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Current assessments of trait emotional intelligence (EI) rely on self-report inventories.  
While this approach has seen considerable success, a complementary approach allowing 
objective assessment of EI-relevant traits would provide some potential advantages. 
Among others, one potential advantage is that it would aid in emerging efforts to assess 
the brain basis of trait EI, where self-reported competency levels do not always match 
real-world behavior. In this paper, we review recent experimental paradigms in computational 
cognitive neuroscience (CCN), which allow behavioral estimates of individual differences 
in range of parameter values within computational models of neurocognitive processes. 
Based on this review, we illustrate how several of these parameters appear to correspond 
well to EI-relevant traits (i.e., differences in mood stability, stress vulnerability, self-control, 
and flexibility, among others). In contrast, although estimated objectively, these parameters 
do not correspond well to the optimal performance abilities assessed within competing 
“ability models” of EI. We suggest that adapting this approach from CCN—by treating 
parameter value estimates as objective trait EI measures—could (1) provide novel research 
directions, (2) aid in characterizing the neural basis of trait EI, and (3) offer a promising 
complementary assessment method.

Keywords: trait emotional intelligence, computational neuroscience, reinforcement learning, Bayesian brain, 
computational modeling, assessment

INTRODUCTION

The trait model of emotional intelligence (EI) conceptualizes EI as a set of self-perceived 
competencies, such as high adaptability, high stress tolerance, high optimism, and low 
impulsiveness, among others (Pérez et  al., 2005; Petrides et  al., 2016). In this approach, 
self-report inventories are used that ask people to evaluate their own attributes in this 
domain, similar to the self-report inventories used to assess personality variables (e.g., 
Austin et  al., 2004). Many measures of EI have been developed within this model, with 
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the Bar-On Emotional Quotient Inventory (EQ-i) and the 
Trait Emotional Intelligence Questionnaire (TEIQue) 
representing two prominent examples (e.g., see Bar-On, 2004; 
Mikolajczak et  al., 2007).

Higher trait EI scores on such measures have previously 
been associated with better social adjustment (Engelberg and 
Sjöberg, 2004), better recovery from traumatic experience 
(Hunt and Evans, 2004), a stronger attentional bias toward 
positive affective stimuli (Lea et  al., 2018), higher levels of 
extraversion, conscientiousness, openness, and agreeableness, 
and lower levels of neuroticism (Warwick and Nettelbeck, 
2004; van der Linden et  al., 2017), as well as with a generally 
more positive mood (Schutte et  al., 2002; but see Spence 
et  al., 2004). Higher trait EI scores have also been linked to 
lower work-related stress (Dulewicz et  al., 2003), a lower 
likelihood of reporting symptoms diagnostic of some 
psychological disorders (Hemmati et  al., 2004), and lower 
symptom severity in clinical samples (Petrides et  al., 2017).

While the aforementioned findings were based on associations 
with other self-report measures, significant relationships have 
also been found with a few objective measures. For example, 
those with higher self-reported trait EI show faster facial 
emotion recognition (Austin, 2004), as well as better job 
performance and better indices of health (Martins et  al., 2010; 
O’Boyle et  al., 2011), than those scoring lower on this trait. 
A few previous studies using functional magnetic resonance 
imaging (fMRI) have also shown that trait EI scores are 
correlated with functional and/or structural differences in the 
prefrontal cortex, insula, and amygdala (Killgore and Yurgelun-
Todd, 2007; Takeuchi et  al., 2011, 2013; Killgore et  al., 2012, 
2013; Smith et  al., 2016). This growing body of work supports 
the validity and importance of the trait EI construct.

One theoretical difficulty in using this subjective-rating 
approach to measure trait EI, however, is that individuals’ self-
evaluations can be  inaccurate. For example, the relationships 
observed between trait and performance-based or third-party 
observer measures of EI tend to be  weak (e.g., r  =  0.20 to 
0.30; Carney and Harrigan, 2003; Brackett et al., 2006; Goldenberg 
et  al., 2006; Brannick et  al., 2009; Webb et  al., 2013). Other 
work has also found, for example, that people who rate their 
own social sensitivity highly receive much lower ratings from 
third-party observers (Carney and Harrigan, 2003). Another 
concern is that associations between trait EI scores and self-
reported personality measures are quite robust (Warwick and 
Nettelbeck, 2004; De Raad, 2005), and recent suggestions have 
been made that trait EI scores might primarily reflect a general 
latent personality factor associated with lower neuroticism and 
higher extraversion, openness, conscientiousness, and 
agreeableness (van der Linden et  al., 2017). On one hand, 
this link between trait EI and basic personality dimensions 
may provide support for its biological basis, as the observed 
correlations appear to be  due (in part) to shared genetic and 
neuroscientific underpinnings (Vernon et al., 2008; Mikolajczak 
et al., 2010; Petrides et al., 2016). On the other hand, however, 
if the trait EI construct is intended to track true individual 
differences in social/emotional competencies over and above 
those measured by broad personality variables, one might not 

expect such differences to be  so strongly associated with those 
personality variables; this also raises the concern that these 
strong associations could in part reflect shared self-report 
variance. These issues highlight the potential usefulness of more 
objective measures of an individual’s traits.

