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Abstract: The survival of patients with multiple myeloma (MM) has been dramatically improved
in the last decade thanks to the incorporation of second-generation proteasome inhibitors (PI),
immunomodulatory drugs (IMID), and, more recently, anti-CD38 monoclonal antibodies (MoAb).
Nevertheless, still, a major proportion of MM patients will relapse, underscoring the need for
new therapies in this disease. Moreover, survival in patients failing the current standard of care
regimens (including PI, IMIDs, and anti-CD38 MoAb), which is now defined as triple-class refractory,
remains dismal, and new drugs with different mechanism of action are needed. B-cell maturation
antigen (BCMA)-targeted therapies and in particular chimeric antigen receptor T cell (CAR T-cell)
treatment have emerged as promising platforms to overcome refractoriness to conventional drugs.
In this manuscript, we review the current available data regarding CAR T-cell therapy for MM, with a
special focus on target selection, clinical results, limitations, and future strategies.

Keywords: relapse and refractory multiple myeloma; B-cell maturation antigen; chimeric antigen
receptor T cell (CAR T-cell) therapy; immunotherapy

1. Introduction

The treatment landscape of multiple myeloma (MM) patients has substantially changed in the last
decade thanks to the incorporation of several new drugs and combinations, including second-generation
proteasome inhibitors (PI) (carfilzomib, ixazomib), second-generation immunomodulatory drugs
(IMIDs) (pomalidomide), and anti-CD38 monoclonal antibodies (MoAb) (daratumumab). This has led
to a significant improvement in survival times both in the frontline and relapse setting [1]. Nevertheless,
still, a major proportion of MM patients will relapse, underscoring the need for new therapies in
this disease. Moreover, the current standard of care in MM treatment includes continuous treatment
as a major driver for improved survival. This continuous therapy approach from the first line to
end-stage disease determines the development of resistant clones in the setting of continuous treatment,
leading to drug refractoriness and decreased survival upon relapse.

Anti-CD38 monoclonal antibodies, and in particular daratumumab, have been one of the major
drivers of this increase in MM survival and are now incorporated in all the treatment phases in
combination with other backbones. A recent retrospective study focused on the outcome after
anti-CD38 MoAb failure has clearly showed that median overall survival (OS) from refractoriness to
CD38-MoAb is significantly shortened (8.6 months) and particularly for those patients that are refractory
to five different drugs (penta-refractory patients), with a median OS of only 5.6 months [2]. Therefore,
there is a clear need for new therapies, with different mechanism of action, for the management of
patients with relapse and refractory MM (RRMM).
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Immunotherapy-based approaches, and in particular T-cell based therapies, have emerged in the
last years as a promising platform to overcome refractoriness to conventional drugs. In line with this,
clinical experience using chimeric antigen receptor T-cells (CAR T-cells) or T-cell engager antibodies is
rapidly increasing with promising results already reported in end-stage MM.

In this article, we will review the available data regarding CAR T-cell therapy for MM, with a
special focus on target selection, clinical results, limitations, and future strategies.

2. Engineered T-Cells in MM: CAR T-Cells

Until recently, adoptive cell therapy in myeloma was restricted to bone marrow transplant or
the anecdotal use of tumor-infiltrating lymphocytes (TILs). Clinical experience with TILs in MM is
scanty and is mainly restricted to the work of Borrello et al. using marrow-infiltrating lymphocytes
(MILs) [3]. Nonetheless, progress in gene engineering technologies has simplified the generation
of specific antitumor T-cells, overcoming many of the practical barriers that have limited the wide
dissemination of adoptive cell therapy using TIL cells. Genetically redirecting a T-cell’s specificity
toward a patient’s cancer cell can be accomplished in two ways: (1) a cloned T-cell receptor (TCR)
conferring tumor recognition is inserted into circulating lymphocytes, and (2) T-cells are transduced
with a chimeric antigen receptor (CAR).

CARs are engineered fusion proteins that contain (1) an extracellular antigen-binding domain
composed of a single-chain variable fragment (scFv) derived from an Ab that confers recognition to a
tumor-associated antigen; and (2) an extracellular hinge/spacer and a transmembrane domain that is
linked in tandem to (3) intracellular signaling motifs capable of T cell activation. First-generation CARs
only contained the CD3 portion of the TCR but had suboptimal clinical activity with lower persistence.
The second and third-generation CARs significantly improved the activity through the incorporation
of costimulatory molecule domains such as CD28, 4-1BB, or OX40. Fourth-generation CARs express
additional molecules to enhance CAR-T cell efficacy, such as inducible interleukin. So far, the strongest
clinical data derive from second-generation CAR T-cells based on one single costimulatory molecule
(either CD28 or 4-1BB) (Figure 1).
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Figure 1. Structure of a second generation chimeric antigen receptor T cell (CAR T-cell). scFV:
single chain variable fragment; FcRγ: Fc gamma receptor.4-1BB: also called CD137 or TNFRS9,
activation-induced costimulatory molecule; iCOS: inducible T-cell costimulator.

