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Abstract

Background: Distance based unsupervised clustering of gene expression data is commonly used to identify
heterogeneity in biologic samples. However, high noise levels in gene expression data and relatively high
correlation between genes are often encountered, so traditional distances such as Euclidean distance may not be
effective at discriminating the biological differences between samples. An alternative method to examine disease
phenotypes is to use pre-defined biological pathways. These pathways have been shown to be perturbed in
different ways in different subjects who have similar clinical features. We hypothesize that differences in the
expressions of genes in a given pathway are more predictive of differences in biological differences compared to
standard approaches and if integrated into clustering analysis will enhance the robustness and accuracy of the
clustering method. To examine this hypothesis, we developed a novel computational method to assess the
biological differences between samples using gene expression data by assuming that ontologically defined
biological pathways in biologically similar samples have similar behavior.

Results: Pre-defined biological pathways were downloaded and genes in each pathway were used to cluster
samples using the Gaussian mixture model. The clustering results across different pathways were then summarized
to calculate the pathway-based distance score between samples. This method was applied to both simulated and
real data sets and compared to the traditional Euclidean distance and another pathway-based clustering method,
Pathifier. The results show that the pathway-based distance score performs significantly better than the Euclidean
distance, especially when the heterogeneity is low and genes in the same pathways are correlated. Compared to
Pathifier, we demonstrated that our approach achieves higher accuracy and robustness for small pathways. When
the pathway size is large, by downsampling the pathways into smaller pathways, our approach was able to achieve
comparable performance.

Conclusions: We have developed a novel distance score that represents the biological differences between
samples using gene expression data and pre-defined biological pathway information. Application of this distance
score results in more accurate, robust, and biologically meaningful clustering results in both simulated data and real
data when compared to traditional methods. It also has comparable or better performance compared to Pathifier.
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Background

The pathogenetic causes of many diseases have been
known to be heterogeneous, including different types of
cancers and chronic inflammatory diseases of the lung
and other organs [1-3]. This heterogeneity contributes
to differences in clinical manifestations of disease and
response to therapeutic intervention. This suggests that
precisely defining pathogenically relevant subtypes or
“endotypes” of disease will improve the predicted re-
sponse to a given therapy, especially in complex chronic
diseases. Global gene expression analysis has been suc-
cessfully applied to identify the molecular subtypes or
endotypes that are associated with the clinical hetero-
geneity [4-7] and promises to pave the way to identify
both the biology of disease pathogenesis and endotypes
of disease that can be treated more precisely.

Distance based unsupervised clustering methods have
been among the most popular approaches to identify
biological heterogeneity from gene expression data. Usu-
ally, the original gene expression data is filtered based
on the variance of the expression levels across the sam-
ples being analyzed. Many studies followed this analysis
framework and successfully identified clinically or bio-
logically meaningful disease subtypes [6, 8—10]. How-
ever, these approaches have major limitations which may
render them ineffective under certain circumstances.
First, most of the reported studies select genes based on
the variance of their expression levels. However, since
multiple studies have shown that disease-associated and
causing genes do not necessarily have high gene expres-
sion levels and thus do not demonstrate a large vari-
ation, selecting genes based on their variance may result
in a poor discrimination of biologically relevant disease
subtypes [11, 12]. Second, the Euclidean distance assigns
equal weight to all genes included in the analysis. It is
known that different genes can be perturbed to a differ-
ent extent by the same stimulus, so assigning an equal
weight is biologically inaccurate. Furthermore, perturba-
tions in genes that interact with many other genes tend
to have a larger biologic effect on the disease phenotype
[13-15]. Therefore, different genes should not be treated
equally but should be weighted to reflect the strength of
any given association with the clinical phenotype. Third,
genes that function together, including those in the same
biological pathway, tend to have strong correlation in
their expression levels. This correlation is not accounted
for by the Euclidean distance. Lastly, using a measure of
multiple genes in a pathway will limit the noise that is
inherent in gene expression data.

To address these issues, we developed a novel distance
score that assesses the biological differences between
samples by integrating pathway information based on
the assumption that biologically similar samples tend to
have similar expression patterns of biological pathways.
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Pre-defined biological pathways are selected to assess
the biological difference between samples. We use genes
from each pathway to cluster the samples based on a
multivariate Gaussian mixture model. Then, the cluster-
ing results across all the pathways are summarized into
a distance score that is small when most of the pathways
assign two given samples into the same cluster. This dis-
tance score has three advantages over the traditional Eu-
clidean distance. First, it takes advantage of the pre-
defined biological pathways which include genes that are
more likely to be disease or phenotype associated. This
results in less background noise for clustering. Second,
clustering results using pathways are more robust than
using single genes due to the high noise levels in the
gene expression data. Third, the multivariate Gaussian
mixture model accounts for the correlation between
genes from the same pathways which makes the cluster-
ing results more accurate.