This is especially true in the context of the increasing 
neuroscience research on trait EI (and on the potential to use 
neural/biological measures as markers of improvements in EI; 
Pérez-González and Qualter, 2018) referred to above, as certain 
theoretical difficulties arise in correctly interpreting such 
neuroimaging results. For example, when differences in neural 
responses are associated with objective performance differences, 
these neural responses are typically interpretable as reflecting 
underlying differences in relevant neural processes (Smith et al., 
2018). For instance, in the distinct “ability model” of EI (Mayer 
et al., 2003), which instead conceptualizes EI as a set of abilities 
assessed by task performance (e.g., the ability to recognize 
and regulate emotions), brain activity associated with better 
task performance can be plausibly linked to processes contributing 
to the use of those abilities. The objective nature of the ability 
model has been one of its most valuable features, which has 
led to its common use in EI research and its conceptualization 
as similar to other traditional metrics of cognitive intelligence 
(Mayer et  al., 2001). (Note: Drawbacks to this approach have 
also been highlighted, however (Roberts et  al., 2001, 2006; 
Matthews et  al., 2007; Fiori et  al., 2014; Smith et  al., 2018); 
for example, many ability EI measures use consensus scoring 
(as opposed to having objective accuracy metrics) and therefore 
cannot include difficult items that could appropriately measure 
above average levels of EI.).

In contrast, trait EI scores most directly reflect individuals’ 
beliefs (self-assessments or self-perceptions) about themselves, 
and those beliefs need not co-vary highly with objective 
assessment (beliefs about oneself can nonetheless have important 
influences on brain and behavior, however; e.g., see Smith 
et  al., 2016). In addition, subjective ratings of trait EI are 
often understood to reflect typical (or habitual) performance 
in real-world situations as opposed to the optimal (i.e., highly 
motivated, goal-directed) performance assessed in laboratory 
tasks and other objective performance measures of EI-related 
abilities. As such, interpreting the meaning of neuroimaging 
findings regarding trait EI can be  less straightforward because 
the neural basis of subjective beliefs and of typical performance 
are likely different than the neural basis of optimal performance 
assessed objectively (for a recent example attempt to interpret 
distinct neural correlates of trait and performance measures 
of EI, see Smith et  al., 2016). Further research in the field of 
trait EI could be  enhanced, therefore, by developing methods 
to measure such traits with more objective metrics.

Based on these considerations, the present paper explores 
one possible way in which EI-relevant traits could be  assessed 
objectively, derived from the field of computational cognitive 
neuroscience (CCN). Briefly, we  present the thesis that the 
notion of “model parameters” in CCN represents a novel way 
to think about psychological traits in the field of EI research. 
As we  will describe below, these parameters can be  estimated 
for individual participants in objective behavioral tasks and 
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therefore do not rely on self-report. Yet, they reflect stable 
individual differences with a different character than the 
performance abilities assessed by ability EI models. Thus, they 
provide a potential framework in which trait-like factors, that 
have more easily interpretable neural underpinnings, can 
be  assessed in an objective manner. This builds on previous 
work that has suggested ways in which neuroimaging measures 
could also be  used to more objectively assess differences in 
EI-relevant traits (e.g., assessing more or less adaptive “affective 
styles” based on differences in asymmetric prefrontal activation 
and amygdala responses; Davidson and Irwin, 1999; Davidson, 
2004; Davidson and Begley, 2012).

In the following sections, we  will expand upon the thesis 
that computational neuroscience measures can be used to assess 
socio-emotional traits and then provide several examples of 
specific model parameters that have been derived in recent 
research, which appear to overlap with, or at least be  highly 
relevant to, the emotional competencies associated with trait 
EI. Ultimately, we  will argue that expanding on this approach 
within the field of EI research could represent a promising 
avenue for future studies.

