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Abstract

Viruses have developed different strategies to escape from immune response. Among

these, viral non-coding RNAs are invisible to the immune system and may affect the fate of

the host cell. Bovine leukemia virus (BLV) encodes both short (miRNAs) and long (antisense

AS1 and AS2) non-coding RNAs. To elucidate the mechanisms associated with BLV non-

coding RNAs, we performed phenotypic and transcriptomic analyzes in a reverse genetics

system. RNA sequencing of B-lymphocytes revealed that cell proliferation is the most signifi-

cant mechanism associated with ablation of the viral non-coding RNAs. To assess the bio-

logical relevance of this observation, we determined the cell kinetic parameters in vivo using

intravenous injection of BrdU and CFSE. Fitting the data to a mathematical model provided

the rates of cell proliferation and death. Our data show that deletion of miRNAs correlates

with reduced proliferation of the infected cell and lack of pathogenesis.

Author summary

BLV is a retrovirus that integrates into the genomic DNA of B-lymphocytes from a series

of ruminant species (cattle, sheep, zebu, water buffalo and yack). Expression of viral pro-

teins is almost undetectable in infected animals. In contrast, the BLV genome contains a

cluster of 10 microRNAs that are abundantly transcribed in BLV-infected cells in vivo.

In this report, we show that these microRNAs primarily regulate host cell proliferation.

Ablation of the viral microRNAs affects BLV replication and suppresses leukemia

development.

Introduction

Bovine leukemia virus (BLV) is a retrovirus that naturally infects cattle, water buffalo, yak and

zebu [1]. Except in Europe, BLV is a globally widespread pathogen causing significant eco-

nomic losses [2, 3]. Although BLV infection is typically asymptomatic, about one third of the

infected animals develop persistent lymphocytosis (PL), a stable polyclonal proliferation of
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non-transformed B-lymphocytes in the peripheral blood [4]. After long latency periods (7–10

years), approximately 5–10% of infected animals will die from a neoplastic B cell disease called

enzootic bovine leukemia/lymphoma [5]. BLV can also be transmitted to sheep, in which the

pathogenesis occurs after shorter latency periods (approximately 2–3 years) and with higher

incidence (up to 100%) [6, 7].

Experimental evidence indicates that viral replication is tightly controlled by an effective

immune response [8, 9]. First, ablation of lymphoid organs (i.e. spleen) accelerates pathogene-

sis [10]. Second, transient stimulation of viral expression ex vivo reduces life expectancy of B

cells in vivo. Third, cyclosporine treatment indicates that an efficient immune response is

required to control virus-expressing cells [11]. Fourth, a massive depletion of infected B cells

occurs concomitantly with initiation of an immune response [12]. And finally, activation of

viral expression with an HDAC inhibitor reduces the proviral loads and clears leukemia [13,

14]. Consistently, expression of viral proteins is repressed to almost undetectable levels by a

still unknown mechanism [15–17]. In contrast, the BLV genome encodes viral miRNAs via

internal RNA polymerase III (RNAPIII) promoters and antisense transcripts (AS1S/L and

AS2) from the 3’LTR [18–20]. Located at the 5’ end of the X region just downstream of the

envelope gene, a cluster of five miRNAs hairpins is transcribed from a canonical type 2 RNA-

PIII promoters also driving tRNA synthesis [18, 19, 21]. Consistently with a high level of

expression, the genomic DNA encompassing the miRNA cluster contains hypomethylated

CpG. This organization in cluster leads to Drosha independent miRNA processing [22]. The

RNAPIII promoter elements include characteristic A-B box sequences as transcription start

site, transcription factor binding sites and a poly-T terminator [18, 22]. Thus, each BLV pre-

miRNA is directly transcribed by RNAPIII giving rise to abundant expression of miRNAs in

both leukemic and nonmalignant clones [23]. High levels of viral miRNAs are also found in

the plasma of BLV-infected cows [24], suggesting a mechanism of paracrine signaling.

Although polymorphisms were identified, the sequence of the miRNA cluster is well conserved

among isolates, particularly in the seed region [20, 22, 25, 26]. Target genes whose transcripts

are affected by the miRNAs have been identified. For example, miR-B4 is an analog to the host

oncogenic miRNA miR-29 [18]. RNA sequencing of peripheral blood mononuclear cells

(PBMCs) revealed the complexity of miRNA targets in the bovine species. BLV miRNAs mod-

ulate the expression of genes involved in oncogenesis, cell signaling, apoptosis and immune

response [24]. In particular, miR-B4 targets FOS, GZMA and PPT1 RNAs were validated by

luciferase reporter assays. The serine protease GZMA expressed mostly by natural killer (NK)

cells and cytotoxic T-lymphocytes (CTL) but also by B cells under inflammatory conditions

induces caspase-independent apoptosis. FOS mediates the primary response to B-cell receptor

signaling upon dimerization with c-JUN in the AP1 complex. PPT1 removes thioester-linked

fatty acyl groups from cysteine residues and modulates TNFalpha signaling. Further character-

ization of the multiple interactions between the BLV miRNAs with the host transcriptome will

help to understand the complexity of the mechanisms involved in the bovine species.

The BLV provirus also constitutively expresses alternatively spliced transcripts (AS1 and

AS2) from the antisense strand [20]. The AS1 RNA can be alternately polyadenylated, generat-

ing two transcripts AS1-S and AS1-L that are retained in the nucleus suggesting a lncRNA-like

role. The AS1-L transcript overlaps the microRNA cluster and is cleaved by the RNA-induced

silencing complex (RISC) [20].