3. Target Selection

Selecting the appropriate antigen is a critical step in CAR design both to optimize efficacy whilst
preventing on target-off tumor toxicity. The ideal target for CAR development is one whose expression
is restricted to the tumor cell; however, most-tumor associated target antigens are also expressed,
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albeit at low-to-intermediate levels, on normal tissues [4]. Different antigens are expressed in the
surface of plasma cells (Figure 2) and have been used for CAR-T design (Table 1); however, B-cell
maturation antigen (BCMA) has been the focus of attention in the past recent years.

1 
 

 
Figure 2. The figure represents some of the membrane targets expressed in the clonal plasma cell
surfable that are suitable for drug development. In brackets, antibodies targeting specific antigens are
included (i.e., daratumumab: anti-CD38 monoclonal antibody). CAR T cell: chimeric antigen receptor
T cell; FDA: U.S. Food and Drug Administration; EMA: European Medical Agency.

B-cell maturation antigen (BCMA), also named TNFRSF17 or CD269, is a membrane bound of the
tumor necrosis factor receptor (TNFR) superfamily [5]. Ligands for BCMA include B-cell activating
factor (BAFF) and a proliferation-inducing ligand (APRIL), of which APRIL has a higher affinity for
BCMA [6,7]. The expression of BCMA is restricted to the B-cell compartment, being expressed in
clonal and polyclonal plasma cells, as well as in a small subset of normal memory B cells. BCMA is
overexpressed in MM preclinical models and patients and has been reported to play a role in myeloma
cell growth, chemoresistance, and microenvironment immunosuppression [8,9].

BCMA expression in myeloma patients is almost universal [7], but the density of antigen expression
in the cell is highly variable and significantly lower as compared to other surface antigens such as CD38.
Moreover, the membrane expression of BCMA may vary over time due to the shedding of soluble
BCMA (sBCMA) after cleavage by a γ-secretase enzyme [10]. sBCMA could be followed in the serum
of MM patients, and it is still unclear whether it could impair the efficacy of BCMA-targeting drugs.
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Table 1. Summary of potential targets for CAR T-cell development including patterns of expression
and reference to ongoing/planned clinical trials.

Antigen Expression in
Plasma Cells Function Off-Target

Expression Ongoing Trials

BCMA Universal in
plasma cells

Membrane bound of
the TNFR superfamily

Restricted to B-cell
compartment

NCT04309981
NCT03430011
NCT03288493
NCT04181827
NCT04133636
NCT04093596
NCT04196491
NCT03601078
NCT03651128
NCT04244656
NCT04394650

CD38 (Syndecan 1)
Overexpressed in

multiple
myeloma cells

As a receptor, CD38
can bind CD31 in T

cells, activating them.
As an enzyme, it

catalyzes the synthesis
and hydrolysis of
cyclic ADP-ribose.

Normal
hematopoietic cells:

red blood cells,
NK cells

NCT03464916
NCT03473496
NCT03767751

GPRC5D Universal in
plasma cells

Not yet been
determined

Hair follicle and
lung tissue NCT04555551

SLAMF7
Overexpressed in

multiple
myeloma cells

Mediates activating or
inhibitory effects in NK

cells

Normal B and
T-cells, NK-cells,
monocytes, and
dendritic cells

NCT04499339

CD19 Rarely detected
in plasma cells

Involved in B-cell
maturation All B-lineage cells

NCT04194931
NCT04182581
NCT03767725
NCT04236011
NCT03455972

NCT04162353 *

NKG2D Not expressed in
plasma cells

Important role in the
NK, γδ+,

and CD8+T-cell-mediated
immune response to

tumors

Rarely detectable
on healthy cells

and tissues

Under
development

* All clinical trials with CD19 CAR-T are either dual CD19/BCMA CART or trials combining both CAR-T (CD19 y
BCMA). CAR T cell: chimeric antigen receptor T cell; NKG2D: natural-killer group 2, member D; BCMA: B-cell
maturation antigen; GPRC5D: orphan G protein–coupled receptor, class C group 5 member D; SLAMF7: Signaling
lymphocyte activation molecule F7; ADP: adenosin diphosphate; NK: Natural-killer; NCT: National Clinical trial;
γδ+: Gamma-delta positive T-cell.

Other targets that are being exploited for the development of CAR T-cells are as follows:

(1) CD38 is expressed with high intensity in clonal plasma cells and has been shown to be a promising
target for the treatment of MM. However, CD38 is also expressed, although with less intensity,
on normal hematopoietic cells, such as red blood cells, natural killer cells, and other tissues,
increasing the risk of on-target off-tumor toxicity [11]. There is already preclinical evidence
showing an activity of CD38-targeting CAR T-cells, and several clinical trials are ongoing.

(2) CD138 (Syndecan 1) is expressed in normal and clonal plasma cells and also on normal tissues such
as epithelial cells potentially inducing “on target–off tumor” toxicity. However, in a preclinical
study using CD138-directed CAR T-cells, no epithelial toxicity was observed [12]. The same
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experience was noted in a clinical report with five patients treated with CD138 directed CAR
T-cell in China, and a phase 1 trial is ongoing [11].

(3) The orphan G protein–coupled receptor, class C group 5 member D (GPRC5D), is expressed
ubiquitously in malignant bone marrow plasma cells, hair follicles, and variably in the lung
tissue [13]. Interestingly, expression in MM cells is 500 to 1000 times that found on normal cells [11].
CAR T-cells targeting GPRC5D have demonstrated promising preclinical activity [13], and clinical
strategies targeting GPRC5D, particularly using bispecific antibodies, are under evaluation.

