts of fuzz set24 and 
transform information25. Recently, it was applied to the Frobenius norm-based measures for quantum coherence 
and asymmetry26.

Nevertheless, the SSD basically is an average of the Frobenius norm over all transformations in the symmetry 
group. More information of symmetry degree on an individual transformation is lost during this averaging calcu-
lation, which is supposed to reveal the delicate nature of symmetry. To avoid this artificial missing, we propose the 
vector form of the symmetry degree (VSD) instead, which is obtained by dividing the SSD according to the con-
jugacy classes of the symmetry group. In this sense, the dimension of VSD exactly equals to the conjugacy class 
number of the symmetry group and the square length of the VSD gives rise to the SSD. It is easy to prove that the 
VSD inherits those good properties from SSD, such as vector length range from zero to unity, basis-independent, 
invariant under the zero-point energy shifting as well as the scaling transformation. One more important prop-
erty for VSD is that the information of symmetry degree on individual transformations in the same conjuagcy 
class is stored into the component of the VSD, which is illustrated by the direction of the VSD. For example, for a 
symmetry breaking perturbation, the symmetry nature can be delicately described by identifying the disappear-
ance of components of VSD. The other merit of applying VSD both for finite and infinite symmetry groups is the 
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capability of distinguishing distinct symmetry breaking perturbations which exactly give rise to degenerate SSD. 
When the symmetry breaking perturbation increases, the trajectory of the VSD in the parameter space can be 
regarded as a projection process of the initial VSD. There are the same advantages by applying VSD for the acci-
dental degenerate and spontaneous symmetry breaking systems. The accurate definition of the continuous quan-
titative description of the symmetry may shed light on symmetry related applications in various physics fields.

Results
Definition of Vector form of symmetry degree.  We start from a physical system with Hamiltonian H 
and a symmetry group G with ng transformations defined on the physical system’s Hilbert space. For any element 
O ∈ G, the deviation between OHO−1 and H measures the asymmetry of physical system with respect to the set 
element O. Thus the SSD is defined as the average over G
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where | | =O Tr O O[ ]†  is the Frobenius norm measuring the fidelity of O, → ∈R g R g End: ( ) ( ) is a d-dimensional 
representation of g ∈ G, = − −~H H d Tr H{ }1  is a re-biased Hamiltonian, and R g H R g H HR g{ ( ), } ( ) ( )= +~ ~ ~  is the 
anti-commutation operation.

Obviously, all the information about the symmetry nature with respect to an individual transformation is mixed 
during the averaging. However, the information of which exact transformation the Hamiltonian is symmetric or asym-
metric with respect to is more important for the applications. In other hand, the symmetry group G can be divided into 
several conjugacy classes {Gi}. In one conjugacy class, any two elements a,b∈Gi are conjugate as gag−1 = b for g ∈ G. This 
means the information of symmetry with respect to the conjugate transformations is not nesessary to be identified. In 
this sense, the VSD is defined based on the conjugacy classes as G H S G HS e( , ) ( , ) ,i i i i= ∑  where
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Here, the summation is taken over the i-th conjugacy class, and ei denotes the unit vector with respect to the 
i-th conjugacy class.

Obviously, the square length of the VSD G H S G H G HS( , ) ( , ) ( , )i i i
2 2| | = ∑ =  gives rise to the SSD. Since the 

symmetry degree now is measured not only in a continuous description but also in a vector from, it actually intro-
duces a geometric picture of the symmetry degree. More information of the symmetry nature can be illustrated 
by identifying the components of the VSD.

We will take a symmetry breaking system as an example. If H0 is symmetric under all transformations in group 
G, the = ∑G H S G HS e( , ) ( , )i i i i0

max
0  points to a definite direction with maximum unity length. An additional 

symmetry breaking perturbation H1 is applied to this physical system as H = H0+λH1 and the VSD is straightfor-
wardly obtained as G H S G HS e( , ) ( , )i i i i= ∑λ λ  which possibly points to a different direction and its length is 
definitely smaller than unity. Here, λ quantifies the strength of the symmetry breaking perturbation. From the 
view of the vectors, Sλ (G,H) can be regarded as a projection of S(G, H0) as

= ⋅λ
λ

←→
G H P H G HS S( , ) ( ) ( , ) (4)1 0

with a projection operator †= ⋅λ
λ

←→
P H G H G HS S( ) ( , ) ( , )1 0 . When λ varies from zero to infinity and the corre-

sponding symmetry group changes respectively from group G to subgroupG′ due to H1, the VSD has a trajectory 
in the parameter space. In this sense, such trajectory is supposed to de described by an evolution equation as


λ

= −λ λ ∞d
d

G H G H G HS S S( , ) [ ( , ) ( , )],
(5)

where the operator satisfies 0[ ] 0 =  in order to obtain the steady vector.
Another merit of the VSD is distinguishing distinct symmetry breaking perturbations which exactly give rise 

to degenerate SSD. Since it is very likely that the SSD gives two identical values for distinct symmetry breaking 
perturbations, which actually have different physical origins and result in asymmetry of the system for different 
transformations. For VSD as two vectors in the parameter space under such circumstance, even they possess the 
same length they can still be identified due to distinct directions. This will be demonstrated in details by the fol-
lowing examples, where VSD works well both for finite and infinite symmetry groups.