Although the function of these non-coding RNAs is still unknown, deletion of the miRNA

cluster from an infectious BLV molecular clone reduces viral replication in the bovine species

[24]. Short-term follow-up in the ovine model indicates that pathogenesis may also be affected in

absence of viral miRNAs. To understand the mechanisms involved, we analyzed the transcrip-

tome of sorted B cells and quantified the cell turnover in vivo using a reverse genetics model.
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Results

Oncogenesis is abrogated in the absence of BLV miRNAs

Using a reverse genetics system, we have previously shown that ablation of BLV miRNAs is

dispensable for infectivity but correlates with a reduction of viral replication [24]. Indeed,

the short-term proviral loads were significantly lower in animals inoculated with an isogenic

provirus devoid of miRNAs (pBLV-ΔmiRNA) compared to wild-type controls (pBLV-WT).

Long-term follow-up validated this conclusion in the sheep animal model (p = 0.003, accord-

ing to t-test, Fig 1A). Consistently, the percentages of B cells among PBMCs were signifi-

cantly lower in the absence of viral miRNAs (p = 0.002, according to Mann-Whitney U test,

S1A Fig). Similarly, the ability of PBMCs to spontaneously express BLV virus in culture was

reduced in sheep infected with pBLV-ΔmiRNA compared to the wild-type (p = 0.01, accord-

ing to Mann-Whitney U test, S1B Fig). Although there was a trend for reduced B cell counts

in the absence of miRNAs, the difference was not statistically significant (p = 0.21, S1C and

S1D Fig). Since proviral loads are among the best prediction markers of pathogenesis, onset

of leukemia/lymphoma consistently occurred earlier in pBLV-WT injected animals (median

survival of 3.23 years, p = 0.01 according to the Log-rank Mantel-Cox test, Fig 1B). In con-

trast, all sheep infected with pBLV-ΔmiRNA virus remained healthy up to 7 years post-

inoculation.

We conclude that onset of leukemia/lymphoma in the highly susceptible sheep model

requires integrity of the miRNAs.

Transcriptomic changes occur mostly in B cells

Soon after infection, BLV mainly replicates via the production of viral particles and infection

of new cells. Then, the population of infected cells undergoes a massive depletion due to a very

efficient immune clearance [12]. Thereafter, viral replication almost exclusively occurs via

clonal expansion of surviving cells. It is thus predicted that cell proliferation is an important

parameter of viral replication. To uncover the mechanisms associated with BLV miRNAs, we

performed a transcriptomic analysis in B and non-B cells isolated from pBLV-ΔmiRNA and

pBLV-WT infected animals. Details of the RNA sequencing procedures are provided in the

materials and methods section. Principal component analysis (PCA) of the transcriptomics

data was performed by regularized-logarithm transformation (rlog) [27] (Fig 2A). PCA

revealed a clear segregation between B and non-B cell populations (Fig 2A). The PCA data

from non-B cells infected by pBLV-ΔmiRNA and pBLV-WT mostly overlapped, indicating

similar expression profiles independently of the type of virus and proviral load. In contrast,

PC1 in B cells infected by pBLV-ΔmiRNA and pBLV-WT viruses indicated a difference in

gene expression profiles.

Differential gene expression was then analyzed with the Dseq2 software. To anticipate how

the log fold changes, vary with respect to the average expression levels of genes, we generated

plots using shrinkage of effect size (log fold change estimates). These plots confirmed that the

differentially expressed genes within B cells had a greater effect-size than those within the non-

B cells (Fig 2B). Considering all data, 2158 and 67 genes were significantly differentially

expressed in B and non-B cells, respectively (Fig 2C). Although most changes in gene expres-

sion occurred in B cells, there were 11 common genes between two groups (S1 Table). Com-

parison of B cells infected by pBLV-WT and pBLV-ΔmiRNA viruses identified 797 and 1361

significantly overexpressed genes, respectively (Fig 2D).

Overall, these analyses demonstrate that transcriptomic changes occur mostly in B cells

from wild-type and miRNA-deleted viruses.
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Cell division pathways are enriched in B cells from wild-type BLV infected

sheep

To determine the biological functions associated with transcriptomics data, we performed an

enrichment analysis of gene ontology (GO) terms using MSigDB and GSEA software [28, 29].

Analysis of the gene sets involved in biological processes (n = 4436), cellular components

(n = 580) and molecular functions (n = 901) [30] yielded the enrichment map shown in Fig

3A. Based on a false discovery rates FDR<0.001, biological processes associated with cell divi-

sion were significantly enriched in pBLV-WT-infected B cells (e.g. mitotic division, chromo-

some segregation and kinetochore in Fig 3A). This conclusion was confirmed by a statistical

analysis based on a family wise-error rate FWER<0.001 (Fig 3B and enrichment plots in S2

Fig). To identify the genes driving the enrichment score in the GSEA method, we performed

leading edge (LE) analysis on enriched gene sets with family wise-error rate<0.001. Chord

diagrams were then generated to display the association between leading genes and enriched

GO clusters [31]. Genes involved in cell mitosis (e.g. chromatid segregation, chromosome cen-

tromeric region, histone exchange, and kinetochore) were enriched in pBLV-WT-infected B

cells (S3 Fig and S2 Table). Besides cell division, pathways affected by the presence of BLV

miRNAs pertained to DNA repair (S3 Table). The pathways associated with the absence of

miRNAs were inflammation response, immunity and cell signaling (S4 Table).

Overall, these analyses show that cell division pathways are enriched in B cells from wild-

type BLV infected sheep.

The cell turnover of peripheral blood B cells is reduced in sheep infected

with pBLV-ΔmiRNA

Transcriptomic analyses thus indicated that cell division is the main mechanism that segre-

gates B cells from wild-type and miRNA-deleted infected sheep. To unravel the biological sig-

nificance of this conclusion in vivo, we analyzed the cell turnover of peripheral blood B cells.

For this purpose, carboxyfluorescein succinimidyl ester (CFSE) was injected intravenously in

pBLV-WT and pBLV-ΔmiRNA infected animals. Since CFSE is very unstable and only labels

proteins during a short period of time, this experimental protocol provides kinetic parameters

of the B cell population circulating in the bloodstream [32, 33]. Upon snapshot CFSE labeling,

the fluorescent dye is progressively lost mainly due to cell proliferation, death and protein

turnover.