The incorporation of biological knowledge into clus-
tering methods has been proposed before. Several previ-
ous studies have recognized the benefit of using the
ontological information to identify the disease hetero-
geneity from genetic mutations [16—19], protein changes
[20, 21], transcriptomic data [22—-30] and a combination
of genomic and transcriptomic data [31]. Multiple
pathway-based clustering methods have been developed
by these studies. The Pathifier [22] performs a principal
component analysis for each pathway to project the
samples onto a subspace formed by the top components
explaining >10% of the variation. In the subspace, a prin-
cipal curve is formed and all the samples are projected
onto this curve. The distance of each sample from a
consensus or control sample on this curve will be con-
sidered as the pathway activity score of the given path-
way in the given sample. PathVar [29] computes an
expression variance matrix for each pathway using three
metrics that measure the variability of the genes inside
the pathway. This expression variance matrix was then
used to cluster samples to identify sample groups with
similar expression variance across multiple pathways.
The study by Verhaegh et al. [23] predicts signaling
pathway activity based on knowledge-based Bayesian
network models, which interpret the expression patterns
of the manually picked target genes of pathways as the
functional output of the activity of the pathways. Zhao
et al. [19] clustered samples using a voting mechanism
which is very similar to our proposed approach, but with
a major difference in how each pathway clusters the
samples. The study by Lottaz et al. [28] incorporated the
Gene Ontology (GO) hierarchy information to cluster
samples with different clinical phenotypes based on
microarray gene expression data. However, due to the
lack of a hierarchical structure of genes involved in the
same biological pathways, this method cannot be applied
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if the prior knowledge comes from the biological path-
ways available from many online databases. These devel-
oped methods have been successful in identifying novel
subtypes of diseases, especially in cancers. However,
when applied to transcriptomic data from chronic dis-
eases, these developed methods have certain limitations.
For example, both Pathifier and PathVar rely on the as-
sumption that genes that are strongly associated with
the underlying disease pathogenesis have much higher
variation than other genes, which might not be true for
chronic diseases. Chronic diseases are known to have
smaller changes in both genome and transcriptome
compared to cancers, which will make the top compo-
nents explain a smaller percentage of variation and also
likely cause the top components to have less association
with the underlying disease pathogenesis. The Bayesian
network model used by Verhaegh et al. requires and
heavily relies on the knowledge on the direct target
genes of pathways. Currently, there is no accurate source
for this information. Besides, the target genes of path-
ways might vary between individuals, tissues, and dis-
eases. Zhao et al. use hierarchical clustering to cluster
samples using each pathway, which is not a very accur-
ate and robust clustering approach. The pathway-based
distance score that we developed enhances for hetero-
geneity associated gene signatures and reduces the noise
level by summarizing the clustering results across mul-
tiple Gaussian mixture models that integrate prior path-
way information.

We applied the proposed method to both simulated
data and real data and compared it to the traditional Eu-
clidean distance with and without gene filtering as well
as Pathifier. The results from simulated data show that
our method performs better than the traditional Euclid-
ean distance coupled with K-means clustering or hier-
archical clustering, especially when the percentage of
genes that are perturbed in the pathway is high, the per-
turbed genes have large changes in their expression
levels and there is strong correlation between the ex-
pression levels of genes from the same pathway. Com-
pared to Pathifier, our method shows higher clustering
accuracy and better robustness to background noise for
small pathways. By adding an extra step of downsam-
pling the pathways, our approach achieves comparable
performance to Pathifier for bigger pathways. Applica-
tion to a real dataset in asthma patients identified 3 sub-
groups which are associated with important clinical
features of asthma. These associated clinical features
have been further validated in an independent cohort
demonstrating the power of the proposed method. In
contrast, when traditional unsupervised clustering
methods and Pathifier were applied, the identified clus-
ters were associated with less clinical features and had
weaker association strengths. Application to another real
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dataset from non-small cell lung cancer patients shows
comparable performances of all methods, indicating that
the perturbations in the transcriptome of cancer patients
are so high that all methods will achieve the same per-
formance. In summary, the application of our method to
both simulated data and real data showed that the pro-
posed method has a better performance in identifying
disease heterogeneity than the Euclidean distance with
or without gene filter. It also has equal or better per-
formance than Pathifier and it is more likely to perform
better in chronic diseases with relatively weaker signals.

Methods

Pathway-based distance score

Let G =(g;)mxn be a matrix with M rows and N col-
umns, in which rows and columns correspond to genes
and subjects respectively, and g;; is the expression level
of gene G; in subject S;. The pre-defined biological path-
ways, denoted as P={P;:k=1,2, ---,K}, provide the

£,Gy }
-
is the set of genes in pathway P;. To calculate the

pathway-based distance score between samples, we first
cluster all the samples using the expression levels of the
member genes from each pathway separately. The multi-
variate Gaussian Mixture Model is used for the cluster-
ing, which selects the number of clusters based on the
Bayesian Inference Criterion (BIC). Suppose that path-
way Py suggests that there are m; clusters and the clus-

tering results are denoted as Cj; = (c’{,c’z‘, ~~,c’1§,) , in

L

definition of pathways, where Py = {G % Gl-é, x

which ISC]]«(SWI/( and c]/f is an integer representing the
cluster assignment of the subject S; based on member
genes from pathway P;. The pathway-based distance
score between subjects j; and j, is then defined as

#{k : cjkl:tcjkz,mk > 1}
#{k :mp > 1} ’

d(jl7j2) =

where #{-} is the size of the set {}. We exclude the path-
ways that only identify one cluster, and the distance
score is the proportion of these filtered pathways that
assign the two subjects into different clusters. Since this
score is not a true distance, we treat this scoring matrix
as a new data matrix in which each column is one sub-
ject. Results, when this scoring matrix is treated as a dis-
tance matrix for hierarchical clustering method, can be
found in Additional file 1: Figure S1, which shows a sig-
nificant improvement in the connectivity plot by consid-
ering the scoring matrix as a new data matrix instead of
a distance matrix. The final distance between two
subjects will be calculated as the Euclidean distance
between the two corresponding columns from the scor-
ing matrix.
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Downsampling pathways

