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Default mode network deactivation during emotion
processing predicts early antidepressant response
M Spies1, C Kraus1, N Geissberger2, B Auer3, M Klöbl1, M Tik2, I-L Stürkat3, A Hahn1, M Woletz2, DM Pfabigan3, S Kasper1, C Lamm3,
C Windischberger2 and R Lanzenberger1

Several previous functional magnetic resonance imaging (fMRI) studies have demonstrated the predictive value of brain activity
during emotion processing for antidepressant response, with a focus on clinical outcome after 6–8 weeks. However, longitudinal
studies emphasize the paramount importance of early symptom improvement for the course of disease in major depressive
disorder (MDD). We therefore aimed to assess whether neural activity during the emotion discrimination task (EDT) predicts early
antidepressant effects, and how these predictive measures relate to more sustained response. Twenty-three MDD patients were
investigated once with ultrahigh-field 7T fMRI and the EDT. Following fMRI, patients received Escitalopram in a flexible dose schema
and were assessed with the Hamilton Depression Rating Scale (HAMD) before, and after 2 and 4 weeks of treatment. Deactivation of
the precuneus and posterior cingulate cortex (PCC) during the EDT predicted change in HAMD scores after 2 weeks of treatment.
Baseline EDT activity was not predictive of HAMD change after 4 weeks of treatment. The precuneus and PCC are integral
components of the default mode network (DMN). We show that patients who exhibit stronger DMN suppression during emotion
processing are more likely to show antidepressant response after 2 weeks. This is, to our knowledge, the first study to show that
DMN activity predicts early antidepressant effects. However, DMN deactivation did not predict response at 4 weeks, suggesting that
our finding is representative of early, likely treatment-related, yet unspecific symptom improvement. Regardless, early effects may
be harnessed for optimization of treatment regimens and patient care.

Translational Psychiatry (2017) 7, e1008; doi:10.1038/tp.2016.265; published online 24 January 2017

INTRODUCTION
First-line antidepressant treatment leads to response rates of
~ 50%, resulting in a large population of patients that does not
respond to initial antidepressant treatment.1 On the other hand,
depression is associated with detrimental personal, social and
economic costs. Therefore, neuroimaging biomarker studies have
focused on strategies that allow for prediction of treatment
response and selection of effective treatment for individual
patients in order to optimize clinical routine and patient
experience.2

In particular, identification of patients that exhibit swift, early
response to a particular antidepressant medication may reduce
patient suffering, especially as it has been shown that early
symptom improvement may predict later course of disease. For
example, a meta-analysis of 41 studies showed that symptom
reduction at 2 weeks predicted stable response and remission
with 81% and 87% sensitivity, respectively.3 In fact, such
observations have led some authors to suggest shortening the
recommended time during which antidepressant effects are
assessed and after which antidepressant medication should be
adapted, to 2–4 weeks.4 As early response serves as an indicator of
later outcome, elucidation of early responders before treatment
begin may allow for prediction of general treatment results.
Recent studies suggest that data obtained via magnetic

resonance imaging (MRI) at baseline predict response to
subsequent antidepressant therapy. For example, structural values

such as regional gray matter volume5–8 and white matter micro-
structure9 were shown to predict outcome following antidepres-
sant psychopharmacologic treatment. A similar approach has
been taken with functional MRI (fMRI). Blood-oxygen-level-
dependent (BOLD) response during impulse control,10 in response
to painful stimuli,11 and related to memory encoding12–14

predicted antidepressant response.
In particular, response prediction studies utilizing fMRI have

focused on tasks assessing emotion processing. On the one hand,
responders and non-responders were shown to differ before
initiation of antidepressant treatment. Responders exhibited
greater activity in premotor regions, whereas non-responders
showed higher insular activity.15 Similarly, patients who showed
better response to 4 weeks of antidepressant treatment displayed
higher activation in the posterior cingulate cortex (PCC),
dorsomedial prefrontal cortex and superior frontal gyrus.16 Other
studies have directly correlated emotion-processing-related fMRI
activity assessed before treatment with later antidepressant
response. Higher activity in premotor regions, the PCC,15 anterior
cingulate cortex,17 lingual gyrus, hippocampal region, and
cerebellum18 predicted symptom reduction at 6–8 weeks. Lower
ventrolateral prefrontal cortex19 and amygdala20 activity was
related to greater betterment of anhedonia and general
depressive symptom improvement, respectively, after 8 weeks of
treatment. These results highlight that the regional activation
patterns shown to date to have a predictive value are quite
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heterogeneous. This variability may be a reflection of clinical
factors, such as the antidepressant applied.20 In fact, it has been
shown that fMRI of emotion processing allows differential
prediction of response to unique antidepressants. For example,
brain activity during emotion processing was shown to differen-
tially predict response to mirtazapine versus venlafaxine.21