The percentages and fluorescence intensities in B cells were determined by flow cytometry

at different times after CFSE injection (as illustrated in Fig 4A). Upon injection, CFSE labeled

similar proportions of cells (75%). The kinetics of CFSE labeling was similar in the non-B and

B cell populations of sheep infected with wild-type and miRNA-deleted viruses (p = 0.31 and

0.47, respectively, according to non-linear mixed model) (Fig 4B and 4C). In B cells, CFSE

labeling was significantly different only at day 23 (p = 0.02, according to t test).

Kinetic parameters were calculated with a mathematical model based on two data sets: "I"
the ratio of the (mean intensity of fluorescence (MFI) of CFSE+ cells to the MFI of CFSE- cells

and "P" the percentage of CFSE+ cells [32]. By fitting this model to the data, we were able to

quantify two kinetic parameters: "p" (the average proliferation rate) and "d" (the average

Fig 1. Viral replication and pathogenesis in sheep infected with wild-type BLV and miRNA deletant. (A) The proviral loads (number of

copies in 100 PBMCs) were quantified in sheep infected with wild-type virus (pBLV-WT; blue lines) or miRNA-deletant (pBLV-ΔmiRNA; orange

lines). p = 0.003, according to t-test. (B) The Kaplan-Meier survival curves of sheep infected with pBLV-ΔmiRNA (n = 6) and pBLV-WT (n = 12).

Median survival in pBLV-WT injected animals was 3.23 years. p = 0.01, according to the Log-rank Mantel-Cox test.

https://doi.org/10.1371/journal.ppat.1008502.g001
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disappearance rate). Compared to wild-type, the cell turnover of peripheral blood B cells was

reduced in sheep infected with pBLV-ΔmiRNA (Fig 4D).

DNA synthesis is reduced in B cells from pBLV-ΔmiRNA infected sheep

As illustrated by previous studies [11, 34], B cell proliferation occurs mostly in lymphoid

organs. To complement CFSE experiments, we next evaluated incorporation of bromodeox-

yuridine (BrdU) into the B cell nucleic acids. Upon intravenous injection of BrdU, the percent-

ages of BrdU-positive B cells were determined by flow cytometry (Fig 5A). At day 1, the

percentage of B cells having incorporated BrdU reached a maximum (2.4% ± 0.25) in sheep

infected with wild-type virus (Fig 5B). In contrast, BrdU incorporation was significantly lower

in sheep infected with pBLV-ΔmiRNA at day 1 (0.8% ± 0.3, p = 0.0006, according to t-test).

To quantify BrdU incorporation data, we used a mathematical model that considers (i) the

rate of proliferation and death of the B and non-B cells, (ii) the loss of unincorporated label

after injection and (iii) the dilution of the BrdU label consequent to cell division [35]. Fitting

the mathematical model to the experimental data yielded significantly different average prolif-

eration rates in sheep infected with pBLV-WT (4.9% ± 1.1) or with pBLV-ΔmiRNA (1.6% ±
0.8) (p = 0.02 according to Wilcoxon–Mann–Whitney test) (Fig 5C). The percentages of B

cells that are generated by proliferation per day were thus approximately 3 times higher in

wild-type infected animals. In contrast, no difference was observed in the non-B cell popula-

tions (p = 0.14 according to Wilcoxon–Mann–Whitney test).

Overall, these data demonstrate that the B cell turnover is decreased in sheep infected with

the pBLV-ΔmiRNA deletant.

Proliferation is reduced in spleen and lymph nodes from pBLV-ΔmiRNA

infected sheep

Since B cell proliferation occurs in lymphoid organs, we analyzed Ki67 expression by immuno-

histochemistry in spleen and lymph node sections of pBLV-WT and pBLV-ΔmiRNA infected

animals (Fig 6A and 6C, respectively). Label quantification showed that the average of Ki67

expression in spleen sections from pBLV-ΔmiRNA infected sheep (4.1% ± 0.3) was signifi-

cantly lower compared to wild-type levels (9.8% ± 0.8; p<0.0001 according to t-test; Fig 6B).

The percentages of Ki67 positive cells were also decreased in lymph nodes from infected sheep

(3.2% ± 0.2 in pBLV-ΔmiRNA and 7.1% ± 0.5 in pBLV-WT infected sheep; p<0.0001 accord-

ing to t-test; Fig 6D).

These data show that proliferation is reduced in lymphoid organs of sheep infected with the

pBLV-ΔmiRNA deletant.

Discussion

In this report, we have shown that BLV non-coding RNAs affect B-lymphocyte proliferation

based on transcriptomic analyzes, in vivo kinetic data and immunochemistry. RNA sequenc-

ing provided a very clear view of their involvement in B cell proliferation. Indeed, twenty-two

Fig 2. Transcriptomic changes in cells isolated from sheep infected by wild-type and miRNA-deleted viruses. (A) Principal component analysis of

RNA sequencing data from B and non-B cells isolated from sheep infected with pBLV-ΔmiRNA (triangles) and pBLV-WT (circles). The proviral loads

(PVL) are represented by a color code (from green to black). PCA was generated using DEseq2 and ggplot2 packages in R. (B) Plots of mean of

normalized counts (x axis) and log fold change (y axis) in B and non-B cells. Dots are red if the adjusted p value (padj) is less than 0.1. (C) Distribution

of the gene transcripts displayed in violin plots according to padj. (D) Volcano plot of differentially expressed genes in B cells of pBLV-ΔmiRNA and

pBLV-WT-infected sheep. Data are plotted as log2 fold change (x axis) versus the -log10 of the false discovery rate (FDR) (y axis). Red dots represent

significant genes with adjusted p value below 0.1.