When there are p genes in one pathway, the Gaussian
mixture model with one component will need to estimate
roughly (p® +3p)/2 parameters with (p*+p)/2 of them
from the covariance matrix and the other p of them from
the mean. So, for a small sample size (~100), it is very easy
for the model to have much larger number of parameters
to estimate than the number of observations, which can
also be seen from Additional file 1: Figure S9. Under this
circumstance, to improve the performance of the
pathway-based distance score, we downsample the path-
ways into smaller pathways. For the data simulated by the
high dimension simulation model, we randomly sample
100 subsets of 10 genes from each pathway and apply
Gaussian mixture model to cluster the samples using each
of these 100 subsets of genes. Then the distance between
two samples is calculated as the proportion of subsets of
genes that cluster the two samples into the different clus-
ters. This new distance matrix will then be used to cluster
the samples by finding the optimal number of clusters,
first using connectivity criterion and then applying K-
means with K being the identified optimal K. In this way,
each pathway will provide one clustering result and the
final distance score is calculated in the way described in
section 2.1. The optimal choice of the number of random
sampling depends on the pathway size and the optimal
choice of the number of genes to be sampled for each ran-
dom sampling depends on the sample size. When sample
size is bigger, the Gaussian mixture model will be able to
accurately estimate more parameters so we can choose a
larger number of genes to sample for each subset. And
when the pathways have more member genes, we will
need to increase the number of random sampling so that
there will be enough number of subsets that contain a de-
cent number of genes with signal. In this article, we simu-
lated 120 subjects and the size of the KEGG pathways
ranges from 6 to over 360. We chose the number of genes
to sample to be 10 based on the simulation results and,
for each pathway, we did the random sampling 100 times
(for which we do not have any evidence and there might
be ways to improve this setting).

Distance by Pathifier

To calculate the distance between samples using Pathi-
fier, we apply Pathifier to the expression data of genes
from each pathway, which provides a pathway activity
score for the given pathway in each of the subjects. The
distance between any two subjects is then calculated as
the Euclidean distance between their pathway activity
scores from all pathways.

Data simulation
To demonstrate the performance of the method, we sim-
ulated multiple gene expression data sets using different
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parameter settings. We assume a total of 22,148 genes
were measured, which is the same as the total number
of genes measured on the Affymetrix HuGene 1.0 ST
chip used in the real data. These genes were assigned to
either a set of artificially defined pathways or the 186
KEGG pathways by MsigDB [32]. Among the 22,148
genes, 4841 genes were assigned to at least one KEGG
pathway. We assume that there are 120 samples evenly
divided into 3 groups. In each group, a subset of path-
ways is randomly selected to be associated with the
grouping. Within each of these selected pathways, a sub-
set of its member genes is randomly chosen to be differ-
entially expressed between the 3 groups.

Suppose the subjects are denoted as (Sy, Sz, 5 S120)
and the cluster that subject S; belongs to is C;. We as-
sume that

1, ifi=1,2, 40
2, if i =41,42, .80,
3,if i =81,82,---,120

which means that the first 40 samples belong to group
1, the second 40 samples belong to group 2 and the last
40 samples form group 3. To simulate the gene expres-
sion profile, we first randomly choose a given percentage
(pw) of the pre-defined pathways to be associated with
the grouping. For example, if Py =0.2, we randomly
choose 37 pathways. Then for each chosen pathway Py,
we randomly select a given percentage (pg) of its mem-
ber genes to be differentially expressed across the 3
groups. Let g;; be the expression level of gene j in subject
S, Qi be the set of genes from pathway P; that was
chosen to be differentially expressed, and G;q, be the
vector of expression levels of genes in Q) from subject
S;. Then the gene expression levels of all genes in path-
way P will have the following distribution:

Gi oy ) Uc, (%o pll
(Giok>~Gaussmn<( 0 ),2 =\ 5 ,

Ci =

in which
-8,if C;=1 oz ... p
He, = O,éfcizz,zoz : . : ,0'2=l+
8,if C;=3 p - a?
Bo? ... p 1 - 1
26°/3, %) = - and [T= | : :
p ... Bg?2 1 1

By this simulation model, the gene expression profile
of subject §; is assumed to follow a multivariate normal
distribution with mean y. and covariance matrix X,
which indicates that subjects from the same group have
the same gene expression profile distribution. We set
the marginal standard deviation of the chosen genes to
be 1 +26%/3 so that, for each group, we can simulate the
gene expression levels of each individual from a
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multivariate Gaussian distribution with marginal vari-
ance of 1 for all the chosen genes. The final simulated
data can be generated by simply merging the simulated
expression levels for all individuals together. The simula-
tion model also assumes that the expression levels of
genes from pathways that were not chosen to be associ-
ated with the grouping have the same multivariate
Gaussian distribution for all individuals, with a mean of
0 for all genes, regardless of what cluster the subject be-
longs to. The marginal variance of the non-chosen genes
is set to be Bo*(B=1,1.5,2) so that we can introduce dif-
ferent levels of noise in the simulated data to show and
compare the robustness of the methods. For each given
setting of pw; pg, 9, B and p, we simulated 100 data sets
and applied different approaches to compare their
performance.