Furthermore, the time frame after which antidepressant response
is assessed may also have a role, highlighting the importance of
investigating the predictive value of emotion-processing-related
brain activity at different time points, including early response
after 2 weeks.
This focus on emotion processing is not surprising, considering

the multitude of behavioral,22 task fMRI, and functional
connectivity23–26 studies demonstrating alterations in major
depressive disorder (MDD) and changes over the course of
antidepressant treatment.25–30 However, emotion processing is
considered a conglomerate of integrated complex processes, and
fMRI tasks inevitably focus on only a few aspects. For example,
emotion discrimination (EDT) or emotional face-matching tasks
are thought to assess voluntary attentional control,31 which is
understood as a top–down control aspect of emotion processing
aimed at focusing attention while preventing distraction from
emotionally salient input.31–33 The EDT leads to activation of
emotion (prefrontal cortex, orbitofrontal cortex, anterior cingulate
cortex, striate and extrastriate cortex, amygdala, hippocampal and
parahippocampal) and face-processing regions (fusiform gyri,
inferior parietal regions, and frontal eye fields).34–40 In depressed
patients, processing of emotional faces is associated with higher
activity in the dorsolateral prefrontal cortex, precentral gyrus,
anterior cingulate cortex, amygdala, and superior frontal cortex, as
well as lower activity in the insula, temporal- and occipital
cortices34,41,42 when compared with controls. Psychopharmacolo-
gic antidepressant treatment, on the other hand, is associated
with reduction in EDT-related amygdala activation.43

In summary, numerous investigations have highlighted the
integral role of emotion processing to depression’s pathophysiol-
ogy, symptoms and treatment. Accordingly, the potential to utilize
BOLD during emotion-processing tasks for prediction of anti-
depressant treatment outcome has been shown. However, the
relevance of such patterns for prediction of early improvement of
symptoms, after 2 weeks of treatment, is yet to be determined.
Early response may be understood as the clinical ‘turning point’ in
antidepressant treatment. We therefore aimed to assess whether
neural activity related to emotion discrimination may be
harnessed for prediction of early antidepressant response, and
how predictive measures relate to more sustained antidepressant
outcome, using the EDT and 7T fMRI.

MATERIALS AND METHODS
Subjects
Twenty-three patients (16 female and 7 male subjects) aged 18–50 years
with MDD were included in this study. MDD was diagnosed according to
the Diagnostic and Statistical Manual of Mental Disorders (4th edition, text
rev.; DSM-IV-TR; American Psychiatric Association, 2000). The Structured
Clinical Interview for DSM-IV for Axis I and Axis II disorders (SCID-I and
SCID-II for DSM-IV) was utilized to diagnose MDD and exclude the presence
of psychiatric Axis I or Axis II comorbidities. Patients had to be free from all
medications and may not have taken any psychopharmacologic substance
for at least 3 months before inclusion. At screening, all participants
underwent standard medical testing including a physical examination,
routine laboratory testing and electrocardiography as well as a thorough
medical history in order to exclude severe internal or neurological illnesses.
In female subjects, urine pregnancy testing was performed to exclude
pregnancy, and breastfeeding females were excluded from the study. In all
patients, drug-urine tests were performed to exclude current substance
abuse. Furthermore, all participants were screened for MRI contraindica-
tions including implants, pacemakers or claustrophobia. All subjects
provided written informed consent and received financial reimbursement

for participation. This study was approved by the Ethics Committee of the
Medical University of Vienna and was performed according to the
Declaration of Helsinki. Estimation of sample size was based on the
assumption of 50% symptom reduction in at least 50% of patients.1 For the
resulting Cohen's d of 0.60, an alpha-error of 0.05 and power of 0.80, 19 or
more subjects are required.