(4) Signaling lymphocyte activation molecule F7 (SLAMF7 or CS1) is widely expressed on plasma
cells, as well as subsets of normal B and T-cells, natural killer (NK) cells, monocytes, and dendritic
cells, and it is already a target used in MM therapy with the antibody elotuzumab [11,14,15].
CAR T-cells targeting SLAMF7 have shown encouraging preclinical activity; however, SLAMF7
expression in lymphocyte subsets raised the problem of the specific fratricide of SLAMF7+/high

target cells by SLAMF7-CAR T-cells, although SLAMF7−/low was preserved and able to remain
viable [16]. Clinical trials evaluating SLAMF7-targeted CAR T-cells are ongoing.

(5) CD19-directed CAR T-cell therapy is approved for the treatment of B acute lymphoblastic
leukemia and diffuse large B cell lymphoma. CD19 is typically absent on the dominant
multiple myeloma cell population, but it may be present on a minor subset with unique
myeloma-propagating properties [17,18]. CD19-directed CAR T-cell therapy has been tested
in MM patients after autologous stem cells therapy with interesting results [18] and also in
combination with BCMA-directed CAR T-cells in small series of patients with promising data [19].

(6) The activating receptor NKG2D (natural-killer group 2, member D) and its ligands play an
important role in the NK, γδ+, and CD8+ T-cell-mediated immune response to tumors. Ligands
for NKG2D are rarely detectable on the surface of healthy cells and tissues, but they are frequently
expressed by tumor cell lines and in tumor tissues, which makes them attractive targets for CAR
development [20]. NKG2D ligand-directed CAR T-cells have been evaluated both in preclinical
and clinical settings (albeit a small number of patients) with promising results [21]. NKG2D
ligand-directed CAR NK cells are also under development [22].

4. Clinical Data Using CAR T-Cells in MM

Clinical data using CAR T-cells in myeloma is still scanty. No CAR T-cell product has
been yet approved or is available for the treatment of MM patients outside the context of
clinical trials. In the recent years, the number of clinical trials evaluating CAR T-cell therapy in
multiple myeloma is continuously increasing. Although different constructs and targets are being
evaluated, still, BCMA-directed CAR T-cells (Table 2) accumulate the most robust evidence with
one product (idecabtagene vicleucel, bb2121, ide-cel) likely to be approved by the U.S. Food and
Drug Administration.
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Table 2. Summary of efficacy and safety of most relevant B-cell maturation antigen (BCMA)-directed CAR T-cell trials in relapse and refractory multiple myeloma (RRMM).

Idecabtagene Vicleucel
(Ide-Cel)

KARMMA Study [23]
bb21217 [24]

Orvacabtagene-Autoleucel
(Orva-Cel)

EVOLVE Ph 1/2 Trial [25]

Ciltacabtagene
Autoleucel (Cilta-Cel)

CARTITUDE 1 [26]

LCAR-B38M
LEGEND-2 [27]

CAR Design Autologous, lentiviral
vector 4-1BB

Ide-cel cultured with
PI3Ki, to enrich

memory-like T cells

Fully human (CD28/41BB).
1:1 CD4:CD8 ratio

2 BCMA-targeting single
chain antibody

2 BCMA-targeting single
chain antibody

(same as JNJ 4528)
Population 128 (Ph 2) 38 (Ph 1) 62 (Ph 1/2) 29 (Ph 1b/2) 57 (Ph 2)

Number of Prior lines 6 6 6 5 2

CAR T-cell Dose 150–450 × 106 CAR T-cell 150–450 × 106 CAR T-cell 300–600 × 106 CAR T-cell 0.73 × 106

CAR T-cells/kg
0.5 × 106

CAR T + Cells/kg
Refractory to CD38 MoAb 94% 76% NA 93% 1 patients

Triple-class Refractory 84% 63% 94% 86% –
Extramedullar disease 39% NA 23% 10% NA

ORR (CR) 82%* (39%) NA (33%) 92% #. (29%) 100% (86%) 88% (74%)
DOR/PFS/

OS months 11.3 */12.1 */19.4 11.1 &/NA/NA
NA/NA/

NA NA/86%@9m/NA 19.9m
In CR: mPFS 28.2 m

CRS (G 3/4) 96% * (6%) 66% (6%) 88% # (4%) 93% (7%) 90% (7%)
Neurotox(G3) 20% * (6%) 24% (8%) 13% # (0%) 10% (3%) 2%

Reference

(1) Munshi NC, et al.
Initial KarMMa results. J

Clin Oncol. 2020;38
(suppl; abstr 8503).

(2) Berdeja JG, et al. Blood
(Internet). 2019 Nov

13;134
(Supplement_1):927.

(3) Mailankody S, et al. J
Clin Oncol. 2020;30
(suppl; abstr 8504).

(4) Usmani SZ, et al. EHA
Library. 2020. p. EP926.

(5) Chen L, et al. Blood
(Internet) 2019 Nov 13;134

(Supplement_1):1858.