To better understand the performance of our ap-
proach, we simulated the data in two different ways: low
dimension and high dimension. For the low dimension
simulation, we artificially generated a set of 186 pre-
defined pathways by pooling all genes annotated in the
186 KEGG pathways and sampling from them without
replacement to form equally sized and non-overlapping
186 pathways. For the high dimension simulation, we
directly used the 186 KEGG pathways from MsigDB.

Clustering methods performance evaluation

We evaluate the performance of different clustering ap-
proaches for accuracy and robustness. Accuracy is evalu-
ated in two ways. First, we assess the ability of each
approach to identify the correct number of clusters. For
each approach, we calculate the internal clustering cri-
terion (connectivity and Dunn Index [33]) for different
numbers of clusters. The connectivity criterion is de-
fined to measure the difference between the given clus-
tering results and the neighborhood structure of all the
samples. Let C={cy, ¢y, -, cx} be a given clustering re-
sult of N samples that divides the samples into K clus-
ters. Define nn;(;) as the j-th nearest neighbor of sample i
based on one of the four different types of distances and
let 5,;,,,1[(/.) be zero if sample i and j are in the same cluster
and 1/j otherwise. Then the connectivity of the cluster-
ing result C using a given distance measure is defined as
connectivity(C) = SN 12}9@,”%, where L is a parameter
giving the number of nearest neighbors to include for
each sample. So the connectivity criterion is large when
the neighbors of the samples are assigned to different
clusters, indicating a low quality of the given clustering
results. The nearer these misclassified neighbors are to
the samples, the larger the connectivity criterion is. The
value of the connectivity criterion varies between 0 and
oo and should be minimized. The optimal number of
clusters is chosen to be the value that optimizes the
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internal clustering criterion. Among all the 100 simu-
lated data sets with the same parameter setting, we
count the number of data sets that identify 3 as the opti-
mal number of clusters and use this as the first measure
of performance. Second, we evaluate the ability of differ-
ent approaches in finding the correct clustering results.
For each simulation, we apply K-means and hierarchical
clustering to the distance matrix from each approach by
setting the required number of clusters to be the optimal
number of clusters chosen by the corresponding
approach. The clustering results are compared to the
true clustering results by calculating the purity criterion
[33] which measures the differences between a given
clustering result and the true grouping. For robustness,
we vary the value of B to introduce different levels of
noise in the simulation model and compare the accuracy
of different methods across these different noise levels
to investigate how robust the methods are to back-
ground noise.

Results

To demonstrate the performance of our approach, we
compared it to three other approaches including Pathi-
fier, the Euclidean distance based on all genes and genes
included in the simulated pre-defined pathways or the
KEGG pathways, respectively. The comparison was done
using both simulated data and two real datasets.

Simulated data

For the simulated data, we set the percentage of per-
turbed pathways (py) to be 20% and vary the percentage
of perturbed genes per pathway (pg) to be 20%, 40%,
60% and 80%. The correlation coefficient between per-
turbed genes from the same pathway (p) varies from 0 to
0.9, and the differences in the expression levels between
different groups () vary from 0.5 to 1.5. The higher § is,
the easier it should be for the methods to identify the
correct clustering results. But for p, this may not be true.
We applied both K-means clustering and hierarchical
clustering to the simulated data using the distance
matrix calculated in four ways: Euclidean distance using
all genes, Euclidean distance using genes from all 186
KEGG pathways, Euclidean distance of the pathway ac-
tivity scores calculated by Pathifier, and our pathway-
based distance score. The Euclidean distance using all
genes represents the situations when no prior informa-
tion is integrated, while the Euclidean distance using the
KEGG genes and the Pathifier represents the situations
when the prior pathway information is used to filter
genes only. We show the comparison of the pathway-
based distance score to these methods to demonstrate
the benefit of both filtering genes correctly and calculat-
ing the distance based on sets of functionally related
genes or pathways instead of individual genes. The
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comparison to Pathifier will show the benefit of different
approaches to integrate the pathway information and
their corresponding favorable situations.