https://doi.org/10.1371/journal.ppat.1008502.g002
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Fig 3. Gene set enrichment in B cells from sheep infected by wild-type virus compared to miRNA deletant. (A) Enrichment map of Gene Set Enrichment

Analysis (GSEA) generated by Cytoscape. Displayed sets contain between 15 and 500 genes that are enriched with a false discovery rate less than 0.001

(FDR< 0.001). Red nodes symbolize enriched GO gene sets. Node size indicates the total number of genes in each gene set. Edge thickness (blue line)

indicates the number of overlapping genes between gene sets computed based on Jaccard coefficient. (B) Chord diagram of enriched gene sets in B cells from

pBLV-WT-infected sheep based on family wise-error rate less than 0.001 (FWER< 0.001). The segment represents the GO gene sets and the ribbon highlights

the similarity between them.

https://doi.org/10.1371/journal.ppat.1008502.g003
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Fig 4. CFSE kinetics in peripheral blood. (A) Representative flow cytometry dot plots of CFSE-labeled B cells at different times after intravenous CFSE

injection. Numbers represent the percentages of CFSE+ B cells within the total B-lymphocyte population. (B) Time kinetics of percentages of CFSE-labeled
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gene sets with false discovery rate less than 0.001 pertained to cell division. This observation is

consistent with the paradigm of a virus that constantly attempts to proliferate under the con-

trol of a very efficient immune response [36]. Another outcome of RNA sequencing is that the

transcriptome of T cells is not significantly affected in pBLV-ΔmiRNA infected sheep. For

example, pathways of T-cell specific factors: CD4-specific cytokines (IL2; p = 0.6), T-reg

(foxp3; p = 0.9), mediators of cytotoxic activity (granzyme; p = 0.7) are similar (S4 Fig). Since

BLV infects exclusively B cells in the peripheral blood, it seems that non-coding RNAs from B

cells are not transferred to T cells despite being highly expressed in the plasma. The biological

role of plasmatic miRNAs, if any, is thus currently unknown. Possibly, the miRNAs only mod-

ulate the T cell response in specific tissues such as the lymph nodes of the spleen. Our data

show that the BrdU kinetics of non-B cells is not significantly different in sheep infected with

wild-type virus or with miRNA deletant. In fact, lack of major differences in the T cell tran-

scriptome is concordant with similar T cell turnover rates.

Transcriptomic data in sheep thus revealed a very clear involvement of proliferation in B-

lymphocytes without any major change in non-B cells. A similar approach with bovine

PBMCs yielded a complex network of pathways modulated by the miRNAs including cell sig-

naling, cancer genes and immune response [24]. In the ovine model, results from this report

also highlight a role of BLV miRNAs in immune response modulatory pathways such as

inflammation, leukocyte chemotaxis, cytokine secretion and receptor activity, adaptive and

humoral immunity (S4 Table). Data also shows enrichment of specific signaling pathways

including phosphatidylinositol 3 kinase, ERK1 and ERK2 and NF-kB in absence of miRNAs

(S4 Table). Comparison between the two species is nevertheless difficult because, in our previ-

ous study in bovines, B cell populations were not sorted prior to RNA sequencing. It is there-

fore possible that a series of significant genes in B-lymphocytes were not identified due to the

transcriptome of non-B cells. We analyzed the expression levels of genes that were previously

identified as being controlled by the miRNAs in the bovine model. Among these, GZMA and

PIK3CG are also significantly downregulated in the presence of BLV miRNAs in the ovine

model (S5 Fig).

The gene ontology analysis (Fig 3) in B cells indicates a more specific effect of the miRNAs

on mitosis than merely on proliferation. Most genes whose expression is increased in the pres-

ence of miRNAs indeed concern chromosome segregation at mitosis (S3 Fig and S2 Table).

These include AURKB, the serine/threonine-protein kinase component of the chromosomal

passenger complex (CPC), a complex that acts as a key regulator of mitosis [37]. BIRC5 directs

CPC movement to different locations from the inner centromere during prometaphase to

midbody during cytokinesis and participates in the organization of the center spindle by asso-

ciating with polymerized microtubules [38]. Chromobox 5 (CBX5) involved in the formation

of functional kinetochore through interaction with MIS12 complex proteins [39]. The serine/

threonine-protein kinase BUB1 is essential for spindle-assembly checkpoint signaling and for

correct chromosome alignment [40]. The BLV miRNAs thus affect expression of several genes

that regulate spindle activity and chromosome segregation during mitosis.

Our interpretation of transcriptomic data was supported by in vivo measurement of cell

kinetics. Two types of data sets were collected by flow cytometry: the rates of BrdU-incorpo-

ration into B cells and the percentages of B+CFSE+ cells. Both approaches are complementary:

BrdU data inform about cell proliferation occurring in lymphoid organs and CFSE labeling

provides the cell turnover of peripheral blood B-lymphocytes. Based on non-linear mixed

non-B cells in total non-B cells. (C) Corresponding kinetics of the CFSE+ B cell population. p = 0.02 at day 23 according to t-test. All data are plotted as

mean ± SEM (WT n = 3, ΔmiRNA n = 4). (D) Estimated B cell proliferation and death rates based on CFSE data modeling.

https://doi.org/10.1371/journal.ppat.1008502.g004
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models, Fig 4 reveals that the CFSE kinetics are similar in wild-type infected sheep and

miRNA deletants. Since the value at day 23 is statistically different (Fig 4C), there is neverthe-

less a trend to a faster decrease in the presence of miRNAs that may be biologically relevant.

Indeed, the two-fold increase in BrdU incorporation that occurs in lymphoid organs should be

compensated by a higher death rate in the peripheral blood. Indeed, the total number of B-

cells remained relatively constant during the experiment. We have previously published a

model that reconciles these apparent discrepancies [36].