MRI scanning
All subjects underwent 7T fMRI (Siemens Magnetom, Siemens Medical
Solutions, Erlangen, Germany) at the Medical University of Vienna using a
32-channel head coil. MRI scanning was well tolerated by participants. fMRI
data were acquired using a single-shot gradient-recalled EPI (repetition
time (TR) = 1.4 s, echo time (TE) = 23 ms, matrix size 128× 128 voxel, field of
view (FOV) of 192× 192 mm, 78 slices of 1 mm with 0.25 mm gap). This
study utilized a high-resolution 7T fMRI protocol using multiband (factor 3)
imaging with interleaved recording as well as optimized excitation pulses
and readout bandwidths. fMRI of amygdala and prefrontal regions is
potentially challenging because of susceptibility changes along tissue
borders (brain–skull–air) and resulting field inhomogeneities, which may
result in signal loss via intravoxel dephasing effects.44 However, high-
resolution 7T fMRI imaging is thought to improve signal-to-noise ratio and
improve sensitivity.40,45

Emotion discrimination task
A version of the EDT, a block-design task in which patients are instructed
to recognize visually presented basic emotional facial expressions, was
used as previously published in Windischberger et al.43 and based on Hariri
et al.35,37 The task was presented using Cogent toolbox for MATLAB. In the
test condition (EDT), two faces exhibiting different facial expressions were
depicted at the bottom of the screen while a third emotional face was
presented at the top of the screen. Patients were instructed to pair the top
face with the bottom face that was most similar in emotional expression. In
the control condition, the object discrimination task (ODT), patients were
instructed to match shapes presented in the same position as the faces in
the test condition on backgrounds of similar color distribution. The
patients denoted their choice via button press. The task was performed
over the course of 9 min, including four alternating blocks each of the EDT
and ODT conditions, starting with the EDT condition. Each picture was
presented for at least 2 s and patients had up to 5 s in order to submit the
button press.

Preprocessing
fMRI data preprocessing comprised slice-timing correction, realignment,
spatial normalization and spatial smoothing as implemented in SPM12
(Wellcome Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm)
using default parameters, unless otherwise specified. Slice-timing correc-
tion, using the slices recorded at TR/2 as reference,46 and motion
correction, using the mean image as reference, were performed. In order
to further limit motion artifacts, each patient’s head was fixated in the head
rest using soft foam cushions to minimize movement during scanning.
Framewise displacement (FD), a measure of in-scanner motion, was
calculated.47 For our patient group, the mean± s.d. FD= 0.23 ± 0.13 mm.
The generally accepted maximum FD=0.5 mm.48

Medication
Following the MRI scan, all patients were treated with Escitalopram
according to a flexible dose antidepressant treatment protocol based on
the recommended dosing starting with 10 mg per day.49 Escitalopram is
considered a first-line antidepressant treatment.49,50 In patients with
pronounced agitation and anxiety symptoms, treatment was phased in
with 5 mg per day in order to improve tolerability. In these patients,
treatment was subsequently increased to 10 mg per day within the first
week of treatment, with the exception of one patient who was kept on
5 mg. Further dose adaptation took place after 2 weeks of Escitalopram
treatment in patients in whom HAMD did not decrease by at least 50%. At
this time point, the dose was increased by 5 or 10 mg, depending on side
effects and tolerability, based on clinical inspection of patients. In order to
ensure adherence to treatment, it was announced that plasma levels
would be assessed over the course of the study.
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Psychological tests
The 24-item HAMD, performed by an experienced psychiatrist, was used to
assess depressive symptoms at the MRI visit, and after 2 (mean± s.
d. = 13.83 ± 5.13 days) and 4 (27.64 ± 4.66 days) weeks of Escitalopram
treatment. HAMD at 2 weeks was utilized to assess early effects of
antidepressant treatment. HAMD was also measured at 4 weeks in order to
investigate whether a possible predictive value of fMRI data at 2 weeks
carried over to prediction of more sustained antidepressant response. Early
symptom improvement was defined as a reduction in HAMD scores by at
least 20% after 2 weeks of treatment based on Szegedi et al.3 Response
was defined as reduction in the HAMD score by at least 50% in comparison
with baseline. Remission was defined as ⩽ 7 points on the HAMD scale.