* Responses at 450 × 106 CAR T dose levels. # Responses at 600 × 106 CAR T dose level. & Responses at 150 × 106 CAR T dose level. ORR: overall response rate. CR: complete response.
DOR: duration of response. PFS: progression-free survival. OS: overall survival. CRS: cytokine release syndrome. G 3/4: Grade 3 or 4. Neurotox: neurotoxicity. G3: Grade 3.
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The first clinical trial reporting efficacy using a BCMA-targeting CAR T was presented in 2015
and conducted at the National Cancer Institute [28,29]. The BCMA CAR T construct used in this study
contained a murine anti-BCMA single-chain variable fragment, hinge, and transmembrane regions
from human CD8α, the CD28 costimulatory molecule, and the CD3z T-cell activation domain [28].
A total of 27 patients were included and 24 infused, with 16 patients at the higher dose level of
9 × 106 CAR T-cells/kg. The median number of prior treatments in the highest dose level was 9.5.
The overall response rate (ORR) among these 16 patients was 81% with a median event-free survival of
31 weeks, including six patients with ongoing response at the moment of the publication. Peak CAR+

cell levels occurred between 7 and 14 days after CAR–BCMA T-cell infusion for all patients and
correlated with disease response. CAR–BCMA T-cell toxicity was mild at lower doses but substantial
at the highest dose level. The cytokine release syndrome (CRS) of any grade was present in 94% of the
patients (15/16) with six out of 16 patients developing grade 3-4 CRS and 31% of patients requiring
treatment with tocilizumab.

Another BCMA-directed CAR T construct has been codeveloped by the University of Pennsylvania
and Novartis and tested in a phase I trial [30]. The structure contained a fully human scFV and a 4-1BB
costimulatory domain, which were transferred using a lentiviral vector-based technology. Twenty-nine
patients were included in three sequential cohorts: cohort 1, 1 × 108 to 5 × 108 CART–BCMA cells
alone; cohort 2, cyclophosphamide (Cy) 1.5 g/m2 plus 1 × 107 to 5 × 107 CART–BCMA cells; cohort 3,
Cy 1.5 g/m2 plus 1 × 108 to 5 × 108 CART–BCMA cells. Twenty-five patients were infused (four patients
were never infused due to rapid MM progression). The median number of prior lines was 7, with 44% of
patients being penta-refractory. Interestingly, BCMA–CAR T-cells were administered in an outpatient
research unit over 3 days as split-dose intravenous infusions. Twenty-one out of 25 patients received
the full CAR T dose, whilst four patients received 40% of the dose due to early CRS onset. The ORR for
the three cohorts was 48% and was higher in the third cohort (ORR 64%). The median progression-free
survival (PFS) was 65, 57, and 125 days for each cohort, respectively. Cytokine release syndrome
was seen in 88% of the infused patients and was grade 3 or higher in eight (32%) subjects, all of
whom were treated at the 1 × 108 to 5 × 108 dose. Median time to CRS onset was 4 days, with a
median duration of 6 days. Neurotoxicity was seen in eight (32%) patients and was mild in five
subjects, with three patients presenting with grade 3–4 encephalopathy. Responses were significantly
associated with peak expansion as well as with persistence over the first 28 days. No association
was found between expansion or response and age, years from diagnosis, number of prior lines,
TP53 mutation status, or penta-refractory disease. Even more, pre-apheresis treatment, baseline serum
BCMA concentration, MM cell BCMA intensity, or bone marrow plasma cell infiltration were neither
associated with expansion or response. Contrariwise, a higher number of CD27+CD45RO−CD8+

T-cells within the leukapheresis product correlated with a most robust in vivo expansion and better
clinical response.

A third BCMA–CAR construct initially named LCAR-B38M (China) subsequently JNJ-68284528,
and currently, Ciltacabtagene Autoleucel (cilta-cel) has been evaluated in three different early phase
trials (Legend-2, CARTITUDE-1, and CARTIFAN-1). Cilta-cel is a structurally differentiated CAR
T-cell therapy with a 4-1BB costimulatory domain and two B-cell maturation antigen (BCMA)-targeting
domains. Cilta-cel has been given breakthrough therapy designation by the U.S. Food and Drug
Administration and PRIME (PRIority MEdicines) status by the European Medicines Agency.