Examples of physical systems for finite and infinite symmetry groups.  First we consider a sys-
tem with a finite symmetry group D3h shown in Fig. 1(a). Such system with uniform triangular prism structure 
includes Tc6Cl6

27, bilayer graphene28, transition metal dichalcogenides29,30 and so on. They are described by a 
six-sites lattice Hamiltonian as
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where i a i a u l, ( 1, 2, 3, , )| = =⟩  is the single particle state with site i in the upper (u) or lower (l) layer occupied, 
the site energy ε and the intra-layer and inter-layer hopping strength t1 and t2 are site-independent for the uni-
form triangular prism geometry. The D3h has six conjugacy classes as σ σ′E C C S{ , 2 , 3 , , 2 , 3 }h v3 2 3 . Thus the max-
imum VSD is D HS( , ) (1, 2 , 3 ,1, 2 , 3 )h3 0

1
12

= .
Three different perturbations are taken into consideration as

Figure 1.  (a) Schematics of three kinds of symmetry breaking perturbations onto D3h. Here, blue spheres and 
bonds between them respectively denotes the particle and hopping between particles. The green spheres denotes 
the particles whose on-site energy have been changed bu symmetry breaking perturbations. (b) Table of 
Hamiltonian, the corresponding symmetry group and conjugacy classes. (c) Contourplot of the components of 
VSD Si (Gi, H) versus i− th conjugacy classes and the perturbation strength λ/t for three different symmetry 
breaking perturbations. Here, we have assumed 1

2 2
3 2 3λ λ λ λ= = = . Obviously, the VSDs for three distinct 

symmetry breaking perturbations differ from each other and thus VSD can be used to distinguish them.
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which are depicted in Fig. 1(a). They respectively break D3h into C3v,C2d and Z2, whose corresponding conjugacy classes 
are presented in Fig. 1(b). According to the SSD definition in Eq. (1), the SSD for above three kinds of perturbations are 
straightforwardly obtained as D H H f( , ) 1 ( )/2h1 3 0 1 1 λ+ = − ,  D H H f( , ) 1 (2 2 /3)/2h2 3 0 2 2λ+ = − , 

D H H f( , ) 1 ( )/2h3 3 0 3 3λ+ = − ,  with f  (λ) =  λ 2/(4t2 +  λ2) and t t t22
1
2

2
2= + .  Obviously,  when 

λ λ λ λ= = =2 2 /31 2 3  the above three SSD are exactly coincident. It means there is no chance to distinguish these 
three kinds of symmetry breaking perturbations by SSD.

To distinguish three distinct symmetry breaking perturbations, we calculate the VSD straightforwardly 
according to its definition in Eq. (2) as
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Firstly, for one single symmetry breaking perturbation, the VSD provides more information of symmetry 
nature than SSD. If we take S1(D3h, H0 + H1) as the example, the components for the conjugacy classes E C{ ,2 ,3 }v3 σ  
are invariant and the components for the conjugacy classes C S{3 , ,2 }h2 3σ′  decreases, which means symmetry 
breaking perturbation H1 only breaks those symmetry transformations in the later conjugacy classes. Secondly, 
for distinct symmetry breaking perturbations, the VSDs are completely different from each other and thus the 
corresponding symmetry breaking perturbations are definitely distinguished, which is depicted in Fig. 1(c).

The VSD not only works well for the finite group, but also for the infinite group which describes the continu-
ous symmetry. The basic difference between them is that the infinite group possesses infinite number of conju-
gacy classes. In this sense, the VSD is regarded as a vector with infinite dimensions. For instance, we consider a 
physical system with angular momentum J described by the following Hamiltonian H J Jz0

2 2ε α= + , whose cor-
responding continuous symmetry group is = ⊗G SU Z(1) 2. The symmetric transformations include the 2-fold 
rotation along any axis in the x − y plane as θ θ π θ π= − + ∈θU i J Jexp [ ( cos sin ) ], [0, 2 )x y  and the continuous 
rotations along z-axis as V iJexp [ ], [0, 2 )zφ φ π= − ∈φ . The corresponding transformations are schematically 
illustrated in Fig. 2(a). It is easy to prove that all the 2-fold rotation transformations belong to the same conjugacy 
class. The rotations with respect to the z axis with rotation angle φ and −φ also belong to the same conjugacy class 
(see Appendix). Since the rotation angle φ can varies from 0 to π, obviously the number of conjugacy classes are 
infinite.