Statistical analyses
Statistical analysis of fMRI data was performed with SPM12. First-level
analysis for elucidation of task-specific activation consisted of the contrast
test (EDT) versus control (ODT) condition as well as EDT versus baseline
brain activity. Voxel-wise regression analysis was performed between task-
specific neural activity (contrast EDT versus ODT) and HAMD reduction
after 2 as well as 4 weeks of Escitalopram treatment. Age, sex and baseline
symptom severity, defined as HAMD on the day of MRI, were included as
covariates. Second-level analyses were corrected for multiple testing using
Gaussian random field theory as implemented in SPM12 and the threshold
for significance was set at P⩽ 0.05 family-wise error (FWE)-corrected at the
cluster-level following P⩽ 0.001 uncorrected at the voxel-level. Variation of
data is covered in t-test and regression analyses by definition via the
influence of s.d. SPM12 deals with characteristics of fMRI data violating
necessary statistical assumptions (such as autocorrelation) during proces-
sing on the subject level.

RESULTS
Clinical data
The 23 investigated MDD patients showed the mean symptom
severity at baseline HAMD± s.d. = 26.26 ± 5.64. One patient was
subsequently excluded from fMRI analysis by visual inspection due
to excessive motion artifacts. One patient was lost to follow up at
4 weeks. At 2 weeks, early improvement, response and remission
rates were 10/22 (45.45%), 4/22 (18.18%), and 1/22 (4.55%). By
4 weeks, 4/21 (19.05%), and 5/21 (23.81%) were in response and
remission, respectively.

Task-related activity
The EDT revealed brain activity patterns in accordance with those
described in the literature.34–40 The contrast EDT versus ODT
resulted in activation of the superior and inferior frontal cortex
and the superior and middle temporal cortex, as well as amygdala,
hippocampus, parahippocampus, calcarine, lingual, fusiform, and
cerebellar regions. Task-related deactivation was found in the
middle and inferior occipital cortex, as well as fusiform and
cerebellar regions.
Contrasting EDT versus baseline task activity resulted in

activation of the superior, middle, and inferior occipital cortex,
the superior and inferior temporal cortex, the superior and inferior
parietal cortex, the gyrus angularis, and the middle frontal cortex.
Furthermore, this cluster included activation of lingual, calcarine,
fusiform, and cerebellar regions. For the contrast EDT versus
baseline, deactivation was found in the anterior, middle and PCC,
the precuneus, the middle frontal cortex, and parietal regions,
including the gyrus angularis and inferior parietal cortex (Figure 1).
All activities reported were significant at Po0.05 FWE-corrected

at the cluster-level; for peak statistics and coordinates see Table 1.
Task accuracy was 100%. In all stimulus sets, all patients correctly
matched the presented faces based on the emotions they
expressed.

Regression analysis
For EDT versus ODT, deactivation in the precuneus and the PCC
correlated with early antidepressant response defined as change
in HAMD scores between baseline and 2 weeks after treatment
begin (Figures 2 and 3). This correlation was significant after
correction for symptom severity at baseline assessed with HAMD,
age, and sex (Po0.001, FWE-corrected, cluster-level). In order to
further correct for a possible influence of disease severity, we
investigated whether baseline HAMD correlated with EDT versus
ODT brain activity, which it did not.
The cluster that correlated with early response overlapped with

baseline task activity. More specifically, this region exhibited
deactivation during the contrast EDT versus baseline (Po0.05,
FWE-corrected, cluster-level) as well as for the contrast EDT versus
ODT, yet below the significance threshold. In addition, clusters
within the left middle temporal cortex, left hippocampus and right
gyrus rectus isolated in regression analysis also overlapped with
EDT versus baseline task activity. Interestingly, no correlation was
found in brain wide-analysis of baseline EDT versus ODT activity
with HAMD change after 4 weeks of Escitalopram treatment.
In order to investigate the findings for a potential bias due to

outliers, delete-1 jackknife resampling procedure was performed.
This analysis indicated little bias of the associations for correlations
of the peak voxel (observed r= 0.858, corrected r= 0.855) and the
entire cluster (observed r= 0.832, corrected r= 0.833).
All activities reported were significant at Po0.05 FWE-corrected

at the cluster-level; for peak statistics and coordinates see Table 2.