The first trial reported using this CAR construct was the Legend-2 trial, a phase I, first-in-human
(FIH) study conducted at multiple centers in China, each with their own lymphodepletion protocol
and timing for CAR T-cell administration. Data from 57 patients treated at a single institution in
China (The Second Affiliated Hospital of Xi’an Jiaotong University) were first published in 2018 [31]
and updated recently with a median follow-up of 25 months [27]. Lymphodepleting therapy was
cyclophosphamide alone (300 mg/m2 days −5, −4 and −3), and CAR T-cells were administered in
three split doses, 20% of the total dose on day 1, 30% on day 3, and the remaining 50% on day 7.
The median dose infused was 0.5 × 106 cells/kg (range 0.07–2.1 × 106). The median number of prior
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lines was 3, with very few patients with prior exposure to the second generation of novel agents, or
anti-CD38 monoclonal antibodies, reflecting a less heavily pretreated population. The overall response
rate (ORR) was 88%, with a significant proportion of patients achieving complete response (CR) (74%)
and minimal residual disease (MRD) negativity (68%) using eight-color flow with a sensitivity of
10−6. Responses were rapid (median time to first response was 1.1 month) and deepened over time.
The median duration of response (DOR) was 27.0 months (95% Confidence Interval (CI) 14.3–NE),
and the median progression-free survival (PFS) and overall survival (OS) for all treated patients
was 19.9 months (95% CI, 9.6–31.0) and 36.1 months (95% CI 26.4—not estimated (NE)), respectively.
Both PFS and OS were longer for patients achieving CR, 28.2 months (95% CI, 19.9–NE), and not
reached (NR) (95% CI, 35.0–NE), respectively. Safety was manageable with 90% of patients presenting
CRS, which was grade 3-4 in only 4 patients (7%). Median time to onset of CRS was 9 days, with
a median duration of 9 days [32]. Tocilizumab was used in 45% of the subjects. Neurotoxicity was
infrequent (2%). Clinical responses did not correlate with BCMA expression, and in most patients,
(71%) LCAR-B38M CAR T-cells were not detectable in peripheral blood at 4 months.

The same dual-epitope binding BCMA–CAR construct has been evaluated in the phase 1b/2
CARTITUDE-1 study, which was conducted in the U.S. Eligible patients had to have received at least
three prior lines of therapy with exposure to prior proteasome inhibitors, immunomodulatory agents,
and antiCD38 monoclonal antibodies. A total of 35 patients were enrolled and 29 were infused with a
median age of 60 years. The median number of prior lines were 5, ranging from 3 to 18, with 97% of
patient refractory to the last line of therapy and 86% triple-class refractory. Fludarabine (30 mg/m2,
3 days) and cyclophosphamide (300 mg/m2, 3 days) were given as conditioning treatment and CAR
T-cells were infused at day 1 as a single infusion. The median administered dose of cilta-cel was
0.73 × 106 (0.52–0.89 × 106) CAR+ viable T-cells/kg. ORR at the last data cut-off, with a median FUP of
11.5 months, was 100% with a significant proportion of subjects achieving stringent complete remission
(86%). Responses were durable and deepened over time with a median time to first response and
CR of 1 and 3 months, respectively. Median PFS has not been reached yet, with a 9-month PFS of
86% (95% CI, 67–95). The overall safety profile was manageable with CRS and cytopenias being the
most frequent adverse events. CRS was presented in 93% of the patients with grade ≥3 in only two
patients. Median time to CRS onset was 7 days with a median duration of 4 days. Neurotoxicity
was infrequent (10%) and mostly low grade. Only one patient developed grade ≥3 immune effector
cell-associated neurotoxicity syndrome (ICANs). Cytopenias were common and generally grade 3 or
higher. Grade ≥ 3 neutropenia and thrombocytopenia were presented in 100% and 69% of the patients,
respectively. Prolonged cytopenias, lasting beyond 60 days, were uncommon, and median time to
grade 3–4 neutropenia and thrombocytopenia recovery was 1.6 weeks (95% CI, 1.3–1.9) and 5.3 weeks
(95% CI, 2.4–8.1), respectively [26].

Interestingly, and in contrast with prior experience with other BCMA CAR-T constructs, both peak
cilta-cel expansion and CAR+ T-cell persistence did not correlate with clinical response in this trial.
In 18 out of 28 patients, the number of CAR+ T-cells were below the limit of quantitation at 3 months of
follow-up, with several patients losing the CAR T-cells in periphery as early as by day 28. Nonetheless,
despite early CAR T-cell loss in several patients, responses were durable and deepen over time,
suggesting that the loss of peripheral persistence may not be associated with relapse for all CAR
T-cell therapies.

Idecabtagene vicleucel (ide-cel; bb2121) is the most advanced BCMA-directed CAR T-cell therapy
investigated in relapsed and refractory multiple myeloma patients. Ide-cel is comprised of a murine
extracellular single-chain variable fragment (same as in the National Cancer Institute study) attached to
a human CD8 ∝ hinge and transmembrane domain fused to the T-cell cytoplasmic signaling domains
of the 4-1BB and CD3-ζ chain, in tandem. Ide-cel has been granted Breakthrough Therapy designation
(BTD) by the U.S. Food and Drug Administration, and PRIority MEdicines (PRIME) designation and
validation of its Marketing Authorization Application (MAA) by the European Medicines Agency for
relapsed and refractory multiple myeloma, and it is likely to be the first CAR T-cell therapy approved
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for the treatment of RRMM patients. The phase 1 study included 33 patients with RRMM who have
received at least three prior lines of treatment, with prior exposure to proteasome inhibitors and IMIDs
or double-refractory disease. For the dose–escalation portion of the study, BCMA expression on 50% or
more of marrow plasma cells on immunohistochemical assay was required, although this criterion was
eliminated in the expansion phase. In addition, prior daratumumab exposure and refractoriness to the
last line of treatment were required during the expansion phase. Ide-cel was administered as a single
infusion at doses of 50 × 106, 150 × 106, 450 × 106, or 800 × 106 CAR+ T-cells in the dose–escalation
portion of the study and 150 × 106 and 450 × 106 CAR+ T-cells in the expansion phase. Results for the
first 33 consecutive patients infused were published in 2019 [33]. Hematologic adverse events were
the most common events with grade 3 or higher neutropenia in 85% and thrombocytopenia in 45%.
CRS was present in 25 patients (76%), which was grade 1 or 2 in 23 patients (70%) and grade 3 in two
patients (6%). Neurologic toxicity occurred in 14 patients (42%) and were of grade 1 or 2 in 13 patients
(39%). The ORR was 85%, including 15 patients (45%) with complete response. The median PFS was
11.8 months (95% CI, 6.2–17.8). The peak CAR-T cell expansion was associated with clinical response,
and CAR T-cells persisted up to 1 year after the infusion.