COMPUTATIONAL COGNITIVE 
NEUROSCIENCE

The field of CCN starts with the premise that neural networks 
within the brain implement information processing mechanisms 
that can be described by mathematical equations. It then focuses 
on creating and testing mathematical models and their ability 
to account for human behavior and brain activity. There is a 
wide range of different types of models used within this field, 
many working at different levels of description. For example, 
some of this work has focused primarily on the use of 
mathematical models of cognition (typically based on Bayes’ 
theorem in probability theory), with little emphasis on underlying 
neural implementation (e.g., see Kemp et  al., 2007; Xu and 
Tenenbaum, 2007a,b; Perfors et  al., 2011). Other work has 
focused on algorithms capable of learning to behave optimally 
in the context of seeking reward and avoiding punishment, 
which has included considerable focus on brain mechanisms 
(Sutton and Barto, 1998; Frank, 2011; Dolan and Dayan, 2013; 
Gershman, 2017). Finally, there is a growing body of work 
on what has been called the “free-energy principle” (Friston, 
2010), which has provided concrete neural models (at the level 
of interconnected neurons and their dynamics) of perception/
attention (Friston, 2005; Kiebel et al., 2008; Feldman and Friston, 
2010; Parr and Friston, 2017), learning and decision-making 
(Friston et  al., 2016, 2017), emotion and visceral regulation 
(Pezzulo et  al., 2015; Seth and Friston, 2016; Stephan et  al., 
2016; Smith et  al., 2017; Owens et  al., 2018), and skeletomotor 
control (Friston et  al., 2010).

According to these CCN models, the brain must store and 
use stable values for a range of parameters (e.g., expected levels 
of reward in a particular situation, prior expectations about 
what is most likely to be perceived, etc.). Some of the parameter 
values stored in the brain may be  inherited, while others are 

plausibly learned from experience (perhaps early experience 
especially), and they need not be  identical across individuals. 
Further, although many may be  slowly altered through further 
learning, such parameters can often be treated as stable individual 
differences. Broadly speaking, by storing and using specific values 
for a range of different parameters, the brain is thought of as 
implementing an “internal model” of the world that an individual 
uses to guide perception, bodily regulation, and behavior.

Of primary relevance to the present paper, multiple parameter 
values within an individual’s internal model may relate in 
important ways to trait differences in EI-relevant competencies. 
Further, behavioral paradigms have been created that can 
estimate these parameters for individual participants, providing 
useful trait-like information. In what follows, we  will review 
previous work in which such experimental paradigms have 
been used to estimate individual differences in some specific 
parameter values, and we will demonstrate why these are more 
plausibly considered traits than abilities. We will then illustrate 
how mapping trait differences in these parameter values to 
trait differences in EI may provide conceptual and empirical 
tools capable of advancing research on trait EI. To be  clear, 
the work we  will review does not offer a complete list of 
EI-relevant parameters. Our goal is instead to demonstrate 
how such an approach could be  expanded to assess other 
EI-relevant traits in a novel manner.

SPECIFIC EXAMPLE PARAMETERS 
RELEVANT TO TRAIT EI

Mood Stability
The first parameter we  will consider corresponds to trait 
differences in mood stability, based on a recent body of work 
within the literature on reward learning (Eldar and Niv, 2015; 
Eldar et  al., 2016, 2018; Mason et  al., 2017). Briefly, the 
computational models used in this work highlight an important 
interaction between mood stability and the way events involving 
reward or loss are processed. Specifically, this work has shown 
that (1) mood is improved after repeatedly experiencing greater 
reward than expected, and (2) outcomes are perceived as more 
rewarding when a person is in a good mood relative to when 
they are in a bad mood. In symmetric fashion, losses are 
perceived as worse when someone is in a bad mood, and the 
repeated experience of unexpected loss further worsens mood. 
This two-way interaction may be  helpful in improving the 
efficiency of reward learning in certain environments, but it 
also creates the potential for positive feedback loops that can 
lead to mood instability.

In the mathematical equations used by Eldar and colleagues 
to model these processes, one particular parameter ( f  ) controls 
the strength of the effect that mood has on perception of 
subsequent outcomes (i.e., higher f -values lead good mood to 
more strongly amplify perceived reward and bad mood to 
more strongly amplify perceived losses). Using a behavioral 
task combining mood induction and reward learning, they 
were able to estimate the best-fit values of f for each participant. 
They subsequently found that those participants with higher 
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f-values were also more susceptible to mood instability  
(assessed using the hypomanic personality scale; Eckblad and 
Chapman, 1986) and that the associated amplified responses 
to reward corresponded to altered activation of striatal reward 
systems in the brain (Eldar and Niv, 2015). Briefly, this instability 
arises with higher f-values because reward (positive reward 
prediction-error) and mood amplify each other until expected 
rewards are unattainable, leading to losses (negative reward 
prediction-errors) and mood reductions that in turn amplify 
each other (and the cycle continues).