It should be mentioned that kinetic parameters were calculated for the total IgM-positive B

cell population. In principle, it would be possible to individually determine the cell turnover of

provirus-carrying cells by fluorescent in situ hybridization (FISH) coupled with BrdU labeling.

Unfortunately, this technique yields some background that masks specific BrdU incorporation.

It is noteworthy that deletant and wild-type infected animals with similar proviral loads still dis-

play differences in B cell proliferation (S6 Fig). It is thus not the level of proviral load by itself

that explains the higher proliferation rate of B cells infected by wild-type virus. In any case, it is

remarkable that proviral loads as little as 0.7 copies/100 PBMCs is still associated with a signifi-

cant difference in cell proliferation (proliferation rate = 6.1% according to BrdU kinetics) [41,

42]. Notwithstanding, it remains unexpected that the B-cell proliferation rate differs between

animals infected with wild-type and mutant virus even when the proviral loads are very similar

(S6 Fig). This observation also implies that the risk of leukemia, which is significantly different

(Fig 1B), might depend on the viral and/or host genotype independently of the proviral load.

Analysis of the proviruses excluded that the miRNA deletion reverted to wild-type (e.g. by

recombination with a virus from another sheep (S7 Fig). We were also unable to identify point

mutations within the provirus that may support preferential replication. Although major histo-

compatibility complex class II DRB3 polymorphisms correlate with susceptibility for developing

the disease [43], it is unlikely that variations in host genotypes systematically reproduce differ-

ences in B-cell kinetics (S6 Fig). Although there might be a difference in the clonal evolution of

the infected cells, we favor a mechanism by which the miRNAs that are exported in the plasma

affect proliferation of non-infected B cells. In fact, this mechanism possibly explains the increase

of infected as well as non-infected B-cells during lymphocytosis (PL).

The best predictor of leukemia is the increase in the proviral load, followed by an inversion

of the B/T ratio [44]. Our data indicate that the miRNAs contribute to oncogenesis by promot-

ing B-cell proliferation. In contrast, the T cell response does not correlate with the proviral

loads, suggesting that their stimulation by viral antigens is not a limiting step. Long-term fol-

low-up of sheep infected with the ΔmiRNA mutant reveals that the microRNAs are required

for pathogenesis in sheep (Fig 1). There was one wild-type infected sheep with slow rise in pro-

viral load (Fig 1A), suggesting that individual variations between host’s genotype may affect

viral replication. Despite a long term follow up, we can also not exclude that oncogenesis will

never occur in the absence of miRNAs. Indeed, one sheep (#1131) infected with a ΔmiRNA

mutant currently carries high BLV proviral loads (S7 Fig). With an estimated B-cell prolifera-

tion rate of 0.08%, this sheep was infected with a ΔmiRNA deletant as illustrated in panel C of

S7 Fig. In fact, we have previously experienced a similar situation with another BLV mutant

devoid of R3-G4 accessory genes: only 1/20 developed leukemia/lymphoma 6 years post-inoc-

ulation [45]. Whether the miRNAs are directly involved in oncogenesis will require further

Fig 5. Evaluation of proliferation rates by intravenous injection of BrdU. (A) Representative flow cytometry dot plots of BrdU-labeled B cells at different times after

intravenous BrdU injection. X axis corresponds to BrdU-FITC and y axis display B cells-APC. Numbers represent the percentages of BrdU-labeled B cells in the total B

cell population. (B) Time kinetics of the percentages of B cells having incorporated BrdU. The arrow shows the percentage of B cells having incorporated BrdU at day 1

(p = 0.0006, according to t-test). (C) Estimated proliferation rates based on BrdU data; p = 0.02, according to Wilcoxon–Mann–Whitney test. Data are plotted as

mean ± SEM (WT n = 3, ΔmiRNA n = 6).

https://doi.org/10.1371/journal.ppat.1008502.g005
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follow-up of a larger number of sheep. It is noteworthy that this question is extremely difficult

to address in the bovine species considering the long latency period (7–10 years) and the low

frequency of leukemia/lymphoma (5–10%). Providing that, among 6 sheep, #1131 further pro-

gresses to leukemia and considering a frequency ratio of 13.33-fold (i.e. 100% in sheep / 7.5%

in cows), we estimate that a follow up of 80 bovines during 8.5 years (7–10) are needed to

determine whether miRNAs are required for oncogenicity in this species.

Strength of the reverse genetics approach is that the role of genetic determinants can be

investigated in relevant conditions in vivo (i.e. in the context of a provirus expressed at physio-

logical levels in the correct cell type). A potential risk is that other steps in the viral life cycle

may be affected (e.g. reverse transcription, integration, infectivity, packaging or budding). We

think that this possibility is unlikely because no major difference was observed at seroconver-

sion indicating that essential steps of the viral life cycle are unaffected. Similarly, deletion of

the miRNAs also affects the sequence of the antisense transcripts (AS1L and AS1S RNAs but

not AS2). Specific mutations of these non-coding transcripts will be required to address this

issue. In this context, it is peculiar that human T-cell leukemia virus type 1 (HTLV-1) closely

related to BLV has no similar cluster of RNAPIII-driven miRNAs. As BLV AS1 and AS2,

HTLV-1 nevertheless encodes a poorly translated antisense RNA (HBZ) that mostly remains

in the nucleus. When the methionine initiation codon is mutated, untranslatable HBZ RNA

promotes cell proliferation [46]. In this perspective, it appears that both BLV and HTLV-1

have developed strategies to affect cell proliferation using non-coding or at least poorly trans-

lated ribonucleic acids.