The pivotal phase 2 KarMMa study of ide-cel recruited 158 patients, of whom 140 underwent
leukapheresis and 128 were infused with three different doses of ide-cel: 150 × 106 (n = 4), 300 × 106

(n = 70), and 450 × 106 (n = 54). Eligible patients had three or more prior lines of treatment,
prior exposure to proteasome inhibitors, IMIDs, and anti-CD38 monoclonal antibodies and were
refractory to the last line of treatment. The baseline characteristics of the patients reflected a very
advanced stage of a heavily pretreated myeloma population with a median number of six prior lines
and 84% of triple-class refractory subjects. Moreover, 51% of the patients presented high tumor burden
defined as bone marrow infiltration ≥50% and 39% had extramedullary disease. Most patients (88%)
received bridging therapy during CAR T-cell manufacturing, and only 4% responded. Both primary
and secondary endpoints of the trial were met. The ORR across all infused patients was 73% with
a CR rate of 33%. There was a clear dose–response relation with higher ORR (82%) and CR (39%)
among patients treated at the higher dose level (450 × 106). The median time to first response was
1.0 months, and the median time to CR was 2.8 months. The median PFS in all treated patients was
8.8 months (95% CI, 5.6–11.6), and it was 12.0 months for patients treated with the higher dose of
450 × 106 CAR+ T-cells. The median PFS was superior in patients achieving CR with a median PFS
of 20.2 months (95% CI, 12.3–NE) as compared to 5.4 m (95% CI, 3.8–8.2) for those patients in partial
response. As seen in other CAR-T trials, both cytopenias and CRS were the most common adverse
events. CRS was reported in 84% of all treated patients (96% at the 450 × 106 CAR+ T cell dose),
with grade 1–2 CRS in 78% and grade ≥3 in <5% of patients. The median time to CRS onset was 1 day
with a median duration of 5 days. Tocilizumab and steroids were used in 67% and 19% of the patients,
respectively. Neurotoxicity was uncommon (18% of the patients treated) and mostly grade 1–2. On the
opposite, cytopenias were common and were not related to the cells’ dose. The incidence of grade ≥ 3
neutropenia and thrombocytopenia was 89% and 52%, respectively. The median time to recovery from
grade ≥ 3 neutropenia or thrombocytopenia was 2 months (95% CI, 1.9–2.1) and 3 months (95% CI,
2.1–5.5), respectively. Delayed recovery (>1 month) of grade ≥3 neutropenia and thrombocytopenia
were seen in 41% and 48% of the patients, respectively. Overall survival is still immature, with 66% of
patients censored overall. The median OS was 19.4 months (95% CI, 18.2–NE). In this study, peak CAR
T-cell expansion did correlate with clinical outcome, and cell expansion correlated with longer PFS in
the higher dose levels [23].

In an attempt to increase the duration of remission, several strategies are being evaluated to
increase the proportion of T-cells with a central memory phenotype based on experiences showing better
clinical outcomes in these patients [34] and prolonged CAR-T cell persistence [11]. So far, two different
alternatives are being studied in phase 1 clinical trials: one incorporating a PI3K inhibitor during T cell
culture (bb21217) and a second one using a 1:1 CD4:CD8 ratio in the culture (Orvacabtagene-autoleucel,
orva-cel, JCARH125; EVOLVE study).
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The phase 1 trial with bb21217 included 36 patients in the last updated report with ORR across
three different dose levels (150, 300, and 450 × 106) of 60% and a manageable safety profile [24]. Longer
follow-up is needed to assess if treatment with bb21217 translates into sustained CAR T-cell persistence
and durable clinical responses.

More mature results have been recently presented with orvacabtagene autoleucel (orva-cel)
in the phase 1/2 EVOLVE study [25]. Eligible patients had three or more prior lines of treatment,
including proteasome inhibitors, IMIDs, and anti-CD38 MoAb and were refractory to the last line of
treatment. Sixty-two patients were included and treated at the higher dose levels of 300 × 106, 450 ×
106, and 600 × 106 CAR+ T-cells. The median age was 61 years. The median number of prior lines
was six with 94% of triple-class refractory patients. Extramedullary disease was identified in 23% of
the patients using baseline PET-CT scan. The ORR across all three doses was 92% with 36% of CR.
Although follow-up is still short at the higher-dose levels (3.9 and 2.3 months for 450 and 600 × 106

CAR+ T-cells), the responses seem durable. The median PFS was 9.3 months for the 300 × 106 CAR+