DISCUSSION
The study at hand aimed to investigate whether fMRI task activity
related to emotion processing allows for prediction of early
antidepressant response. We found that deactivation of a cluster
in the precuneus and PCC (EDT versus ODT) predicted HAMD
reduction after 2 weeks of treatment. Interestingly, PCC and
precuneus deactivation did not correlate with symptom improve-
ment after 4 weeks of treatment.
The PCC and precuneus are considered integral components of

the default mode network (DMN).51 A central characteristic of the
DMN is its deactivation during performance of demanding
cognitive or emotional tasks.52 Deactivation of the DMN increases
with the level of attention a task requires53 and with successful
performance,54 likely as a result of reallocation of resources.
Appropriately, in our study, the precuneus and PCC were also
deactivated during performance of the EDT, which is designed
specifically to elucidate attentional control of emotional stimuli.31

Other regions also typically implicated in the DMN, including the
angular gyrus and inferior parietal regions, inferior frontal regions,
and middle frontal regions,55 also showed deactivation during
emotion processing in our study. Therefore, the presumed
attentional control exerted during the EDT resulted in DMN
suppression in our group of MDD patients, with stronger
deactivation of the DMN predicting better subsequent response
to 2 weeks of antidepressant treatment.
The DMN is typically related to self-referential processes56 and

active during mind-wandering states.57 The precuneus and PCC
have been considered central moderators within the DMN in that
they are highly connected to other regions of the network.58

Furthermore, the precuneus connects the DMN to cognitive
control networks and has been implicated in the regulation of
cognitive states.59–61 The DMN can be divided into functional
subsets, described as the medial–temporal and dorsal–medial
system by some authors,62 which overlap broadly with the
anterior and posterior subsets defined by other authors.63 In fact,
the PCC is addressed by the first of these models as a core
component of the DMN, which coordinates communication
between regions responsible for functions such retrieval of
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episodic information relevant to salient input, and others
responsible for mentalization. Activity within the PCC has been
shown to correlate with activity within all other regions of the
network, and it is among the most consistently enlisted regions in
the DMN.62 The precuneus and PCC are often addressed in the
literature as part of a common functional cluster in the DMN,51

reflecting the pattern we found.
Changes to the activation of—and the connectivity between—

components of the DMN have repeatedly been shown in
depression and antidepressant treatment.64,65 Numerous studies
have demonstrated insufficient task-related deactivation of the
DMN in depression.66–69 Deficient deactivation of the DMN may
result in interference from DMN-processed information during
cognitive or emotional tasks, which may be accompanied by
symptoms such as rumination66 or cognitive deficits.67,70,71

Furthermore, depressed patients demonstrate functional dissocia-
tion between subcomponents of the network. For example,
altered interplay between its functional subsets has been
shown,63,72 and depressed patients show subset-specific changes
to functional connectivity within the DMN. In fact, functional
connectivity within the DMN may correlate with depressive
symptoms in some subsets, while not, or even to a negative
extent, in others.63 It is therefore fitting that the deactivation we
found to correlate with early antidepressant response is located in
the PCC and the precuneus, and does not stretch across all regions
of the network.
Numerous previous fMRI studies have demonstrated that

unique subsets of depressed patients demonstrate differential

brain activation during emotion processing. For example, neural
activity during emotion regulation may be reflective of certain trait
characteristics relevant to depressive disorders. Along this line,
personality traits such as extroversion, reward drive, tendency
towards aggression,73 propensity for suppression of emotions,74

neuroticism,75 and trait anxiety76 are reflected in the brain activity
measured in fMRI emotion-processing tasks. On the other hand,
comorbidities commonly demonstrated by depressed patients,
in particular anxiety, are also reflected in neural activation
related to emotion processing.77 These findings underscore the
concept that differential brain activity may be descriptive of
certain patient subgroups within the diagnosis of MDD. These
activity patterns, as well as the behavioral, cognitive or emotional
aspects with which they are associated, may in turn also be
understood as a ‘signature,’ which is reflective of propensity for a
certain course of disease. Along this line, our results suggest that
the extent of deactivation of the DMN during emotion processing
may be descriptive of the extent to which patients show
advantageous response to 2, although not 4 weeks of antide-
pressant treatment.
We propose that DMN suppression may actually predict early

unspecific treatment factors, such as placebo response or
anticipation of symptom improvement, which likely do not extend
to 4 weeks. Both the predictive value of DMN suppression at 2, but
not at 4 weeks, as well as the finding that our patients showed
high rates of at least early improvement (15/22, 68.18%) at
2 weeks,3 a trend that did not carry over to response or remission
at 4 weeks, support this concept. Furthermore, in our patient