In this first example, the parameter value for f, although 
measured objectively, is not plausibly understood as a measure 
of task performance. Instead, it reflects a trait difference in 
vulnerability to mood instability that can be  understood in 
mathematical and mechanistic neural terms. That is, it reflects 
the fact that positive mood amplifies perceived reward too 
much and negative mood amplifies perceived negative outcomes 
too much, corresponding to amplified neural responses in 
reward learning systems. Given that mood stability is an 
EI-relevant trait, this objective means of assessing this trait 
appears highly relevant. For example, f appears strongly related 
to the Emotion Regulation facet on the TEIQue and could 
also overlap somewhat with other TEIQue facets and factors, 
such as trait happiness, adaptability, well-being, and self-control. 
It could also relate to certain scales and subscales on the 
Bar-On EQ-i, such as adaptability, general mood, flexibility, 
and happiness. The potential relationships between f and the 
aforementioned EI traits have not yet been examined, representing 
one interesting direction for future research.

Stress Vulnerability
The second parameter we  will consider corresponds to trait 
differences in stress vulnerability. This is based on a recent 
study of uncertainty learning (de Berker et  al., 2016), which 
linked differences in particular aspects of uncertainty-related 
behavior to differences in autonomic and endocrine responses 
associated with stress. In this study, individuals had to repeatedly 
guess the probability of receiving a shock after seeing various 
stimuli. Importantly, the probabilities shifted unpredictably over 
time. Based on behavior in this task, one of the parameters 
estimated by their computational model for each participant 
(ϑ) captures trait differences in expected levels of a specific 
type of uncertainty called “metavolatility.” Specifically, higher 
ϑ-values can be  thought of as indexing stronger implicit 
expectations that the world is unstable (i.e., greater general 
uncertainty about the stability of learned relationships between 
events). Interestingly, they found that individuals with higher 
ϑ-values reported greater chronic life stress (assessed using 
the perceived stress scale; Cohen et  al., 1983).

Individual differences in ϑ therefore reflect something like 
trait differences in vulnerability to stress (i.e., due to differences 
in implicit beliefs about world stability), and it also does not 
map onto any straightforward performance ability. This therefore 
provides another example of an objectively measureable individual 
difference variable relevant to trait EI. For example, ϑ appears 
strongly related to the stress management facet on the TEIQue 

and could also overlap somewhat with other TEIQue facets 
and factors, such as emotion regulation, trait happiness, 
adaptability, well-being, and self-control. It appears strongly 
related to the stress management scale and stress tolerance 
subscale on the EQ-i and could also overlap somewhat with 
other EQ-i scales/subscales, such as adaptability, general mood, 
flexibility, and happiness. Future research should examine 
whether these potential relationships exist.

Optimism
The third parameter we  will consider corresponds to trait 
differences in optimism, based on a recent study of expectation 
learning (Stankevicius et  al., 2014). In this study, individuals 
were exposed to stimuli that were either followed by reward 
or no reward on each trial with a probability fixed for each 
stimulus (but differing for different stimuli), which was unknown 
to participants. After a few presentations of a given stimulus, 
participants were instructed to maximize reward by choosing 
either that stimulus or a novel stimulus with an explicitly 
indicated probability of reward. Using a mathematical model 
that assumed optimal probabilistic (Bayesian) inference, 
participants’ behavior could be  used to estimate a set of beta-
distribution parameters (α, β) that can be combined to measure 
each participant’s mean prior expectation of receiving future 
rewards (α/(α  +  β)). Subsequently, they found that (α/(α  +  β)) 
values were significantly positively correlated with trait optimism 
(assessed using the Life Orientation Test-Revised [LOT-R]; 
Hirsch et al., 2010), but that they did not correlate with several 
other personality variables.

Thus, this parameter represents an objective behavioral 
measure of trait differences in optimism, conceptualized 
computationally as stored prior expectations about the 
quantitative probability of receiving future rewards (i.e., likely 
related to brain regions involved in reward prediction, such 
as the anterior cingulate, basal ganglia, dopaminergic midbrain, 
and ventral/medial prefrontal cortex; Niv et  al., 2007; Dolan 
and Dayan, 2013; Silvetti et  al., 2014). This parameter appears 
strongly related to the trait optimism facet on the TEIQue 
and could also overlap somewhat with other TEIQue facets 
and factors, such as trait happiness, self-motivation, and well-
being. It also appears strongly related to the optimism subscale 
on the EQ-i and could overlap somewhat with other EQ-i 
scales/subscales as well, such as adaptability, general mood, 
flexibility, and happiness. As with the other parameters already 
discussed, future trait EI research will be necessary to investigate 
these relationships.