Other viruses, such as SFV, Marek’s disease virus type 1 (MDV), human cytomegalovirus

(CMV), Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein–Barr (EBV) express

non-coding RNAs to modulate cell fate [47, 48]. KSHV encodes miRNAs to modulate replica-

tion and pathogenesis in B cell hyperproliferative disorders, including Primary Effusion Lym-

phoma (PEL) and some forms of Multicentric Castleman’s Disease (MCD) [49, 50]. Similarly,

EBV miRNAs promote cell survival and proliferation during latent infection [51]. Sharing a

seed region with a host miRNA enables virus-encoded miRNAs to modulate specific functions

[47]. For example, the cellular miR-155 is mimicked by pro-oncogenic miRNAs encoded by

KSHV and MDV [52, 53]. Ablation of these viral miRNAs abrogates KSHV and MDV induced

lymphoma [54]. Two SFV miRNAs mimics seed sequence and function of the host lympho-

proliferative miRNA, miR-155 and the innate immunity suppressor miR-132 [48]. Likewise,

BLV encodes a miRNA (mir-B4) an analog of cellular miR-29 that is involved in multiple

oncogenic processes, including proliferation [18].

Together, our data reveal that the major function of the BLV miRNAs is to promote cell

proliferation. In fact, viral replication via the infectious cycle (i.e. expression of viral particles

and infection of new cells) is extremely inefficient after that the immune response is estab-

lished [12]. Soon after seroconversion, the mode of viral replication switches to clonal expan-

sion of provirus-carrying cells. This mode of replication requires that infected cells undergo

mitosis more frequently than other B-lymphocytes. Alternatively, or concomitantly, infected

cell clones may also expand providing that the death rates are reduced [36]. Our data of Fig 5

show that 4.9% B cells from wild-type virus infected sheep are produced by proliferation per

day. This accelerated proliferation is only partly compensated by increased death. The disequi-

librium between cell death and proliferation rates is predicted to enforce progressive accumu-

lation of B cells in animals infected by wild-type virus.

Fig 6. Assessment of proliferation rates in spleen and lymph nodes. Immunohistochemistry analysis of Ki67 in spleen (A) and in lymph node (C).

Quantification of Ki67-positive cells in sections of spleen (B) (n = 7) and in lymph nodes (D) (n = 11).

https://doi.org/10.1371/journal.ppat.1008502.g006
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In conclusion, combined bioinformatics and in vivo kinetic experiments reveal that BLV

non-coding RNAs primarily promote cell proliferation of BLV-infected lymphocytes. Ablation

of non-coding RNAs results in reduced proliferation of the infected cell and delayed clonal

expansion as illustrated by the kinetics of proviral loads. Ultimately, absence of miRNAs is also

associated with lack of pathogenesis.

Materials and methods

Ethics statement

All animal studies were conducted with the approval of the Institutional Committee for Care

and Use of Experimental Animals under protocol number 1515. Sheep were kept under con-

trolled condition at the animal facility CEPA of the university.

Virus inoculation into sheep and quantification of proviral loads

Construction of proviral vectors (pBLV-ΔmiRNA and pBLV-WT) and inoculation protocols

were described elsewhere [24]. pBLV-ΔmiRNA is isogenic to pBLV-WT but contains a dele-

tion of the miRNA coding region (nucleotides 6170 to 6736 according to the BLV reference

genome NC_001414.1) [24]. At regular intervals of time, blood was collected by jugular veni-

puncture. PBMCs were isolated by Percoll density gradient centrifugation, frozen in FBS con-

taining 10% dimethyl sulfoxide (DMSO) (Sigma-Aldrich) and kept at -80˚C or liquid

nitrogen.

To quantify the proviral loads, genomic DNA was extracted from PBMCs using DNeasy

Blood and Tissue kit (Qiagen) following manufacturer’s recommendations. 100ng of genomic

DNA was used for real-time PCR amplification of BLV proviral sequences as described previ-

ously [24]. Proviral loads were determined from 3 independent qPCR amplifications of DNAs

extracted independently.

RNA sequencing of B and non-B cell populations

To determine the percentages of B cells, PBMCs were washed twice in PBS supplemented with

10% fetal bovine serum (FBS) and labeled with an anti-IgM monoclonal antibody (clone 1H4,

1:100 dilution of hybridoma supernatant) for 30 minutes at 4˚C. After two washes, cells were

incubated with Alexafluor 647 goat anti-mouse IgG1 conjugate (Thermo fisher scientific, 1:

1000 dilution) and analyzed with a FACS Aria (Becton Dickinson).

B cells were purified from the PBMCs using MACS positive selection LS columns (Miltenyi

Biotec). Briefly, freshly isolated PMBCs were labeled with 1H4 antibody, washed and incu-

bated with goat anti-mouse IgG microbeads (Miltenyi Biotec). Each sample was magnetically

sorted at room temperature using LS columns inserted into a QuadroMACS™ separator. To

increase the purity of the magnetically labeled fraction, the eluted fraction was enriched by a

second round of MACS. The purity of MACS-sorted cells (> 95%) was verified by flow

cytometry.

RNA was isolated from MACS-separated B and non-B cells using the miRNeasy Mini Kit

(Qiagen) following manufacturer’s protocol after removal of contaminating DNA (Thermo

Fisher Scientific). After determination of their concentration (Quant-IT RiboGreen, Invitro-

gen), samples were run on TapeStation RNA screentape (Agilent). Only high-quality RNA

preparations, with RNA integrity number (RIN) greater than 7.0, were used for RNA library

construction. Libraries were prepared with 1μg of total RNA using the Illumina TruSeq

stranded mRNA Sample Prep kit (Illumina). The libraries were quantified using the KAPA

Library Quantificatoin kit for Illumina Sequencing platforms and qualified using the
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TapeStation D1000 ScreenTape (Agilent Technologies). Indexed libraries were then sequenced

using the NovaSeq 6000 platform (Illumina).

Bioinformatics

FastQC software was used for quality control, visualization, and quantification of raw data.