Figure 1. Emotion-processing-related brain activity assessed with the EDT and 7T fMRI. Figure exhibits contrast of EDT versus ODT (a) and EDT
versus baseline (b) BOLD response, which was used to elucidate emotion-processing-related brain activity. Performance of the EDT results in
activation of emotion- and face-processing regions34–37 and deactivation of regions involved in the DMN,52 as was the case in our group of
MDD patients (Table 1). Performance of the EDT specifically elucidates attentional control as a top–down control aspect of emotion
processing.31–33 T-threshold for P⩽ 0.001 uncorrected, voxel-level= 3.53 (a, b); P⩽ 0.05 FWE-corrected, cluster-level k= 443 (a), 57639 (b).
BOLD, blood-oxygen-level-dependent; DMN, default mode network; EDT, emotion discrimination task (test condition); fMRI, functional
magnetic resonance imaging; FWE, family-wise error; ODT, object discrimination task (control condition); MDD, major depressive disorder.
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Table 1. Emotion discrimination task brain activity

Regions MNI coordinates, peak, mm Cluster statistics

x y z Cluster size T

EDT versus ODT
Middle temporal cortex, L −56 − 62 12 4036 11.63***
Amygdala, L −24 − 4 − 18 9.27***

Inferior frontal cortex, pars triangularis, L −56 30 0 3777 9.77***

Middle temporal cortex, R 50 − 64 10 3221 9.64***
Superior temporal cortex, R 48 − 44 14 8.29**

Hippocampus, R 20 − 8 − 16 707 9.14**
Amygdala, R 28 0 − 22 8.17**

Calcarine region, L − 4 − 82 − 12 1117 8.54**

Fusiform region, R 42 − 52 − 22 930 7.70**
Cerebellum, R 38 − 44 − 24 7.12*

Fusiform, L −42 − 50 − 18 95 7.52**

Inferior frontal cortex, pars triangularis, R 40 20 24 1892 6.96*

Precuneus, L/R 0 − 54 36 556 6.88*

Superior frontal cortex, pars orbitalis, L −8 38 − 24 443## 6.38

ODT versus EDT
Middle occipital cortex, R 28 − 90 16 1570 11.26***

Superior occipital cortex, R 22 − 60 36 523## 5.56

Middle occipital cortex, L −32 − 82 14 1479 11.16***
Inferior occipital cortex, L −34 − 78 − 2 6.92***

Cerebellum, L −28 − 54 − 16 763 9.92***

Fusiform, R 30 − 60 − 10 789 9.59***

Superior temporal cortex, R 50 − 4 − 6 401## 6.35

Superior parietal cortex, L −20 − 62 44 613## 6.23

Inferior parietal cortex, L −50 − 28 40 276# 5.55

EDT versus baseline
Inferior occipital cortex, R 48 − 74 − 2 57 639 23.31***
Middle occipital cortex, L −32 − 88 8 21.41***

Middle frontal cortex, pars orbitalis, R 20 42 − 18 161 7.06*

Baseline versus EDT
Middle cingulate cortex, L/R 0 − 30 46 9906 17.51***

Gyrus angularis, R 58 − 60 38 665 15.75***

Gyrus angularis, L −46 − 66 42 1148 12.29***
Inferior parietal cortex, L −58 − 50 40 10.45***

Middle frontal cortex, pars orbitalis, L −6 56 − 2 4439 9.88***
Anterior cingulate cortex, L −2 38 − 6 8.79**