Flexibility and Self-Control
A fourth set of parameters we  will consider correspond to 
overlapping traits that could be described as self-control, patience, 
flexibility, or goal-directedness. This broad idea has been assessed 
within reinforcement learning studies on “model-based” and 
“model-free” decision-making algorithms (Daw et  al., 2005, 
2011; Kool et  al., 2016; Gershman, 2017). Briefly, model-based 
decision-making algorithms mathematically characterize a goal-
directed process in which one consciously imagines a number 
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of probable outcomes based on different action choices and 
then selects the action with the best expected outcome. This 
process is psychologically flexible, but computationally expensive 
and cognitively effortful. In contrast, model-free algorithms 
mathematically characterize a process in which habitual behaviors 
are learned based on statistical patterns of better and worse 
outcomes in past experience. Psychologically, one simply feels 
an impulse or automatic tendency to act a certain way in a 
given situation, because it has tended to lead to better outcomes 
in the past—although an individual need not be  aware of this 
reason (e.g., similar to the implicit statistical learning observed 
in tasks such as the Iowa Gambling Task; Bechara et  al., 1997; 
Gupta et  al., 2011; Alkozei et  al., 2018). Model-based and 
model-free algorithms appear to operate in a parallel and 
interactive fashion in the brain (e.g., model-based algorithms 
appear to primarily engage the dorsolateral prefrontal cortex 
and dorsomedial striatum, whereas model-free algorithms instead 
primarily engage ventral/lateral striatal regions), and it is thought 
that they compete for control of action (Daw et  al., 2005). 
Most relevant to the present discussion, decision-making tasks 
(Kool et al., 2016) have been developed that assess quantitative 
individual differences in (i.e., parameter values describing) the 
default tendency to engage in model-based (flexible, goal-
directed) or model-free (rigid, impulsive) decision making. 
Those that have higher “model-based” parameter values will 
therefore tend to be  more flexible and goal-directed and less 
impulsive. It is worth emphasizing that these parameter values 
do not necessarily reflect a person’s ability to engage in the 
controlled/deliberative type of cognition associated with model-
based algorithms; instead, they are better understood to reflect 
the degree to which an individual will typically engage in this 
type of cognition when it would be  beneficial.

A related set of parameters has also been assessed within 
neural “active inference” models that are based on the free-
energy principle (i.e., according to this principle, individuals 
act so as to minimize an information-theoretic quantity related 
to surprise; Schwartenbeck et  al., 2015; Schwartenbeck and 
Friston, 2016; Parr and Friston, 2017; Friston et  al., 2018). 
One parameter, called policy precision, encodes an individual’s 
a priori confidence that one action option will be  better than 
others; this parameter is linked to dopaminergic signaling in 
these models (Parr and Friston, 2018). Higher policy precision 
values entail that behavior is more deterministic (i.e., less 
random). A second parameter in these models, called transition 
precision, encodes an individual’s a priori confidence in the 
predictability of future events; this parameter is linked to 
noradrenergic signaling in active inference models (Parr and 
Friston, 2018). Higher transition precision values indicate the 
implicit belief that distant future states are more predictable, 
entailing more goal-directed (i.e., more patient, less impulsive) 
decision-making strategies (e.g., being willing to forego smaller 
rewards now to receive larger rewards later—which only makes 
sense if the more distant rewards are predictable enough to 
“bet on”; Mirza et  al., 2019). Different combinations of policy 
and transition precision values can therefore characterize an 
individual’s tendencies toward acting randomly and impulsively 
vs. acting in a more patient and controlled manner.

As such, these overlapping parameters appear strongly related 
to the (low) impulsiveness facet, self-motivation facet, and 
self-control factor on the TEIQue and could also overlap 
somewhat with the adaptability facet. They also appear strongly 
related to the impulse control, flexibility, and problem solving 
subscales on the EQ-i and could also overlap somewhat with 
the broader adaptability scale. In addition, given that some 
other self-reported EI skills (e.g., regulating/managing the 
emotions of self and others) make use of controlled/effortful 
cognition, those with greater tendencies to engage in these 
processes (as assessed by the aforementioned parameter estimates) 
might appear to show greater skills levels in typical situations. 
While these parameters appear to be  similar to the constructs 
measured by traditional self-report measures of trait EI, these 
associations remain to be  tested through empirical research.

The Influence of Automatic Affective 
Action Tendencies
The fifth parameter we  will consider corresponds to trait 
differences in the influence of affective valence on behavior, 
based on recent work in reinforcement learning (Guitart-Masip 
et al., 2012, 2014). Briefly, this work has illustrated interactions 
between the expected valence (pleasantness or unpleasantness) 
of outcomes and behavioral tendencies when trying to achieve 
those outcomes (i.e., which may correspond to interactions 
between brain regions encoding value/valence (e.g., ventral/
medial prefrontal cortex) and regions controlling action (e.g., 
striatum); see Guitart-Masip et  al., 2014). More specifically, 
expected pleasant outcomes appear to promote Pavlovian 
(biologically pre-specified) approach behaviors, whereas expected 
unpleasant outcomes promote Pavlovian inhibition or avoidance 
behaviors. This can lead to suboptimal responses in situations 
where, for example, long-term success requires approaching 
situations to avoid unpleasant outcomes (e.g., requiring inhibition 
of biologically prepared inhibition/escape tendencies).