T-cells cohort and not yet reached for the 450 and 600 × 106 CAR+ T-cell cohorts. The safety profile
was manageable and overall comparable to other trials. CRS was present in 89% of the patients with
only two patients experiencing grade ≥3 CRS. The median time to CRS onset was 2 days, and the
median duration was 4 days. Neurotoxicity was present in only 13% of the subjects and mostly
grade 1–2. Cytopenias were common. Neutropenia grade ≥3 was seen in 90% of the patients and
thrombocytopenia grade ≥3 was seen in 47%. Prolonged cytopenias were also common. Sixty-seven
percent of the patients had grade ≥3 cytopenia at day 29 and 35% had grade ≥3 cytopenia at month
2. The 600 × 106 CAR+ T-cells dose has been selected as the recommended phase 2 dosing, and the
expansion phase of this study is now enrolling.

5. Limitations of Current Approaches and Potential Avenues

5.1. Peak Expansion and Response

Despite significant efficacy with high ORR and CR rates in the different BCMA-directed
CAR-T trials, with survival significantly superior to that reported with real-world therapies [35],
patients continue to relapse, and no plateau is seen in the survival curves. Mechanisms of resistance
and relapse following CAR T-cell therapy in MM are poorly understood. CAR-T cell expansion and
peak CAR-T cell levels do correlate with response across different trials [28,30,33]. In the KarMMa [23]
study, peak ide-cel vector copies were significantly higher in responders as compared to non-responders,
and a similar experience was published with the UPenn BCMA CAR T-cell [30]. However, recent data
using cilta-cel in the phase 1b/2 CARTITUDE-1 study fail to show this correlation. In this study,
ORR was 100%, and responses were independent of peak CAR-T expansion [36]. It is still unclear
whether this is related to the small number of patients treated or to the differences in CAR-T design
with a dual-binding domain and potential higher affinity, and more follow-up is needed.

5.2. Antigen Escape

Antigen escape or downmodulation has also been described as a potential mechanism of
progression after CAR T-cell treatment. This has been demonstrated after CD 19-directed CAR T-cell
therapy in acute lymphoblastic leukemia and has also been observed in some cases in myeloma [37].
Indeed, decreased levels of BCMA expression as well as BCMA downmodulation has been described
in patients after BCMA CAR T therapy [30], and some strategies are ongoing evaluating combination
treatment with γ-secretase inhibitors (GSI) to increase surface BCMA levels and decrease soluble
BCMA. Preliminary data from one phase I study evaluating the combination of BCMA CAR-T and
JSMD194 (a GSI) have been recently presented. Treatment with GSI efficiently increased the level of
BCMA expression on the plasma cell with promising efficacy (ORR of 100% among 10 patients treated).
However, the incidence of neurological toxicity was significant (70%) [38]. It is important to note
that the results so far reported suggest no correlation between BCMA expression levels and response,
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although in the ide-cel KarMMa study, there was a trend showing higher BCMA receptor density for
patients with a very good partial response (VGPR) or CR/stringent CR.

On the other hand, BCMA loss is infrequent after BCMA CAR T-cell therapy. Indeed, the majority of
the relapsing patients in the ide-cel study (15 out of 16), the largest dataset so far, showed BCMA-expressing
CD138+ cells at the moment of relapse; indeed, BCMA antigen loss was found in only 4% (3 out of 71)
of patients in progression with one subject with confirmed genomic loss due to biallelic deletion of the
TNFRSF17 gene [39]. Even so, strategies to mitigate antigen escape are needed. This may include new
target selection, dual targeting, or bispecific CAR T-cells. A bispecific BCMA-CD19 CAR T-cell has been
evaluated in a first-in-human study in China. Five patients were infused without any severe adverse
events, and only three out of five patients experienced grade 1 CRS. All patients responded with one
patient achieving an stringent CR, 3 achieving VGPR, and 1 achieving partial response. A phase 1 trial is
ongoing to further evaluate this strategy [40]. Another approach using separate infusions of CD19- and
BCMA-targeted CAR T-cells has been evaluated in RRMM patients in a phase 1 trial in China. A total of
28 patients were treated with an ORR of 92.6% and a CR rate of 40.7%. CRS was reported in all patients
with grade 3–4 in 32.1% of the subjects [19]. Another approach is the use of bispecific CAR T-cells. BM38
CAR-T incorporates the anti-CD38 and anti-BCMA single-chain variable fragment in tandem plus 4-1BB
signaling and CD3 zeta domains. In the first-in-human study conducted in China, 16 patients were treated
with an ORR of 87.5%, CR rate of 50%, 9-month PFS of 75%, and a manageable safety profile. Although
these results are promising, a longer follow-up is needed to determine if dual targeting is able to improve
on the results of current BCMA CAR-T products.

5.3. CAR T-Cell Persistence and Duration of Response

A failure in the long-term functional persistence of CAR T-cells has been postulated as a mechanism
of disease progression. Loss of CAR T-cell peripheral persistence may precede relapse in some patients,
and this has been seen with myeloma and other malignancies. In the KarMMa study, durable ide-cel
persistence (≥6 months) was seen in 29 patients out of 49 evaluable (59%), but only four patients had
CAR-T detectable by month 12 [23]. On the other hand, in the CARTITUDE-1 study, despite a quite
early loss of cilta-cel in the peripheral blood in several patients, responses were maintained and even
deepen over time, reflecting the variability between studies and the different behavior seen with the
different CAR T constructs [36].