Low dimension independent model

We first examined the results of the low dimension
simulation with 10 member genes per pathway (S = 10)
and no correlation between genes, i.e. p=0. When B =
1,pg=0.6, and § varies from 0.5 to 1.5, we calculated
the median connectivity (Fig. 1, standard deviation
shown in Additional file 1: Figure S2) and Dunn Index
(Additional file 1: Figure S3) across the 100 simulated
data sets of all the four types of distances for given num-
bers (2,3,4,5) of clusters. The same results for pg = 0.4
can be found in Additional file 1: Figure S4. As shown in
Fig. 1a and b, across different numbers of clusters, both
the pathway-based distance score and Pathifier achieve
the minimum connectivity criterion at the true number
of clusters (k = 3) consistently, except when pg = 0.6 and
§ is smaller than 0.7. Euclidean distance using KEGG
genes starts to identify the right number of clusters
when & becomes higher than 1.3. The median connectiv-
ity criterion by the Euclidean distance using all genes
never identifies the right number of clusters for any §,
no matter what pg is. Between our approach and Pathi-
fier, when § = 0.5 and pg = 0.8, indicating that the differ-
ences between different groups are very small but a high
percentage of genes are differentially expressed, our ap-
proach still achieves the minimum connectivity for 3 but
Pathifier does not. Next, for each distance, we set the
number of wanted clusters to be the identified optimal
number of clusters based on the connectivity criterion
and apply both hierarchical clustering and K-means clus-
tering with the distance to cluster the samples. The clus-
tering results were then compared to the true classes of
all the 120 samples to calculate the purity criterion, and
are shown in Fig. 1c and d. The comparison shows that
both our approach and Pathifier outperform the other
two distances, especially when § is small. When § be-
comes higher than 1.3, the Euclidean distance using the
KEGG pathways annotated genes becomes comparable.
However, the Euclidean distance using all genes always
has the smallest purity for the whole range of §, indicat-
ing the importance of filtering genes in the right way.
Then, between our approach and Pathifier, they achieve
the same high purity level when § > 0.7. But when pg =
0.8, Pathifier has lower purity level mainly because of its
failure to identify the true number of clusters. When pg
decreases to 0.6, both our approach and Pathifier fail to
identify the true number of clusters when §=0.5. But
Pathifier has slightly higher purity than our approach,
because of the fact that the distance by Pathifier is con-
tinuous. Thus, even when there are no clusters, the dis-
tance can still provide certain but low information about
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the differences between samples. While our approach
tends to assign the distance score to be all 0 for all pairs
of samples when the differences between groups are ex-
tremely small and the total number of pathways is low,
our approach will have no pathway that identifies more
than one clusters causing the distance scores to be all 0
for all pairs of samples. When § increases to 0.6, both
our approach and Pathifier will identify the correct num-
ber of clusters, but our approach has higher purity than
Pathifier. To summarize, for low dimensional pathways,
our approach and Pathifier have the same performance
when there are decent differences between different
groups. When the group differences decrease, as long as
our approach is still able to identify the correct number
of clusters, its clustering results have higher purity than
Pathifier. Of course, due to the way the pathway-based
distance score is defined, when the group difference is
so low that no method can identify the correct number
of clusters, Pathifier will have higher purity than our ap-
proach. We expect our approach to perform better when
the number of pathways is higher, since it will increase
the chance of having pathways identifying more than
one cluster.

To compare the robustness of the methods, we set
B=3 to introduce a much higher level of background
noise in the data. The accuracy of the four methods for
B=3 can be found in Fig. 2 (standard deviation of the
connectivity in Additional file 1: Figure S5) and the
Dunn Index can be found in Additional file 1: Figure S6.
Corresponding results for pg = 0.4 can be found in Add-
itional file 1: Figure S7. When comparing Fig. 2 to Fig. 1,
we found that when B increases from 1 to 3, Pathifier
fails to identify the correct number of clusters for ¢ =
0.5, while our approach is still able to find 3 as the
optimal K. When comparing Additional file 1: Figure S7
to Figure S4, the difference is not as significant. This in-
dicates that the pathway-based distance score is more
robust to background noise than Pathifier, especially
when there are many genes in the pathways associated
with the grouping.

High dimension independent model

For the high dimension simulation model, we set
p6=0.2, 0.4, 0.6 and 0.8 and examined the results when
there is no correlation between genes, i.e. p =0. When &
varies from 0.5 to 1.5, the median connectivity criterion
across the 100 simulated data sets of the four types of
distances for a given number of clusters (2,3,4,5) is
shown in Fig. 3. The results show that, across different
numbers of clusters, the pathway-based distance score
achieves the minimum connectivity criterion at the true
number of clusters (k = 3) consistently, except when § =
0.5 and hierarchical clustering is used to calculate the con-
nectivity criterion. Pathifier, however, always identifies the
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Fig. 1 Performance comparison when p=0 and B=1 for low dimension simulation. The median connectivity when ps= 0.8 (panel a) and ps=0.6
(panel b) for different numbers of clusters using four distances: Euclidean distance using all genes (Euclidean All Genes), Euclidean distance using
KEGG covered genes only (Euclidean KEGG), KEGG pathway-based distance score (Pathway KEGG) and the Euclidean distance of the pathway activity
scores calculated by Pathifier (Pathifier). Both the hierarchical tree clustering (HC) and the K-means (KMEANS) were used to calculate the connectivity
criteria. Different lines in each panel represent the connectivity across the different number of clusters for each given value of §=0.5,0.7,09,1.1,1.3,1.5.
The median purity criterion of the clustering results on the 100 simulated data sets when hierarchical clustering and K-means are applied to the four
distances when ps = 0.8 (panel ¢) and ps = 0.6 (panel d). The number of clusters was set to be the optimal number of clusters identified based on the
connectivity criteria using the corresponding calculated distance
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correct number of clusters no matter what ¢ is. Again, Eu-
clidean distance using KEGG genes starts to identify the
right number of clusters when § becomes higher than 0.5.
The median connectivity criterion by the Euclidean dis-
tance using all genes starts to identify the right number of
clusters when & > 0.9. The actual percentage of simulated
datasets for which the four types of distances identify the
correct number of clusters (k = 3) based on the connectiv-
ity criterion is shown in Table 1. The pathway-based dis-
tance score and Pathifier always achieve the highest
percentage of the correctly identified number of clusters.
As the differences between different clusters (J) increases,
the Euclidean distance using KEGG genes becomes better
and comparable to the pathway-based distance score and
Pathifier in terms of its ability to find the right number of
clusters. In addition, the purity comparison in Fig. 3c and
d show that both the pathway-based distance score and
the Pathifier outperform the other two distances, espe-
cially when § is small, indicating the benefit of integrating
pathway information. When & becomes higher than 0.6,
the Euclidean distance using the KEGG pathways anno-
tated genes becomes comparable to the pathway-based
distance score. And, the Euclidean distance using all genes
always becomes comparable to the other methods when
6> 0.9, indicating the importance of filtering genes in the
right way. Between Pathifier and the pathway-based dis-
tance score, when p=0.2, Pathifier has much higher pur-
ity than the pathway-based distance score especially for §
< 0.9 (Additional file 1: Figure S8). A closer investigation
of the results revealed that the mclust R package that we
used for the Gaussian mixture model clustering becomes
less efficient when the size of the pathway increases (Add-
itional file 1: Figure S9). To improve this, we down sam-
pled all the pathways down to 100 subsets of 10 genes for
B=1, §=0.5, 0.6 and 0.7, and pg=0.2 and the results are
shown in Figs. 4 and 5. The figures show that although
the downsampling strategy does not improve the perform-
ance of the pathway-based distance score in identifying
the correct number of clusters, the corresponding purity
of the clustering results does significantly improve. With
this very rough downsampling strategy, the pathway-
based distance score achieves comparable performance
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when §>0.6 compared to §> 0.9 without this downsam-
pling step. Again, we chose the number of genes to sample
to be 10 since the simulation results with 10 genes per
pathway showed outer performance of our approach. But,
we did the random sampling 100 times for each pathway
without any evidence. We believe that finer tuning on the
number of random samplings can further improve the
performance.