Importantly, individuals differ in the degree to which expected 
valence influences their behavior in this manner. One task 
designed to assess this interaction between valence and behavior 
is the orthogonalized go/no-go task (Crockett et  al., 2009). In 
this task, individuals either have to act or inhibit an action 
(go and no-go, respectively) to either win or to avoid losing 
something of value (i.e., four combinations, each in a different 
task condition). In this task, some individuals perform worse 
than others, with varying levels of impaired learning/performance 
in the “go to avoid losing” and “no-go to win” conditions 
(i.e., relative to the other two conditions where valence and 
automatic behavior agree; e.g., see Guitart-Masip et  al., 2012; 
Chowdhury et  al., 2013). Individual differences in the  
ability to learn/perform in these conditions where valence and 
action disagree (i.e., individual differences in parameters 
describing the strength of the interaction between valence and 
action) have been used as measures of psychological flexibility 
(e.g., to examine individual differences in flexibility between 
younger and older adults; Chowdhury et  al., 2013).

There is a range of circumstances in which this could pertain 
to EI-relevant traits. For example, there are social circumstances 
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in which one must approach uncomfortable social and workplace 
situations to avoid even more unpleasant long-term outcomes. 
More generally, this objectively measurable trait difference could 
theoretically correspond closely with the (low) impulsiveness 
facet, emotion regulation facet, and self-control factor on the 
TEIQue and could also overlap somewhat with other TEIQue 
facets, such as self-motivation and adaptability. It also appears 
strongly related to the flexibility and impulse control subscales 
on the EQ-i and could also overlap somewhat with its broader 
adaptability scale. Yet, no study to date has attempted to link 
trait EI scores to this objective measure of behavioral flexibility 
in affective contexts.

Cognitive Flexibility in Reality Testing
The final parameter we  will consider corresponds to trait 
differences in the degree to which people are cognitively flexible 
and test their beliefs before acting on them. In decision-making 
research, this has been studied in the context of the “explore/
exploit dilemma” (Sutton and Barto, 1998; Berger-Tal et  al., 
2014), which refers to the difficult problem of deciding  
when to trust (and act on) a previously learned model of the 
world (“exploiting”) and when to first check (before acting) 
to make sure that model of the world is still accurate (“exploring”). 
In neuroscience research, evidence suggests that both 
noradrenergic and dopaminergic signaling play a role in 
modulating how (and how flexibly) individuals solve this  
problem (Aston-Jones and Cohen, 2005; Beeler et  al., 2014).

Solving this problem adaptively is highly relevant to 
psychopathology and its treatment (Addicott et  al., 2017). For 
example, individuals with early adversity may learn a maladaptive 
model of social interactions (e.g., “people will always hurt me 
and take advantage of me if I  show emotional vulnerability”) 
that, while true of their childhood environment, is not true 
of their broader social environment in adulthood. Similarly, 
individuals with mood and anxiety disorders often have acquired 
maladaptive socio-emotional beliefs (e.g., “no one would want 
to be  my friend”). In both cases, habitually acting on such 
beliefs can prevent the ability to learn a more adaptive model; 
for example, by socially isolating one’s self or being preemptively 
cold and defensive during social interactions, one can 
inadvertently elicit reactions from others that maintain those 
maladaptive beliefs. In both cases, evidence-based 
psychotherapeutic interventions (Hayes and Smith, 2005; Barlow 
et al., 2016)—and exposure techniques in particular—also focus 
on countering maladaptive cognitive/behavioral habits by 
promoting more flexible, exploration-based cognition and 
behavior as a way of promoting more adaptive learning (e.g., 
“let yourself show some emotional vulnerability and see if it 
goes the way you  expect”).

There are a number of tasks within the reinforcement learning 
literature that have been used to assess this type of flexible 
reality testing (reviewed in Addicott et  al., 2017). As one 
illustrative example, a task called the “horizon task” asks 
participants to make a series of choices between two slot 
machines with the goal of maximizing earnings, after having 
seen different numbers of examples of previous payouts from 

each of the two machines (Wilson et  al., 2014). To estimate 
trait differences in a “goal-directed exploration” parameter, 
participants’ early choices in this task can be  examined when 
they are given more vs. less information about previous payouts 
from one slot machine or the other. Interestingly, while individuals 
high in goal-directed exploration tend to first “test out” the 
slot machine that they know less about, those lower in this 
trait tend to just pick the one with higher past payouts and 
stick to it (i.e., regardless of how many past payouts they  
have seen). Thus, those with higher goal-directed exploration 
parameter values appear more sensitive to uncertainty and try 
to gather more information before “jumping to a conclusion” 
too quickly—often leading to better overall performance.