Superior temporal cortex, L −44 − 18 0 150 7.69**

Parahippocampal gyrus, L −20 − 20 − 24 429## 6.18

Middle frontal cortex, L −22 34 42 867### 6.16

Middle temporal cortex, L −58 − 18 − 16 802### 5.92

Abbreviations: AAL, Automated Anatomical Labeling Atlas; EDT, emotion discrimination task; FWE, family-wise error; ODT, object discrimination task; L, left;
R, right. Regions according to AAL. FWE-corrected, voxel-level: ***Po0.001; **Po0.01; *Po0.05. FWE-corrected, cluster-level (voxel size 2 × 2×2 mm):
###Po0.001; ##Po0.01; #Po0.05.
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group, patients who responded at 2 weeks were not necessarily
those who responded to 4 weeks of treatment. Of the 10 patients
who showed early improvement (⩾ 20% HAMD reduction) at
2 weeks, 3 showed response (⩾ 50% HAMD reduction) and 1 was

in remission (⩽7 HAMD points). Of the four patients who showed
response at 2 weeks, response persisted in one patient and three
were in remission. Of the eight patients who did not show at least
early improvement at 2 weeks, one patient responded at 4 weeks.
Therefore, although this question cannot be meaningfully
statistically analyzed in a subject group of this size, our results
numerically reflect this assumption.
Accordingly, resting state functional connectivity of the salience

network was shown to predict response to 1 week of placebo
treatment in an antidepressant trial.78 Considering the funda-
mental role of the salience network in emotion processing,79 this
finding suggests that a patient’s neurobiological correlates of
emotion processing may predict unspecific treatment effects. Our
finding of response prediction by emotion-processing-related
DMN suppression at 2, yet not at 4 weeks underlines this concept.
The possible relevance of a placebo effect again supports that

the extent of DMN deactivation may be reflective of certain MDD
patient subgroups. Based on our results, DMN suppression is
indicative of patients that may be more likely to exhibit early,
possibly unspecific, clinical responses. This concept is emphasized
by literature, which highlights that insufficient DMN suppression
in depressed patients may be reflective of depressive subtypes

Figure 2. Deactivation in the precuneus and PCC correlates with early response. Regression analysis revealed a cluster of deactivation with
peak in the precuneus and stretching to the PCC isolated using the contrast EDT versus ODT that correlated positively (Po0.001, FWE-
corrected, cluster-level) with antidepressant response assessed as HAMD reduction after 2 weeks of treatment. The precuneus and PCC are
considered central components of the DMN.51 Therefore, across our group of MDD patients, the stronger the deactivation of the DMN during
emotion processing was at baseline, the more HAMD decreased after 2 weeks of Escitalopram treatment. T-threshold for P⩽ 0.001
uncorrected, voxel-level= 3.65; P⩽ 0.05 FWE-corrected, cluster-level k= 233. DMN, default mode network; EDT, emotion discrimination task
(test condition); FWE, family-wise error; HAMD, Hamilton Depression Rating Scale; MDD, major depressive disorder; ODT, object discrimination
task (control condition); PCC, posterior cingulate cortex.

Figure 3. Deactivation of the DMN during emotion processing
predicts early antidepressant response in MDD. Peak deactivation of
a cluster within the precuneus and PCC (contrast EDT versus ODT, y
axis) before start of antidepressant treatment predicted subsequent
antidepressant response (absolute HAMD change, x axis) in
regression analysis. The color spots denote individual patients with
early symptom improvement (blue)=HAMD reduction⩾ 20%, early
response (black)=HAMD reduction⩾ 50% and non-response (red)=
HAMD reduction o20%, all after 2 weeks of Escitalopram
treatment. Patients are dispersed along the line of regression with
non-responders showing the least deactivation and responders the
most deactivation of the precuneus and PCC, regions known to be
part of the DMN.51 DMN, default mode network; EDT, emotion
discrimination task (test condition); HAMD, Hamilton Depression
Rating Scale; MDD, major depressive disorder; ODT, object
discrimination task (control condition); PCC, posterior cingulate
cortex.

Table 2. Regression analysis EDT versus ODT task activity and HAMD
reduction at 2 weeks

Regions MNI coordinates,
peak, mm

Cluster statistics

x y z Cluster size T

HAMD baseline, age, and sex as covariates
Gyrus rectus, R 8 28 − 18 109 7.48*
Middle temporal cortex, L − 66 − 18 − 18 421## 6.83
Precuneus, L − 4 − 46 14 1431### 6.67
Hippocampus, L − 18 − 24 − 6 308# 5.58
Middle temporal cortex, R 68 − 34 − 6 233# 5.18