High dimension dependent model

The last simulation analysis that we conducted assumes
that genes are correlated, i.e. p > 0, since multiple studies
have shown that the expression levels of genes from the
same biological pathway are correlated [34, 35]. Since
we have shown that the performances of Pathifier and
our approach are very similar to each other and this ob-
servation is not strongly affected by the correlation be-
tween genes, we excluded the Pathifier from the
comparison in this simulation analysis. Also, we set pg
to be 0.2. For different settings of § and p, again, the op-
timal number of clusters is first identified to minimize
the connectivity criterion. Then, this optimal number of
clusters will be set to be the target number of clusters,
and both hierarchical clustering and K-means clustering
are applied to the three distances to identify the clusters.
Since the correct number of clusters for all the simu-
lated datasets is 3, we examined the percentage of simu-
lated datasets that successfully identified 3 as the
optimal number of clusters (success rate) based on the
connectivity criterion (Figure 6). First, as can be seen in
the figure, the pathway-based distance score achieves the
highest success rate for almost all the examined values
of § and p. The Euclidean distance using all genes, again,
has the lowest success rate, and the Euclidean distance
using KEGG pathway annotated genes is between the
other two distances. Second, the difference in the suc-
cess rate is marginal when hierarchical clustering and
K-means are used to calculate the connectivity criterion.
Third, when the differences between groups () are
fixed, the success rate increases when the correlation
between genes (p) increases. This increasing trend
becomes weaker when the group difference is larger,

Table 1 The accuracy rate of identifying the true number of clusters when p=0, 8=1 and p;=0.2

6 0.5 06 0.7 08 09 1.0 1.1 1.2 13 14 15

HC Euclid All 13% 13% 10% 8% 7% 7% 2% 6% 1% 10% 7%
Euclid KEGG 6% 8% 2% 3% 4% 2% 3% 19% 35% 55% 72%
Path KEGG 22% 37% 34% 38% 45% 61% 75% 89% 98% 99% 100%

Kmeans Euclid All 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Euclid KEGG 0% 0% 0% 0% 0% 0% 3% 19% 39% 54% 77%
Path KEGG 19% 50% 77% 92% 97% 97% 100% 100% 100% 99% 100%

When there is no correlation between genes, for different values of §, the percentage of simulated data sets for which the given distances identify 3 as the
optimal number of clusters based on the connectivity criteria is shown. Both hierarchical tree (HC) and K-means (Kmeans) were used as clustering method
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pathway-based distance score, it is sensitive enough so that
its success rate keeps increasing when the group difference
(6) increases for p <0.9. Next, the purity criterion of the
clustering results was examined by hierarchical clustering
and K-means clustering using the three distances, which is
shown in Fig. 7. These results show that, when the differ-
ence between groups (d) is given, all three distances are less
efficient when the correlation between genes (p) increases.

This applies to both hierarchical clustering and K-means
clustering. But when the correlation between genes (p) is
given, the clustering results become increasingly accurate
for all three distances when the differences between
groups (6) increase. In addition, the pathway-based dis-
tance score outperforms the other two distances for all
given values of ¢ and p. Notably, this difference in per-
formance is more significant for larger p when § < 0.9 and
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less significant for larger p when & >0.9. This differences
in performance is also greater for larger J, especially when
& > 1. Finally, the outer-performance of the pathway-based
distance score over the other two distances is greater
when hierarchical clustering is used, indicating the benefit
of using K-means, especially when the number of clusters
is correctly identified.