Although primarily studied thus far in the context of simple 
gambling tasks, trait differences in goal-directed exploration 
during decision-making are of clear relevance to intelligent, 
adaptive, and flexible social and emotional responding. 
Conceptually, this trait difference appears related to the (low) 
impulsiveness facet and adaptability facet of the TEIQue. It 
also appears strongly related to the reality testing subscale of 
the EQ-i, as well as other components of its adaptability scale 
(i.e., flexibility and impulse control). However, no study to 
date has attempted to link trait EI scores to this objective 
measure of flexibility and reality testing; adapting such tasks 
to study goal-directed exploration in explicitly socioemotional 
contexts is also an important future research direction.

A BROADER PERSPECTIVE ON MODEL 
PARAMETERS AND TRAIT EI

In the previous section, we  provided several specific examples 
of parameter values that can be  experimentally estimated for 
individuals and that could plausibly relate to trait differences 
in a range of EI-related competencies. We  also demonstrated 
why they correspond much more closely to the notion of 
traits than to the notion of specific task performance abilities 
(or to typical as opposed to optimal behavior). However, the 
examples provided above certainly do not provide comprehensive 
coverage of EI-relevant traits. For example, they do not appear 
to correspond directly to traits such as self-esteem, assertiveness, 
emotional awareness, interpersonal relationship competencies, 
among others (i.e., although they could certainly have indirect 
influences on these other traits; e.g., optimism parameters could 
promote self-esteem, and parameters related to patience, self-
control, cognitive flexibility, and low impulsiveness could aid 
in interpersonal relationships, etc.). Given this lack of complete 
coverage, our claim is not that the tasks described above could 
exhaustively assess trait EI in an objective manner. Our claim 
is instead that these examples from CCN may provide a blueprint 
for ways in which one could design tasks to assess other trait 
EI facets, and that doing so could both avoid potential issues 
linked to self-report and also facilitate neuroscience research 
on trait EI. The resources for doing so can also be  further 
clarified by giving broader consideration toward other general 
parameters that must be  stored unconsciously within any 
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plausibly human mind. In fact, there are some general categories 
of parameter estimates that are necessary for perception and 
action, which have clear relevance to EI competencies. 
We  consider a few below.

Prior Probability and Precision Estimates
The sensory input received by the brain is known to be  noisy 
and ambiguous. Put another way, there are always multiple 
possible causes of the same sensory input. As such, the brain 
must be  equipped with (and be  capable of updating) prior 
expectations (i.e., stored probability values typically referred to 
as “priors”) about which causes are more likely than others in 
general and use these expectations to infer the most likely 
cause of any particular pattern of sensory input (i.e., similar 
to the example of optimism and prior expectations of future 
reward above). As there are a vast number of possible causes 
out in the world that interact in complex ways, this entails 
that the brain must store a large number of priors. This is the 
general basis for a large number of current probabilistic (Bayesian) 
models of brain function (Knill and Pouget, 2004; Friston, 
2010). Not all of these priors may relate to trait EI; however, 
several plausibly do (e.g., for specific theoretical applications 
to social perception/behavior, see Diaconescu et  al., 2014;  
Friston and Frith, 2015; Sevgi et  al., 2016).

As one example, consider a woman who observes a man 
with a neutral facial expression. As such expressions are more 
or less consistent with a range of emotional states, prior 
expectations will play an important role in emotion recognition 
competencies (e.g., expectations about what facial features 
correspond to what emotions, about what emotions are more 
likely in general, and about what emotions are more likely in 
a particular situation). For instance, if the woman has a prior 
expectation that people typically tend to feel happy, then—all 
else being equal—the woman would perhaps perceive the man’s 
neutral expression as indicating mild happiness. In contrast, 
a different prior expectation could promote the perception of 
a range of other emotions. Prior expectations can also be specific 
to context. For example, assume the man is observed at a 
family gathering. If the woman has a prior expectation that 
family gatherings are generally enjoyable, then she would likely 
perceive the man as happy; in contrast, if she expects that 
family gatherings are often awkward and tense, the man might 
instead be  perceived as anxious or annoyed.

Individuals with prior expectations that are better calibrated 
to their social/cultural environment would therefore be expected 
to have higher competence in the domain of emotion perception. 
More generally, for most trait EI competencies, there will 
be  similarly relevant priors. For example, individuals will have 
learned prior expectations for (1) their value in the eyes of 
others (self-esteem), (2) their ability to navigate the environment 
effectively (independence), (3) the probable mental states of 
others in specific situations and the types of actions that tend 
to make individuals feel better or worse (emotion management, 
social awareness, and empathy), and many others.