Two different perturbations are considered here H1 = λαJz and H2 = λαJy, which respectively break G into 
subgroup SU(1) and Z2. In this sense, the coincident SSD are obtained as
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where j is the quantum number of the angular operator. The corresponding VSD are obtained as + =G H HS ( , )1 0 1  
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Figure 2.  (a) Animation of symmetric transformations. Left and right plot denotes the 2-fold rotation along 
any axis in the x − y plane as Uθ = exp[−i(Jx cos θ + Jy sin θ)π], θ ∈ [0, 2π) and the continuous rotations along z-
axis as Vφ = exp[−iJzφ], φ ∈ [0, 2π). The red solid curves represents the trajectories of the angular momentum 
under the symmetric transformations. Here, n (cos [ ], sin [ ])θ θ→ =  is the 2-fold rotation axis. (b) The 
components of VSDs under the first (left) and the second (right) symmetry breaking perturbations S1

φ and S2
φ 

versus φ and λ. Here, the angular quantum number is fixed as j = 4. (c) The components of VSDs under the first 
(left) and the second (right) symmetry breaking perturbations S1

2 and S2
2 versus λ. Here, the magenta dash-

dotted line, the black dotted line, the blue dashed line and the red solid line respectively represent the angular 
momentum with quantum number j = 1, 2, 3, 4. Obviously, the VSDs for distinct symmetry breaking 
perturbations are obviously different.
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and eφ, e2 are the unit vectors with respect to the continuous rotations and 2-fold rotations respectively. The SSD 
+G H H( , )1 0 1  is still regarded as the square length of the VSD S1(G, H0 + H1) as
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The SSD + G H H( , )2 0 1  can be recovered from VSD S2(G, H0 + H1) in the same way. We can see from 
Fig. 2(b) and (c) that the first perturbation H1 only breaks the 2-fold rotations and keeps invariable under trans-
formations in SU(1) while the second perturbation H2 breaks both continuous rotations and 2-fold rotations.

It should be indicated that the definition of VSD can be generalized to complicated cases, when the conjugacy 
class of the symmetry group is defined by multiple parameters. For instance, if the conjugacy class depends on n 
parameters such as x1, x2, …, xn, the VSD can be defined in a multiple integral form as G HS( , )=

dx dx dx S x x x e( , , , )n n x x x1 2 1 2 , , , n1 2∫ ∫ ∫  



 with unit vector 


ex x x, , , n1 2
.

Discussion
For a physical system with symmetry especially when it is broken somehow, the continuous quantitative descrip-
tion of the symmetry is required to characterize the physical system. In this work, we present the VSD instead of 
the SSD. Since the vector possesses not only the vector length which equals to the SSD, but also the components 
which provide information of symmetry degree on individual transformation. Therefore, the VSD provides more 
information of the symmetry nature.

For the symmetry breaking perturbations which break the original symmetry into different subgroups, VSD 
can be used to distinguish distinct symmetry breaking perturbations which just give the identical SSD values. 
Since the good properties of the VSD are inherited from the SSD, the VSD is feasible to identify other symmetry 
related effects and phenomenons, such as accidental degeneracy and spontaneous symmetry breaking. The evo-
lution equation of the symmetry in the parameter space determines how the symmetry varies, which may have 
a deep relationship to the evolution of the quantum states under some time dependent perturbations such as the 
adiabatic process. The research of the symmetry degree will shed light on many physical applications such as the 
design of the artificial molecules, fabrication of Van de Vaals materials, classical and quantum critical phenome-
nons and so on.

Methods
Before defining the symmetry degree with respect to the individual transformation, the asymmetry degree is 
defined in an intuitive way. For a physical system with Hamiltonian H, if we have the relation =R g HR g H( ) ( )†  
where R(g) is a d-dimensional representation of g ∈ G, it means the Hamiltonian H is invariant under the trans-
formation g. Obviously, R(g)HR† (g) ≠ H indicates that Hamiltonian H is no longer invariant under transforma-
tion g. Therefore, the deviation between R(g)HR† (g) and H can be used to measure the asymmetry of the physical 
system with respect to transformation g. Additionally, the Frobenius norm is introduced as the measure of such 
deviations.

In this sense, the asymmetry degree with respect to the individual transformation g is defined as
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where H4 2| |~  is a naomalization factor, = − −H H d Tr H{ }1~  is a re-biased Hamiltonian in order to make sure the 
asymmetry degree is zero-point energy independent.

Intuitively, we can define the symmetry degree with respect to the individual transformation g as
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which is the origin of the definition of SSD and VSD in Eqs (1) and (2).
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