Aligning and mapping the raw sequencing data to the sheep reference genome (Oar_v3.1) was

performed by STAR v2.4.0.1 [55]. FeatureCounts was used for read quantification [56]. Nor-

malization and differential gene analysis was performed with R packages DESeq2 [27]. For the

identification of enriched transcriptomic signatures, differential gene expression list was

loaded on the gene set enrichment analysis (GSEA) tool (v3.0) from the Broad Institute at MIT

[29]. We used C5: GO gene sets from MSigDB to interpret the transcriptomic signatures. Lead-

ing edge analysis on enriched gene sets was analyzed using GSEA.

Quantification of peripheral blood B cell turnover in vivo

Twenty-five mg of 5(6)-carboxyfluorescein diacetate N-succinimidyl ester (Sanbio) dissolved

in 4 ml of dimethyl sulfoxide and mixed with 1,000 U/ml heparin sodium salt (Santa Cruz Bio-

technology) were injected into the jugular vein of sheep as described before [10]. At regular

time intervals, blood was collected by jugular venipuncture. After PBMC separation, CFSE

labeling of B cells was determined by flow cytometry using 1H4 monoclonal antibody and

Alexa fluor 647 goat anti-mouse IgG conjugate (Thermo fisher scientific, 1: 1000 dilution).

Proliferation " p" and death " d" rates were determined according to a model described in refer-

ence [32]. In brief, we considered that CFSE labeling halved upon mitosis since the dye was

distributed in each daughter cell. The model uses two pieces of data from the flow cytometry

analyses: the proportion of CFSE+ cells "P" and the ratio of the mean fluorescence intensity of

the CFSE+ population to the CFSE–population "I" to estimate the rate of proliferation and the

rate of death of CFSE labeled B lymphocytes. The cell populations undergoing five divisions

are x0 = —(p + d)x0; x1 = 2px0 - (p + d)x1,; x2 = 2px1 - (p + d)x2; x3 = 2px2 - (p + d)x3; x4 = 2px3

- (p + d)x4; x5 = 2px4 - (p + d)x5 + λ (xi being the proportion of B cells that have undergone i

divisions since CFSE labeling). In the model, the cells in the x5 category are CFSE–(either

because they have divided 4 to 6 times since labeling and therefore lost their fluorescence or

because they were not labeled by the initial injection). The average proliferation rate of cells is

"p", the average disappearance rate is "d" and the average replacement rate is λ. These equa-

tions were solved analytically and then used to find expressions for "I", the ratio of the mean

fluorescence intensity (MFI) of the CFSE+ population to the CFSE–population, and "P" the

proportion of CFSE+ cells. For five divisions, the relevant equations are as follows:

I ¼ ððJx0 þ J=2x1 þ J=4x2 þ J=8x3 þ J=16x4Þ=ðx0 þ x1 þ x2 þ x3 þ x4ÞÞ=ððJ=32x5Þ=ðx5ÞÞ

¼ ð4ð24þ 24pt þ 12p2t2 þ 4p3t3 þ p4t4ÞÞ=ð3þ 6pt þ 6p2t2 þ 4p3t3 þ 2p4t4Þ

P ¼ ðx0 þ x1 þ x2 þ x3 þ x4Þ=ðx0 þ x1 þ x2 þ x3 þ x4 þ x5Þ

¼ Fe� ðpþdÞtð1þ 2pt þ 2p2t2 þ 4=33t3 þ 2=3p4t4Þ

J is the MFI of CFSE label in undivided cells and F is the proportion of peripheral blood B

cells labeled by the initial injection. These formulas were fitted to the experimental data by

resolving the non linear equation system (R packages systemfit v1.1–22 and nlstools’ v1.0–2)

after estimating the adequate number of divisions to reach negative status and the lymphocyte

kinetics parameters estimated [57, 58].
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Analysis of 5-bromo-2-deoxyuridine incorporation in vivo

Sheep were injected intravenously with a single dose of 400 mg BrdU (Sigma) dissolved in 5

ml 0.9% NaCl. Serial analysis at different times (1 hour and 1, 2, 3, 4,7 and 17 days) was done

without the reinjection of BrdU. To evaluate BrdU incorporation into B lymphocytes, PBMCs

were isolated and labeled with PIG45A monoclonal antibody (A&E Scientific) for 30 min at

4˚C and, after two washes, revealed with Alexa Fluor 647 goat anti-mouse IgG2b conjugate

(Thermo fisher scientific, 1: 1000 dilution). Then, cells were fixed, permeabilized and treated

with DNase using BrdU flow Kit reagents according manufacturer’s protocol (BD Biosci-

ences). Finally, the cells were labeled by FITC-conjugated anti-BrdU antibody (1:50 dilution)

and analyzed by flow cytometry using a FACS Aria (Becton Dickinson).

Estimation of proliferation and death rates was done as previously described. In summary,

we used following differential formula to the BrdU incorporation data achieved experimentally

dl/dt = 2σpu+ pl − dl where u is the proportion of unlabeled cells and l is the proportion of

labeled cells, "p" presents the average proliferation rate of cells, and "d" gives the average death

rate of labeled cells. σ is the probability that a proliferating cell becomes labeled. The probabil-

ity that a proliferating B cell converts labeled is assumed to be an exponentially declining by

time, σ = e−α t, reflecting the loss of unincorporated BrdU from the cytoplasm of cells. The dif-

ferential model was fitted to the experimental data using differential equation adjustment (R

package deSolve v 1.21) and the lymphocyte kinetics parameters estimated [59].

Immunohistochemistry of spleen and lymph node biopsies

Spleen and lymph nodes were fixed overnight at room temperature in PBS containing 4%

formaldehyde and stored in 70% ethanol. Immunohistochemistry with antibodies directed

against Ki67 was performed by the GIGA immunohistology platform using established proto-

cols [60]. Briefly, tissue sections were subjected to heat-induced epitope retrieval using a pres-

sure cooker, rinsed in water and incubated in 3% hydrogen peroxide in methanol for 30 min.