Competence within the perceptual and cognitive domains 
also requires estimating the reliability of particular sensory 

inputs and expectations (Feldman and Friston, 2010). For 
example, in the context of a sunny day, visual input should 
be treated as reliable and have a strong influence on perception 
and learning within the brain. In contrast, input from vision 
in the dark of night is much less reliable, and the brain could 
arrive at many false percepts if it was treated as though it 
were trustworthy. Thus, in Bayesian models of the brain, it is 
assumed that the brain learns context-specific estimates of when 
to put greater trust in sensory input and when to put greater 
trust in prior expectations. These reliability estimates correspond 
to a set of internal model parameters called “precision estimates,” 
which guide attention, belief updating, and decision-making 
in a context-specific manner. In fact, the policy and transition 
precision parameters discussed in section 3.4 specifically represent 
two such precision estimates, reflecting the reliability of 
predictions about sensory input based on chosen actions and 
beliefs about the past/future, respectively (for discussion of 
mood biases as reflecting different types of precision estimates, 
see Clark et  al., 2018).

More generally, however, precision estimates can be  seen 
as conveying a person’s confidence in a wide range of variables. 
For example, if one assigned a very strong precision estimate 
to their current beliefs, they would have great difficulty learning 
from new experience and would be  unlikely to engage in the 
type of reality testing competency assessed in the EQ-i, or if 
an individual assigned very low precision estimates to social 
information in sensory input (e.g., effectively ignoring the facial 
expressions, body postures, and voice tones of others), they 
would be  expected to have low social awareness. The structure 
of these examples is widely generalizable to other EI traits. 
Regardless of the specific example, however, the key task for 
expanding this approach to trait EI research would be  to 
identify the relevant prior expectation and precision estimate 
parameters and then design tasks to quantitatively measure 
individual differences in these parameters via individuals’ 
behavior.

Learned Action Values
The final example we  will provide returns to the work on 
model-free decision algorithms discussed on section 3.4. In 
that section, we  focused on the competition between these 
(habit-driven) algorithms and model-based (goal-directed) 
algorithms and did not discuss what habitual behaviors had 
been learned. However, competencies within the social/emotional 
domain also likely depend on the specific behavioral tendencies 
that an individual has learned through reinforcement in 
EI-relevant contexts. Within model-free algorithms, if a 
particular action (in a particular situation) has been repeatedly 
and reliably followed by positive outcomes, then the stored 
value of that action will be high for that situation; symmetrically, 
those actions typically followed by negative outcomes in 
personal experience with a specific situation will be  assigned 
low values (Gershman, 2017). When again in that situation, 
model-free algorithms would select whatever action has the 
highest stored value, often corresponding to a strong subjective 
urge (or automatic tendency) to behave in a particular way 
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(and strong urges to avoid choosing low-value actions—without 
an individual necessarily understanding why).

The important point here is that different stored action 
values can promote more or less emotionally/socially competent 
behavioral tendencies. Less adaptive behavioral tendencies can 
arise, for example, if they were learned in one environment 
but then applied in a different environment. For example, if 
assertive behaviors were reliably punished during childhood, 
an individual would likely have automatic tendencies toward 
passive (nonassertive) behaviors in adult social environments—
even if assertive behaviors would in fact be  rewarded in the 
latter environment. Importantly, because such an individual 
would have a strong aversion to “trying out” assertive behaviors 
(i.e., because their stored action values are so low), they may 
never have an opportunity to learn that such behaviors would 
now be  followed by desirable outcomes (i.e., this is an example 
of failing to adaptively solve the explore/exploit dilemma 
described in the “Cognitive Flexibility in Reality Testing” section). 
A similar analysis of other behavioral facets of trait EI could 
also be provided, such as facets pertaining to socially responsible 
behavior, behavior in interpersonal relationships, and empathic 
behavior (among others). The major point is that a particular 
set of model-free parameters that promote selection of habitual 
actions (technically called “state-action pair values” or “Q-values”) 
could in principle be  used as objective indices of some trait 
EI competencies. This would require that tasks were designed 
to estimate an individual’s stored values for different actions 
in EI-relevant situations, which has not been attempted to date.

CONCLUSION

In this paper, we have discussed the idea that specific individual 
difference parameters estimated in CCN studies could 
be  understood as objective assessments of traits, and that 
many do not appear to correspond as directly to performance 
abilities. We have also provided specific examples of parameters 
that appear to correspond to EI-relevant traits to various 
degrees and illustrated how more general theoretical resources 
within CCN could guide the development of tasks capable 
of assessing trait EI facets more comprehensively. This offers 
the possibility of a complementary means of assessing trait 
EI competencies that does not rely on self-report and which 
could perhaps better dissociate them from other self-report 
measures. Finally, we  have highlighted that, because each of 
the parameters discussed above have previously examined 
neuroscientific bases, this should help extend recent work 
attempting to examine the neural basis of individual differences 
in trait EI. We contend that this approach therefore represents 
a promising complementary assessment approach for future 
emotional intelligence research.
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