In summary, the comparison of the three distances
shows that the pathway-based distance score achieves

superior clustering results compared to the Euclidean
distance, regardless of whether the correct set of genes
are filtered out or not.

Gene expression data in asthma patients

To compare the three distances in real data, we applied
them to the gene expression data measured in 100
asthma patients from the YCAAD cohort [7]. The data
was quantile normalized and adjusted for batch effects
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using ComBat [36] and RIN numbers using linear re-
gression. Then we calculated the three distances be-
tween the 100 patients using the adjusted gene
expression data. The visualization and the connectivity
criterion of the four distances are shown in Fig. 8. The
heatmap shows that the pathway-based distance score
indicates that there is a clear separation between sam-
ples, while there is no clear separation between samples
using the other distances. The connectivity plot of the
pathway-based distance shows that there should be 3
clusters and the other three distances achieve the smal-
lest connectivity for 2 clusters.

Next, we clustered the 100 samples using K-means clus-
tering coupled with the three distances, with K set to 3 for
the pathway-based distance and 2 for the other three dis-
tances. Clinical and physiological features of the patients
that are significantly associated (P < 0.05) with the cluster-
ing results are summarized in Table 2. As shown in the
table, among all the clinical features, a history of hospitali-
zations and intubations are significant (P < 0.05) only by
the pathway-based distance. These two features have
already been validated in an independent cohort of chil-
dren with asthma [7]. In addition, among all the physio-
logical features, the significant features identified by the
pathway-based distance score were also identified as sig-
nificant by at least one of the other three distances, while
the other two significant clinical features were only identi-
fied by one of the other three distances, indicating that
they are likely to be false discoveries. In this asthma co-
hort, cytokine levels in the sputum and blood were also
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measured. When tested for association with the clustering
results, 4 of them are significant only by the Euclidean dis-
tance with all genes, 2 of them are significant only by the
Euclidean distance with KEGG pathways covered genes, 4
of them are significant only by Pathifier, and 6 of them are
significant only by the pathway-based distance (data not
shown). Since these cytokines are important proteins in-
volved in inflammation and airway remodeling that have
been shown to be important in the pathogenesis of
asthma, we believe that the pathway-based distance was
able to identify stronger signals of asthma heterogeneity
from this data.

The gene expression data was adjusted for batch ef-
fects using ComBat, which may not completely eliminate
the batch effects in the data. However, evaluation of the
correlation between the clustering results with the
batches showed that the clustering results were not sig-
nificant correlated with the batches (data not shown).
This indicates that the adjusted gene expression data
was not dominated by the batch effect after the batch
adjustment. Besides, as shown above, we validated our
findings in an independent cohort that used the Illumina
bead chips in a very different population of asthma pa-
tients. Combining these two facts, we concluded that the
clustering results or the performance of our approach
on the asthma gene expression data was not significantly
affected by the batch effects. Nevertheless, we applied
the methods to another real dataset with one single
batch for demonstration, which can be found in the
Supplemental Material (Additional file 1: Figure S10).
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Table 2 Phenotypic and physiologic characteristics of the identified clusters

Euclid_all Euclid_KEGG KEGG_dist Pathifier_KEGG

Age at Visit (years) 0.65 037 032 0.28
Gender 0.02% 0.14 0.58 0.28
History of Atopy - N (%) 0.89 0.2 0.02 0.62
Age of Symptom Onset 0.55 0.25 0.17 0.62
Disease Duration (years) 0.98 0.9 0.67 0.38
History of Hospitalization - N (%) 0.21 0.77 0.04 1.00
History of Intubations - N (%) 0.14 0.12 0.05 0.04
OCS tapers in past year- N (%) 0.65 1.00 0.67 0.83
ACT Score 025 041 0.22 0.56
FEV1- % of predicted value

Pre B, agonist use 0.04 0.02 0.02 0.04

Post 3, agonist use 0.06 0.05* 0.06 0.06
FVC- % of predicted value

Pre B, agonist use 0.04 0.02 0.04 0.03

Post 3, agonist use 0.12 0.06 0.16 0.13
FEV1/FVC- % of predicted value

Pre {3, agonist use 0.23 046 0.13 041

Post 3, agonist use 0.14 0.2 0.06 0.09
BDR (%) 0.27 0.05 0.05 0.09
FENO (ppb) 0.05* 0.54 027 040

The significance of the association between the phenotypic and physiologic features and the clustering results by K-means coupled with the four distances. P values
were calculated using Kruskal-Wallis and Chi-square test for continuous and categorical variables, respectively. The false discovery rate for KEGG_dist
clustering results associated clinical features estimated by the permutation-based method is 11% when nominal p value < 0.05. *P values that are significant (P < 0.05)
only by one of the two Euclidean distances. Bold p values are significant by the pathway-based distance score

Discussion
The pathway-based distance was calculated using genes
included in pre-defined pathways. Thus, the biological
significance of the identified clusters will rely heavily on
the way that the pathways are defined. The KEGG path-
ways are mostly metabolic pathways that are ubiqui-
tously involved in different complex diseases. However,
if other types of pathways, for example, cancer-related
pathways, are used to calculate the score, the biological
difference that the score represents will be related to
cancer-related pathways. Therefore, the best type of
pathways to use will depend on the disease of interest.
The cancer-related pathways may be limited but could
provide stronger and more specific signals when applied
to gene expression data in cancer patients. When choos-
ing between different pathway databases, one may com-
pare the percentage or the absolute number of pathways
that identify more than 1 cluster from the data as this
number may increase the resolution of the pathway-
based distance. Clinical relevance of the identified
clusters can be another way to help decide on which
pathway database to use.