After washing in PBS, non-specific binding was reduced by incubation with normal goat

serum. Then, samples were labeled with anti-Ki67 antibody (# 790–4286, Roche) for 1 hour at

room temperature, washed twice with PBS and incubated with an anti-rabbit peroxidase con-

jugate (# K4003, Dako) for 30 minutes. Samples were revealed with diaminobenzidine tetrahy-

drochloride (DAB), washed with distilled water and observed under light microscopy with a

40× objective. Quantification of scanned images was performed with QuPath (0.1.2).

Statistics

Statistical tests were performed using R v3.6.0 or GraphPad Prism 5. The t-test was used for

statistical evaluations of proviral loads. Kaplan-Meier survival curves were compared by the

Log-rank Mantel-Cox test [61]. CFSE and BrdU kinetics were assessed by daywise paired t-

test. Proliferation and death rates were compared between groups by Wilcoxon-Mann-Whit-

ney test.

Supporting information

S1 Fig. (A) PBMCs were isolated from sheep infected by wild-type BLV and miRNA deletant.

Then, PBMCs were labeled with anti-IgM 1H4 antibody and anti-mouse IgG1 conjugate. Per-

centages of B cells were determined by flow cytometry. p = 0.002 according to Mann-Whitney

U test. (B) After overnight culture of PBMCs, the percentages of p24-positive cells were deter-

mined by flow cytometry. The p24 viral protein was detected by sequential incubation with

40G9 monoclonal antibody and a rat anti-mouse IgG1 conjugate. p = 0.01 according to Mann-
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Whitney U test. (C) Absolute number of lymphocytes determined with a ProCyte Dx Haema-

tology Analyser. (D) Absolute numbers of B cells were calculated from the percentages of B-

lymphocytes in PBMCs (panel A) and absolute numbers of lymphocytes (panel C).

(TIF)

S2 Fig. Enrichment plot of gene sets with the family wise error rate less than 0.001. The

green curve corresponds to the ES (enrichment score) curve, which is the running sum of the

weighted enrichment score obtained from GSEA software. The enrichment score reveals the

degree at which the genes in a gene set are overrepresented at the top or bottom of the entire

ranked list of genes (y axis).

(TIF)

S3 Fig. Leading genes of the most enriched gene sets. Chord diagram displaying leading

edge analysis of enriched gene sets (FWER < 0.001) in pBLV-WT-infected sheep analyzed by

GSEA. The diagram was generated by circos table viewer. Segments size shows the contribu-

tion effect.

(TIF)

S4 Fig. Normalized transcriptomic counts of T-cell specific factors. Normalized counts

were obtained by DEseq2 analysis of transcriptomic data of non-B cells isolated from

pBLV-WT and pBLV-ΔmiRNA infected sheep. Differences of gene expression between

pBLV-WT and pBLV-ΔmiRNA are not significant according to t-test.

(TIF)

S5 Fig. Normalized transcriptomic counts of GZMA, PPT1, FOS, ANXA1, MAP2K1 and

PIK3CG. (A) Normalized counts obtained from DEseq2 analysis of transcriptomic data of

non-B cells isolated from pBLV-WT and pBLV-ΔmiRNA infected sheep. Differences of gene

expression between pBLV-WT and pBLV-ΔmiRNA are not significant according to t-test. (B)

Normalized counts obtained from DEseq2 analysis of B cells. Differences are significant for

GZMA (p = 0.007) and PIK3CG (p = 0.02) according to t-test.

(TIF)

S6 Fig. Evaluation of proliferation rates by intravenous injection of BrdU in animals with

similar proviral loads. (A) Time kinetics of the percentages of B cells having incorporated

BrdU. (B) Proviral loads (in number of copies in 100 PBMCs) and proliferation rates corre-

sponding to graphs of panel A.

(TIF)

S7 Fig. BrdU kinetics in preleukemic sheep #1131. (A) Time kinetics of the percentages of B

cells having incorporated BrdU in animal # 1131 infected with pBLV-ΔmiRNA (B) Prolifera-

tion rate estimated from data of panel A. (C) PCR amplification of the genomic sequences sur-

rounding the miRNA region. (D) Kinetics of proviral loads (in number of copies in 100

PBMCs) in sheep #1131.

(TIF)

S1 Table. Differentially expressed genes that are common to B cells and non-B cells. Genes

significantly differentially expressed in B cells were compared to genes significantly differen-

tially expressed in non-B cells. The table shows the genes that are shared by these two lists.

(XLSX)

S2 Table. Leading genes of upregulated pathways in B cells of pBLV-WT infected sheep as

compared to pBLV-ΔmiRNA. Genes driving the enrichment score (Fig 3B) were identified by

leading edge (LE) analysis on enriched gene sets with family wise-error rate<0.001 using the
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GSEA software. The list of the genes has been ordered according to log2 fold change.

(XLSX)

S3 Table. Upregulated pathways in B cells of pBLV-WT infected sheep as compared to

pBLV-ΔmiRNA. Gene ontology sets that are enriched in B cells of pBLV-WT infected sheep

with a false discovery rate less than 0.01 (FDR < 0.01) were calculated using GSEA and listed

according to the family wise-error rates (FWER p value). The size indicates the number of

genes in each GO. Enrichment Score (ES) is the degree at which the genes in a gene set are

overrepresented at the top or bottom of the entire ranked list of genes. NOM p values are the

normalized p values calculated by GSEA. FDR q values represent false discovery rates.

(XLSX)

S4 Table. Upregulated pathways in B cells of pBLV-ΔmiRNA infected sheep as compared

to pBLV-WT. Gene ontology sets that are enriched in B cells of pBLV-ΔmiRNA infected

sheep with a false discovery rate less than 0.01 (FDR< 0.01) were calculated as described in S3

Table.

(XLSX)
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