As discussed above, several strategies [24,25] are being developed to increase the proportion of
long-lived T-cells with a memory phenotype in the infused product, since this has been associated with
improved outcomes [34] and longer CAR T-cell persistence [11]. In addition to those already discuss in
this article, another interesting approach is the use of novel transduction methods, such as the nonviral
PiggyBac transposon-based DNA-delivery system [41]. This method has a shorter manufacturing time,
lower cost, and results in a higher number of memory stem cells. It also has a very large cargo capacity
that can potentially accommodate more CARs into a CAR T-cell product in the future [42]. One such
CAR product being studied in MM is the P-BCMA-101 [43]. This CAR-T is under evaluation in a phase
2 study [44]. Results from the phase 1 dose escalation reported an ORR of 63% among 19 evaluable
patients at five different dose levels (from 0.75 × 106 up to 15 × 106 cells/kg) with a median PFS of
9.5 months (NCT03288493) [45].

5.4. Combination Therapies

Finally, another strategy to improve the duration of response and PFS is to combine CAR T-cell
with other therapies that may enhance their activity. Combinations with immunomodulatory drugs,
such as lenalidomide or daratumumab or even with checkpoint inhibitors have been postulated,
and some studies will start soon evaluating some of these strategies in the clinic.
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6. Practical Considerations

When thinking about CAR T-cell treatment, there are some aspects that need to be taken into
account. The first aspect is manufacturing time. The time lag between apheresis and infusion
of autologous CAR T-cell remains a challenge, especially for those patients with aggressive or
rapidly progressive disease. In our personal experience, the drop-out rate was 20% mainly due to
complications associated with disease progression, underlying the importance of adequate patient
selection. Industry and academic centers have the challenge to deliver the CAR T-cells in the shortest
time possible. This problem can be solved using allogeneic CAR T-cells. These products have the
advantage of being “off the shelf” and derived from healthy unrelated donors, without the need
of patient apheresis and avoiding potential manufacturing failures. Indeed, dose can be titrated or
repeated if needed. Moreover, a high number of CAR T-cells can be produced and cryopreserved from
a single donor, reducing the cost and allowing for the potential standardization of T-cell characteristics.
BCMA-directed allogeneic CAR T-cells are under evaluation in several clinical trials. To reduce the
potential for graft-versus-host disease, these CAR T-cells have been genetically edited to limit T cell
receptor (TCR)-mediated immune responses. This can be accomplished either using transcription
activator-like effector nucleases (TALEN) [46] or CRISPR/Cas 9 technology. For example, in one
allogeneic BCMA-directed CAR T-cell (CTX120), CRISPR/Cas 9 is used to insert the CAR construct
precisely into the TCR alpha constant (TRAC) locus, and to eliminate the TCR. Moreover, the class I
major histocompatibility complex (MHC I) is also knock out using CRSPR/Cas 9 [47]. A phase I trial
using CTX120 in RRMM is ongoing (NCT04244656).

During the manufacturing time (4–7 weeks), patients can receive “bridging therapy” to slow
disease progression and maintain each patient’s clinical condition. Bridging therapy is typically
individualized to the patient and adapted to previous treatments, time frame until infusion, disease’s
characteristics, and pre-existing toxicities. In the KarMMa study, 88% of the subjects received bridging
therapy, and only 4% of the patients responded. This underscores the importance of patient selection
to reduce the risk of patients not infused due to rapid clinical deterioration, death, or severe organ
damage [48].

Finally, safety is another important point to take into consideration. Thus far, the clinical experience
suggests that toxicity is generally manageable. CRS is present in 80–90% of patients across all trials
but is generally grade 1 or 2 with less than 10% of patients developing grade ≥ 3 CRS. Neurotoxicty
is unfrequent and generally mild (grade 1 or 2). On the other hand, cytopenias are very common
and can be persistent with some products. Mechanisms underlying the development of cytopenias
are poorly understood and include the toxicity of prior regimens, lymphodepleting chemotherapy,
and inflammatory response after CAR T-cell therapy. Supportive care and prophylactic measures
are needed in some patients, and prolonged cytopenias may indeed limit subsequent therapy at the
moment of disease progression.

7. Conclusions

BCMA CAR T-cell therapy is showing impressive results in an end-stage myeloma population,
but relapses still occur. Multiple questions are still unanswered, and several strategies are under
investigation to improve current results. Adequate patient selection and earlier use in the course of the
disease may surely impact the long-term outcome of CAR T-cell therapy; however, issues such as cost,
competition with other immunotherapies in particular bispecific antibodies, and BCMA antibody–drug
conjugates (such as belantamab mafodotin already FDA and EMA-approved), and the limitation
of administration requiring specialized centers may limit the widespread use of this therapy today.
Nevertheless, the positive initial results in patients that would not have other treatment options, and
the rapidly evolving field, convert CAR-T cell therapy in one of the most promising therapeutic tools
in the MM armamentarium.
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