Second, the pre-defined pathways may be incomplete,
contain errors and sometimes based on subjective

judgments on the relevance of certain molecules with
certain biological processes. When the pre-defined path-
ways are incomplete or the pathway database completely
misses some of the important pathways related to the
disease pathology, the molecular network changes
associated with the disease may not always appear in the
annotated pathways. In this case, the pathway-based
clustering methods may be less effective than the gene-
level clustering methods because of the lower signal level
due to the gene filtering based on incomplete prior path-
way annotation. Of course, when there are few disease
pathology-associated genes but the differences between
the different subgroups are high, the simulation showed
that the pathway-based distance may still provide accur-
ate clustering results. The subjective judgment on the
pathway definitions will cause the clustering results to
be different when different pathway databases are used,
even though they contain the same type of pathways.
These all indicate that one may need to refine the pre-
defined pathways before calculating the pathway-based
distance. This refinement includes both filtering genes
and expanding the pathways to include more genes in a
biologically meaningful way. In addition, applying the
pathway-based clustering methods using multiple



Yan et al. BMC Bioinformatics (2017) 18:309

different pathway databases and examining the results
for consistency are also recommended to obtain more
robust and accurate clustering results.

Finally, the multivariate Gaussian mixture model is
not the only way to identify the clusters using genes
from each pathway. As we have shown in the high di-
mension simulation model, the approach can be signifi-
cantly improved by adding an extra step of dimension
reduction by downsampling the pathways into smaller
pathways. In addition, other statistical models may be
developed to better model the correlation between genes
and the overlapping between different pathways. Alter-
native models are also needed to fit gene expression data
measured by different techniques that do not follow
Gaussian distribution, like the RNA sequencing data.

Conclusions

We have developed a novel distance to represent the
biological difference between samples using gene expres-
sion data. This distance has been compared to the trad-
itional Euclidean distance with and without gene
filtering using both simulated and real data as well as
another pathway-based approach, Pathifier. The com-
parison in the simulated data sets showed that compared
to the Euclidean distances with or without gene filtering,
the pathway-based distance has better performance in
both identifying the true number of clusters and assign-
ing the samples to the correct classes that they truly be-
long to. This better performance is robust to the
changes in the correlation between genes and the differ-
ence between different classes. When compared to
Pathifier, the pathway-based distance showed better per-
formance and robustness for pathways with a small
number of genes. For pathways with a large number of
genes, which causes the Gaussian mixture model to be
less efficient due to the high dimension, we added an
extra step of downsampling the pathways which showed
significant improvement in the performance, especially
in the accuracy of the clustering result. In the real data-
set from asthma patients, compared to the two Euclid-
ean distances, the pathway-based distance was the only
distance that identified clinical features that are signifi-
cantly different among the identified clusters. It was also
the only approach that identified significant physio-
logical features that were also significant by using at
least one of the other distances. Finally, the pathway-
based distance score identified the most number of in-
flammation and remodeling associated cytokines which
were shown to be important biomarkers of different
asthma pathogenesis. In the other real data set from
non-small cell lung cancer patients, the pathway-based
distance was able to achieve clustering accuracy compar-
able to the other methods, even though the small sample
size (n = 11) caused the Gaussian mixture model to be
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less efficient for almost all the pathways. In summary, in
both simulated data and real data, we have shown that
the pathway-based distance provides accurate and robust
clustering results which are more likely to be biologically
meaningful.

Additional file

N
Additional file 1: The pdf document that contains the application and
comparison of the methods to the data from patients with non-small cell
lung cancer, all supplementary notes and figures. Figure S1 shows the
median connectivity criterion of the pathway based distance score when
the scoring matrix is treated as original data matrix instead of a distance
matrix. Figure S2 shows the standard deviation of the connectivity criteria
of all the methods across the 100 simulated low dimension data. Figure S3
shows the Dunn Index of all four methods as an alternative to the
connectivity criterion using the low dimension simulation model. Figure S4
shows the comparison across all the methods using low dimensional simulation
model with 40% of genes in the chosen pathways to be perturbed. Figure S5
shows the median and the standard deviation of the connectivity criterion of all
four methods using the low dimension simulation model with a high back-
ground noise level (B = 3). Figure S6 shows the Dunn Index of all four methods
as an alternative to the connectivity criterion using the low dimension simulation
model with a high background noise level (B = 3). Figure S7 shows
the performance comparison across the four methods using the low dimension
simulation model with a high background noise (B = 3) and 40% of genes in
the chosen pathways to be perturbed. Figure S8 shows the performance
comparison across the four methods using the high dimension simulation
model with a lower percentage of genes in the chosen pathways to be perturbed
(20% and 40%). Figure S9 plots the purity of the clustering result by
each pathway versus the number of genes in the corresponding pathway.
Figure S10 shows the visualization of the distance matrices calculated by
the four methods and their corresponding connectivity criteria for
the real gene expression data from patients with non-small cell lung
cancer. (PDF 5361 kb)
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