Abbreviations: AAL, Automated Anatomical Labeling Atlas; EDT, emotion
discrimination task; FWE, family-wise error; HAMD, Hamilton Depression
Rating Scale; ODT, object discrimination task; L, left; R, right. Regions
according to AAL. FWE-corrected, voxel-level: *Po0.05. FWE-corrected,
cluster-level (voxel size 2 × 2× 2 mm): ###Po0.001; ##Po0.01; #Po0.05.
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characterized by certain symptoms.66,67,70,71 Based on our study,
patients who show less symptom improvement to 2 weeks of
treatment, including unspecific treatment effects, may be lacking
in what can be understood as a physiologic neurobiological
resource that fosters effective emotion processing, likely by
suppressing interfering self-referential information.66,80

Molecular imaging studies further emphasize that the observed
relationship between DMN suppression and symptom improve-
ment at 2 weeks may be a reflection of early, unspecific treatment
effects. Antidepressant treatment regimes have long been based
on response times of at least 4 weeks and the increasing emphasis
on early evaluation of response and adaptation of treatment
strategy has only recently come to light.4 Molecular imaging
literature emphasizes that secondary regulatory mechanisms
within the serotonergic system, which likely occur with a latency
of several weeks, are in fact the true mediators of antidepressant
response to selective serotonin reuptake inhibitors such as
Escitalopram.81–83 One may therefore question whether 2 weeks
are sufficient for these processes to take place and induce clinical
antidepressant effects.
One may postulate that severity of depressive symptoms, which

of course influences the clinical course of a depressive episode,
may be reflected in EDT brain activity, hereby influencing the
results of our regression analysis. However, the correlation
between deactivation of the precuneus/PCC cluster during
emotion processing and symptom improvement remained
significant after correction for baseline symptom severity, as well
as age and sex. The lack of an influence of symptom severity is
further underscored by the observation that baseline HAMD did
not correlate with EDT versus ODT brain activity. The EDT was
chosen for the elucidation of neural activity related to regulation
of emotion.31–33 The EDT activity we observed was highly
reflective of the brain activation patterns typically published for
this task,34–40 therefore demonstrating that the EDT was success-
fully employed in our study (Table 1 and Figure 1).
Early treatment effects, whether they are unspecific or not, can

be considered a relief for patients with MDD at the beginning of
the treatment process. These effects can be harnessed to improve
treatment adherence and patient motivation. Along this line,
recent developments in antidepressant psychopharmacology
have focused on short-term treatment strategies such as
ketamine.84 However, from a clinical stand point our results
emphasize that patients with insufficient DMN suppression, which
predicts 2, yet not 4 week response, should be followed up with
regularly early in treatment.
The small sample size of our study, although typical of

neuroimaging studies, must be discussed as a limitation. Owing
to the high clinical and neurobiological variability within depres-
sion as a disease cluster,85 clinically viable prediction measures will
require studies with extensive sample sizes to allow for
differentiation of unique patient subgroups. However, although
the smaller sample size of our study can be discussed as a
limitation, studies such as ours are essential for understanding the
neural mechanisms that underlie antidepressant effects, a
prerequisite for large-scale prediction studies. In addition, future
studies should relate our findings to even more long-term
treatment outcome, in particular as our results speak for a
possible time point-specific predictive potential of fMRI activity.85

The aim of the current study is, generally speaking, to establish the
relationship between fMRI findings and clinical correlates, using a
whole-brain approach to limit bias. Therefore, our study benefits
from the use of 7T MRI, which is associated with high signal-to-
noise ratio and sensitivity.40,45 However, considering that 7T is not
yet broadly available in clinical practice, results should be
confirmed in future investigations using 3T imaging.
In summary, we find that DMN deactivation during an emotion-

processing task predicts early response to Escitalopram treatment.
Response prediction at 2, yet not at 4 weeks of treatment suggests

that DMN suppression during emotion processing may be
predictive of early, possibly unspecific, treatment effects. This
concept is underlined by studies demonstrating the relevance of
emotion regulation’s neural correlates to placebo response,78

evidence on the serotonergic molecular processes mediating
response to selective serotonin reuptake inhibitors,81–83 and
studies highlighting that DMN suppression is likely reflective of
specific depressed patient groups.66,67,70,71 A wealth of literature
links deficient suppression of the DMN to depression.86–88 This is,
however, to our knowledge the first study to demonstrate a
relationship between DMN suppression assessed with fMRI and
early treatment effects. From a clinical stand point, early symptom
improvement, whether persistent or not, can be harnessed for
optimization of treatment regimens and patient care.
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